
Chapter 11

The Design of Steady State
Schemes for Computational
Aerodynamics

F.D. Witherden*, A. Jameson* and D.W. Zingg†
*Stanford University, Stanford, CA, United States
†University of Toronto Institute for Aerospace Studies, Toronto, ON, Canada

Chapter Outline
1 Introduction 304

2 Equations of Gas Dynamics

and Spatial Discretizations 305

3 Time-Marching Methods 308

3.1 Model Problem for

Stability Analysis of

Convection Dominated

Problems 308

3.2 Multistage Schemes for

Steady State Problems 309

3.3 Implicit Schemes for Steady

State Problems 312

3.4 Acceleration Methods 318

3.5 Multigrid Methods 323

3.6 RANS Equations 327

4 Newton–Krylov Methods 332

4.1 Background 332

4.2 Methodology 335

5 Conclusions 344

References 345

ABSTRACT
The majority of industrial computational fluid dynamics simulations are steady. Such

simulations therefore require numerical methods which can rapidly converge a bound-

ary value problem, typically either the Euler or Reynolds-averaged Navier–Stokes
(RANS) equations. In this chapter we outline two major approaches: time-marching

methods built on top of Runge–Kutta time-stepping schemes and Newton–Krylov meth-

ods. A range of techniques for accelerating convergence are presented including local

time-stepping, enthalpy damping, residual averaging, multigrid methods and precondi-

tioning.More recent hybrid approaches such as theRunge–Kutta symmetricGauss–Seidel
are also discussed. The effectiveness of these methodologies, within the context of several

Euler and RANS test cases, is also evaluated.

Keywords: Computational fluid dynamics, Gas dynamics, Finite volume methods,

Newton–Krylov methods, Runge–Kutta methods

AMS Classification Codes: 65M08, 65M12, 65F08, 65N22

Handbook of Numerical Analysis, Vol. 18. http://dx.doi.org/10.1016/bs.hna.2016.11.006

© 2017 Elsevier B.V. All rights reserved. 303

http://dx.doi.org/10.1016/bs.hna.2016.11.006

1 INTRODUCTION

An important requirement for aeronautical applications of computational meth-

ods in aerodynamic design is the capability to predict the steady flow past a

proposed configuration, so that key performance parameters such as the lift to

drag ratio can be estimated. Even in manoeuvring flight the time scales of the

motion are large compared with those of the flow, so the unsteady effects are

secondary. Thus the aerodynamic design will normally be based on analysis

of steady flow. In fact, no one would wish to be a passenger on an aircraft that

could not sustain essentially steady flow. Unsteady flow due to buffet or wing

flutter is not acceptable for normal operation, so the analysis of unsteady flow is

required primarily for checking the structural integrity at the limits of the flight

envelope, such as establishing that the minimum speed at which flutter can occur

is greater than the maximum permissible speed in a dive.

We shall consider systems with the general form

dw

dt
+RðwÞ¼ 0 (1)

where R(w) is the residual resulting from the spatial discretization of the Euler

and Navier–Stokes equations for compressible flow.

One approach is to calculate the steady state solutions directly by an iter-

ative method. In fact Newton’s method was successfully used (Giles and

Drela, 1987) to solve the two-dimensional Euler equations. In three dimen-

sions the bandwidth of the Jacobian matrix is generally too large for direct

inversion to be feasible, so the common practice is to use an iterative method

to solve the linear system. In Newton–Krylov methods the subiterations are

performed by a Krylov method such as GMRES. Newton methods have the

disadvantage that they may not necessarily converge if the initial guess is

not close enough to the solution.

The alternative approach is to use a time-marching method to advance the

unsteady equation (1) to a steady state. Since the transient solution is immate-

rial, the time integration method may be modified by a variety of acceleration

procedures to maximize the rate of convergence to a steady state, without

maintaining any pretence of time accuracy. In the early days of CFD, it was

commonly assumed that in order to obtain fast convergence to a steady state,

it would be necessary to use an implicit scheme which allowed large time

steps. Any implicit scheme, however, such as the backward Euler scheme

wn+ 1 ¼wn�DtRðwn+ 1Þ (2)

with the superscript n denoting the time levels, requires the solution of a large

number of coupled nonlinear equations which have the same complexity as

the steady state problem

RðwÞ¼ 0: (3)

304 Handbook of Numerical Analysis

Accordingly a fast steady state solver can provide an essential building block for

an implicit scheme to solve the unsteady equations. In fact this is the basis of dual

time-stepping procedures (Jameson, 1991) for time accurate calculations using

implicit schemes, which have proved very successful in practice (Jameson, 2015).

There is actually a close connection between direct iteration and

time-marching methods. Denoting the change wn+1 � wn by Dw, and setting

Rðwn+ 1Þ¼RðwnÞ+ @R

@w
Dw +OððDwÞ2Þ

the backward Euler scheme (2) may be linearized as

I +Dt
@R

@w

� �
Dw +DtRðwnÞ¼ 0

and the Newton iteration is recovered in the limit Dt!∞. Accordingly it is a

common practice with Newton methods to use the linearized backward Euler

scheme in the early steps of the calculation. It may be noted, moreover, that

an effective way to analyze classical relaxation methods for elliptic problems

is to regards them as approximations to an artificial unsteady problem where

each iterations represents a step in pseudo-time.

In this article we shall consider both time-marching and direct iterative

schemes. Section 2 gives a brief review of the equations of gas dynamics

and appropriate upwind biased spatial discretization schemes. Section 3

reviews steady state solvers based on pseudo-time-marching methods, while

Section 4 reviews direct iterative methods such as Newton–Krylov proce-

dures. Finally, Section 5 presents some conclusions and an overall assessment

of the advantages and disadvantages of the various approaches.

2 EQUATIONS OF GAS DYNAMICS AND SPATIAL
DISCRETIZATIONS

We shall consider steady state solvers for the Euler and Navier–Stokes equa-
tions for compressible flows. Let xi, ui, r, p, E and H denote the Cartesian

coordinates, velocity, density, pressure, energy and enthalpy. The Euler equa-

tions for an inviscid gas are thus

@w

@t
+

@

@xi
f iðwÞ¼ 0 (4)

where the state and flux vectors are

w¼ r

1

u1
u2
u3
E

2
66664

3
77775, f i ¼ rui

1

u1
u2
u3
H

2
66664

3
77775 + p

0

di1
di2
di3
0

2
66664

3
77775

The Design of Steady State Schemes Chapter 11 305

Also,

p¼ðg�1Þr E�u2

2

� �
, H¼E+

p

r
¼ c2

g�1
+
u2

2

where u is the speed, and c is the speed of sound

u2 ¼ u2i , c2 ¼ gp
r

Let mi and e denote the momentum components and total energy,

mi ¼ rui, e¼ rE¼ p

g�1
+
m2

i

2r

Then w and f can be expressed as

w¼

r
m1

m2

m3

e

2
66664

3
77775, f i ¼ ui

r
m1

m2

m3

e

2
66664

3
77775 + p

0

di1
di2
di3
ui

2
66664

3
77775 (5)

Finite volume schemes directly approximate the integral form of the equa-

tions. The flux needs to be calculated across the interface between each pair

of cells. Denoting the face normal and area by ni and S, the flux is fS where

f ¼ nif i

This can be expressed in terms of the conservative variables w as

f ¼ un

r
m1

m2

m3

e

2
666664

3
777775 + p

0

n1
n2
n3
un

2
66664

3
77775 (6)

where un is the normal velocity

un ¼ niui ¼ nimi

r

Also

p¼ðg�1Þ e�m2
i

2r

� �

In smooth regions of the flow the equations can also be written in quasi-

linear form as

@w

@t
+Ai

@w

@xi
¼ 0

306 Handbook of Numerical Analysis

where Ai are the Jacobian matrices

Ai ¼ @f i
@w

,

The composite Jacobian matrix at a face with normal vector n
!

is

A¼Aini ¼ @f

@w

All the entries in fi and f are homogenous of degree 1 in the conservative vari-

ables w. It follows that fi and f satisfy the identities

f i ¼Aiw, f ¼Aw

The wave speeds normal to the interface are given by the eigenvalues of

A: un + c, un � c, un, un and un.
In upwind discretizations the numerical flux across each interface is calcu-

lated from the left and right states wL and wR on either side of the interface, with

an upwind bias depending on the wave speeds. Examples include the Roe flux

(Roe, 1981), the Rusanov flux (Rusanov, 1961), HCUSP (Jameson, 1995b),

AUSM (Liou and Steffen, 1993) and HLLC (Toro et al., 1994). First-order

accurate schemes take wL and wR as the cell average values of the cell on either

side of the interface. In second-order accurate schemes wL and wR are recon-

structed from the values in a stencil of neighbouring cells by reconstruction

methods such as MUSCL (van Leer, 1974) and SLIP (Jameson, 1995a), subject

to limiters to prevent oscillations in the vicinity of discontinuities.

The construction of upwind biased fluxes generally depends on splitting

the Jacobian matrix A as

A¼ 1

2
ðA+ +A�Þ

where A� have positive and negative eigenvalues. For example if A is decom-

posed as V LV�1 where the columns of V are the eigenvectors of A, and L is a

diagonal matrix containing the eigenvalues, one may split L into L� contain-

ing and positive and negative eigenvalues, and define

A� ¼VL�V�1

and also the absolute Jacobian matrix

jAj ¼VðL +�L�ÞV�1 ¼VjLjV�1

In the Navier–Stokes equations for viscous compressible flow Eq. (5) is

augmented by the addition of viscous fluxes to the momentum and energy

equations. In the momentum equations the viscous stresses area

sij ¼ m
@ui
@xj

+
@uj
@xi

� �
+ ldij

@uk
@xk

where m and l are the coefficients of viscosity and bulk viscosity. Typically

l¼�2

3
m. The additional fluxes in the energy equation are

The Design of Steady State Schemes Chapter 11 307

sjkuk + k
@T

@xj

where k is the coefficient of heat conduction and T is the temperature. It is the

usual practice to discretize the viscous terms with central differences.

Flows at high Reynolds numbers generally become turbulent, and one may

then resort to solving the Reynolds-averaged (RANS) and Favre-averaged

(FANS) equations for mean values of the flow quantities. Residual terms arising

from the difference between the average of a product and the product of

averages are then represented by turbulence models. In aerodynamic simula-

tions the most popular turbulence models are the Spalart–Allmaras and Menter

SSTmodels. For a review of turbulence models the reader is referred to the book

byWilcox (1998). In turbulent flow simulations convergence to a steady state is

generally impeded both by the presence of stiff source terms in the turbulence

models, and the need to introduce meshes with a very fine mesh spacing in the

normal direction in the vicinity of the wall. It is the usual practice to place the

first mesh point adjacent to the wall at a distance of y+ � u*y/n ¼ 1 where u*
is the friction velocity at the wall, y is the distance to the wall, and n is the kine-
matic viscosity of the fluid. This leads tomesh cells with a very high aspect ratio.

In the following sections it will be assumed that the spatial discretization

is accomplished by a second-order accurate upwind biased scheme along

these lines or the Jameson–Schmidt–Turkel (JST) scheme (Jameson et al.,

1981). It may be noted that higher order reconstruction schemes such as

WENO (Liu et al., 1994) may fail to converge to a completely steady state

because they are prone to develop limit cycles in which the reconstruction

stencils flip between different choices.

3 TIME-MARCHING METHODS

3.1 Model Problem for Stability Analysis of Convection
Dominated Problems

The following model problem provides a useful tool for the stability analysis

of time integration methods for convection dominated problems. Consider a

semi-discretization of the linear advection equation

@u

@t
+ a

@u

@x
¼ 0 (7)

on a uniform grid with mesh interval Dx. Using central differences, aug-

mented by an artificial diffusive term �Dx3
@3u

@x3
, this can be written as

Dt
dvj
dt

¼ l
2
ðvj+ 1� vj�1Þ�lmðvj+ 2�4vj + 1 + 6vj�4vj�1 + vj�2Þ, (8)

where Dt is the assumed time step, and l is the CFL number

308 Handbook of Numerical Analysis

l¼ a
Dt
Dx

: (9)

For a Fourier mode

vj ¼ v̂ðtÞeioxj , (10)

this reduces to

Dt
dv̂

dt
¼ zv̂, (11)

where z is the Fourier symbol of the space discretization. With x ¼ oDx,

zðxÞ¼�l isinx+ 4mð1� cosxÞ2
� �

: (12)

For stability of the fully discrete scheme, the locus of z, as x is varied, should

be inside the stability region of the time integration method. The permissible

CFL number thus depends on the stability interval along the imaginary axis as

well as the negative real axis. Fig. 1 shows the stability region of the standard

fourth order RK4 scheme. It also shows the locus of the Fourier symbol for a

CFL number of 2.8, m ¼ 1/32.

3.2 Multistage Schemes for Steady State Problems

The next section focuses on explicit time-stepping schemes tailored for steady

state problems. For these one can use simplified multistage schemes designed

purely to maximize the stability region with out regard to time accuracy. As a

starting point we may use the low storage m stage scheme

–8 –6 –4 –2 0

−4

−3

−2

−1

0

1

2

3

4

ℜ

ℑ

FIG. 1 Stability region for the standard four-stage RK scheme. Black line—Locus of Fourier

symbol for linear advection with CFL number 2.4.

The Design of Steady State Schemes Chapter 11 309

w 0ð Þ ¼wn

w 1ð Þ ¼w 0ð Þ �a1DtR w 0ð Þ
� �

w 2ð Þ ¼w 0ð Þ �a2DtR w 1ð Þ
� �

…

(13)

wðmÞ ¼wð0Þ �DtRðwðm�1ÞÞ
wn+1 ¼wðmÞ (14)

The simplest choice is

a1 ¼ 1

m
, a2 ¼ 1

m�1
,…, (15)

which gives mth-order accuracy for linear problems. It has been shown by

Kinnmark (1984) how to chose the coefficients to maximize the stability

interval along the imaginary axis, which should yield the largest possible time

step for a pure convection problem.

With a diffusive or upwind-biased scheme the time-stepping scheme

should also have a stability region which contains a substantial interval of the

negative real axis. To achieve this it pays to treat the convective and dissipative

terms in a distinct fashion. Accordingly the residual is split as

RðwÞ¼QðwÞ+DðwÞ,
where Q(w) is the convective part and D(w) the dissipative part. Denote the

time level nDt by a superscript n. Then the multistage time-stepping scheme

is formulated as

w 0ð Þ ¼wn

…

w kð Þ ¼wn�akDt Q k�1ð Þ +D k�1ð Þ
� �

…

wn + 1 ¼w mð Þ,

(16)

where the superscript k denotes the kth stage, am ¼ 1, and

Qð0Þ ¼Q wnð Þ, Dð0Þ ¼D wnð Þ
…

QðkÞ ¼Q wðkÞ
� �

DðkÞ ¼ bkD wðkÞ
� �

+ ð1�bkÞDðk�1Þ:

The coefficients ak are chosen to maximize the stability interval along the

imaginary axis, and the coefficients bk are chosen to increase the stability

interval along the negative real axis.

310 Handbook of Numerical Analysis

These schemes fall within the framework of additive Runge–Kutta schemes,

and they have much larger stability regions (Jameson, 1985). Two schemes

which have been found to be particularly effective are tabulated below. The first

is a four-stage scheme with two evaluations of dissipation. Its coefficients are

a1 ¼ 1

3
, b1 ¼ 1,

a2 ¼ 4

15
, b2 ¼

1

2
,

a3 ¼ 5

9
, b3 ¼ 0,

a4 ¼ 1, b4 ¼ 0:

(17)

The second is a five-stage scheme with three evaluations of dissipation. Its

coefficients are

a1 ¼ 1

4
, b1 ¼ 1,

a2 ¼ 1

6
, b2 ¼ 0,

a3 ¼ 3

8
, b3 ¼ 0:56,

a4 ¼ 1

2
, b4 ¼ 0,

a5 ¼ 1, b5 ¼ 0:44:

(18)

Figs. 2 and 3 display the stability regions for the 4-2 and 5-3 schemes

defined by Eqs. (17) and (18).

−8 −6 −4 −2 0

−4

−3

−2

−1

0

1

ℜ

ℑ

2

3

4

FIG. 2 Stability region for the 4-2 scheme (Eq. (17)). Black line—Locus of Fourier symbol for

linear advection with CFL number 2.4.

The Design of Steady State Schemes Chapter 11 311

The expansion of the stability region is apparent compared with the stan-

dard RK4 scheme as shown in Fig. 1. They also show the locus of the Fourier

symbol for the model problem discussed in Section 3.1.

Typically calculations are performed on meshes with widely varying cell

sizes, and the convergence to steady state can be significantly accelerated

by using a variable local time step Dt corresponding to a fixed CFL number.

3.3 Implicit Schemes for Steady State Problems

A prototype implicit scheme suitable for steady state problems can be

formulated by estimating
@w

@t
at t + EDt as a linear combination of R(wn)

and R(wn+1). The resulting equation

wn+ 1 ¼wn�Dt 1� Eð ÞR wnð Þ+ ER wn+ 1
� �� 	

, (19)

represents the first-order accurate backward Euler scheme if E ¼ 1, and the

second-order accurate trapezoidal rule if E¼ 1

2
. In the two-dimensional case

RðwÞ¼DxfðwÞ+DygðwÞ, (20)

where Dxf and Dyg denote the discrete approximations to
@

@x
f and

@

@y
g.

The implicit equation (19) can most readily be solved via linearization or

by resorting to an iterative method. Defining the correction vector

dw¼wn + 1�wn,

−8 −6 −4 −2 0

−4

−3

−2

−1

0

1

2

3

4

ℜ

ℑ

FIG. 3 Stability region for the 5-3 scheme (Eq. (18)). Black line—Locus of Fourier symbol for

linear advection with CFL number 3.5.

312 Handbook of Numerical Analysis

Eq. (19) can be linearized by approximating the local fluxes as

f ðwn+ 1Þ� f ðwnÞ+Adw, gðwn+ 1Þ� gðwnÞ+Bdw,

where A¼ @f

@w
and B¼ @g

@w
are the Jacobian matrices, and the neglected

terms are O(k dw k2). This leads to a linearized implicit scheme which has

the local form

I + EDtðDxA +DyBÞ
� 	

dw+DtRðwÞ¼ 0: (21)

Here we can recognize DxA + DyB as
@R

@w
.

If one sets E ¼ 1 and lets Dt!∞ this reduces to the Newton iteration for

the steady state problem (20), which has been successfully used in

two-dimensional calculations (Giles et al., 1985; Venkatakrishnan, 1988). In

the three-dimensional case with, say, an N � N � N mesh, the bandwidth

of the matrix that must be inverted is of order N2. Direct inversion requires

a number of operations proportional to the number of unknowns multiplied

by the square of the bandwidth, resulting in a complexity of the order of

N7. This is prohibitive, and forces recourse to either an approximate factoriza-

tion method or an iterative solution method.

The main possibilities for approximate factorization are the alternating

direction and LU decomposition methods. The alternating direction method,

which may be traced back to the work of Gourlay and Mitchell (1966), was

given an elegant formulation for nonlinear problems by Beam and Warming

(1976). In a two-dimensional case equation (21) is replaced by

ðI + EDtDxAÞðI + EDtDyBÞdw +DtRðwÞ¼ 0, (22)

where Dx and Dy are difference operators approximating @/@x and @/@y, and A
and B are the Jacobian matrices. This may be solved in two steps:

ðI + EDtDxAÞdw� ¼�DtRðwÞ
ðI + EDtDyBÞdw¼ dw�:

Each step requires block tridiagonal matrix inversions and may be performed

in O(N2) operations on an N � N mesh. The algorithm is amenable to vector-

ization by simultaneous solution of the tridiagonal system of equations along

parallel coordinate lines. The method has been refined to a high level of effi-

ciency by Pulliam and Steger (1985), and Yee (1985) has extended it to incor-

porate a TVD scheme. Its main disadvantage is that its extension to three

dimensions is inherently unstable according to a von Neumann analysis.

The idea of the LU decomposition method (Jameson and Turkel, 1981) is

to replace the operator in Eq. (13) by the product of lower and upper block

triangular factors L and U,

LUdw+DtRðwÞ¼ 0: (23)

The Design of Steady State Schemes Chapter 11 313

Two factors are used independent of the number of dimensions, and the inver-

sion of each can be accomplished by inversion of its diagonal blocks. The

method can be conveniently illustrated by considering a one-dimensional

example. Let the Jacobian matrix A ¼ @f/@w be split as

A¼A + +A�, (24)

where the eigenvalues of A+ and A� are positive and negative, respectively.

Then we can take

L¼ I + EDtD�
x A

+, U¼ I + EDtD +
x A

�, (25)

where D +
x and D�

x denote forward and backward difference operators approx-

imating @/@x. The reason for splitting A is to ensure the diagonal dominance

of L and U, independent of Dt. Otherwise stable inversion of both factors will

only be possible for a limited range of Dt. A crude choice is

A� ¼ 1

2
ðA� EIÞ, (26)

where E is at least equal to the spectral radius of A. If flux splitting is used in

the calculation of the residual, it is natural to use the corresponding splitting

for L and U. An interesting variation is to combine an alternating direction

scheme with LU decomposition in the different coordinate directions

(Obayashi and Kuwakara, 1984; Obayashi et al., 1986).

If one chooses to adopt the iterative solution technique, the principal

alternatives are variants of the Jacobi and Gauss–Seidel methods. These

may be applied to either the nonlinear equation (19) or the linearized equation

(21). A Jacobi method of solving (19) can be formulated by regarding it as an

equation

w�wð0Þ + EDtRðwÞ+ ð1� EÞDtR wð0Þ
� �

¼ 0, (27)

to be solved for w. Here w(0) is a fixed value obtained as the result of the

previous time step. Now using bracketed superscripts to denote the iterations,

we have

wð0Þ ¼wn (28)

wð1Þ ¼wð0Þ +DtR wð0Þ
� �

, (29)

and for k > 1

wðk + 1Þ ¼wðkÞ + sk + 1 wðkÞ �wð0Þ + EDtR wðkÞ
� �

+ ð1� EÞDtR wð0Þ
� �� �n o

,

(30)

where the parameters sk+l can be chosen to optimize convergence. Finally, if

we stop after m iterations,

314 Handbook of Numerical Analysis

wn + 1 ¼wðmÞ: (31)

We can express w(k+1)

wðk + 1Þ ¼wð0Þ + ð1 + sk + 1Þ wðkÞ �wð0Þ
� �

+ sk + 1 EDtR wðkÞ
� �

+ ð1� EÞDtR wð0Þ
� �� �n o

:
(32)

Since

wð1Þ �wð0Þ ¼ s1DtR wð0Þ
� �

, (33)

it follows that for all k we can express wðkÞ �wð0Þ
� �

as a linear combination

of R wðjÞ
� �

, j < k. Thus this scheme is a variant of the multistage

time-stepping scheme described by Eq. (13). It has the advantage that it per-

mits simultaneous or overlapped calculation of the corrections at every mesh

point and is readily amenable to parallel and vector processing.

Symmetric Gauss–Seidel schemes have proved to be particularly effective

(Chakravarthy, 1984; Hemker and Spekreijse, 1984; MacCormack, 1985;

Rieger and Jameson, 1988; Yoon and Jameson, 1987). Following the analysis

of Jameson (1986a), consider the case of a flux split scheme in one dimension,

for which

RðwÞ¼D+
x f

�ðwÞ+D�
x f

+ðwÞ, (34)

where the flux is split so that the Jacobian matrices

A + ¼ @f +

@w
and A� ¼ @f�

@w
, (35)

have positive and negative eigenvalues, respectively. Now Eq. (19) becomes

I + EDt D+
x A

� +D�
x A

+
� �� 	

dw +DtRðwÞ¼ 0: (36)

At the jth mesh point this is

I + a A+
j �A�

j

� �n o
dwj + aA�

j+ 1dwj+ 1�aA+
j�1dwj�1 +DtRj ¼ 0, (37)

where

a¼ E
Dt
Dx

: (38)

Set dwð0Þ
j ¼ 0. A two sweep symmetric Gauss–Seidel scheme is then

I + a A +
j �A�

j

� �n o
dwð1Þ

j �aA +
j�1dw

ð1Þ
j�1 +DtRj ¼ 0

I + a A +
j �A�

j

� �n o
dwð2Þ

j + aA�
j+ 1dw

ð2Þ
j+ 1�aA +

j�1dw
ð1Þ
j�1 +DtRj ¼ 0:

The Design of Steady State Schemes Chapter 11 315

Subtracting (1) from (2) we find that

I + a A +
j �A�

j

� �n o
dwð2Þ

j + aA�
j+ 1dw

ð2Þ
j+ 1 ¼ I + a A +

j �A�
j

� �n o
dwð1Þ

j : (39)

Define the lower triangular, upper triangular and diagonal operators L, U
and D as

L¼ I�aA� + EtD�
x A

+

U¼ I + aA+ + EtD +
x A

�

D¼ I + aðA+�A�Þ:
It follows that the scheme can be written as

LD�1Udw¼�DtRðwÞ: (40)

Commonly the iteration is terminated after one double sweep. The scheme is

then a variation of an LU implicit scheme.

If we use the simple choice (26) for A�, D reduces to a scalar factor and

the scheme requires no inversion. This is a significant advantage for the treat-

ment of flows with chemical reaction with large numbers of species, and a

correspondingly large numbers of equations.

The terms DtRi�aA +
i�1d~vi�1 of Eq. (37) are a linearization of DtRi evalu-

ated with ~vi�1 ¼ vi�1 + d~vi�1. Following this line of reasoning, the LU-SGS
scheme can be recast (Jameson and Caughey, 2001) as

I + a A+
i �A�

i

� �� 	
d~wi +Dt ~Ri ¼ 0; (41)

I + a A+
i �A�

i

� �� 	
d~~wi +Dt

~~Ri ¼ 0, (42)

where

~wi ¼wi + d~wi; ~f �i ¼ f�ð~wiÞ; (43)

wn+ 1
i ¼ ~~wi ¼ ~wi + d~~wi;

~~f
�
i ¼ f�ð~~wiÞ; (44)

and

~Ri ¼ 1

Dx
f�i+ 1� f�i + f +i � ~f

+

i�1

� �
, (45)

~~Ri ¼ 1

Dx
~~f
�
i+ 1� ~f �i + ~f +

i � ~f +
i�1

� �
: (46)

With the definitions of Eq. (35), Eqs. (41) and (42) can be written as

d~wi ¼� Dt
1 + C

~Ri, (47)

316 Handbook of Numerical Analysis

d~~wi ¼� Dt
1 + C

~~Ri, (48)

where C¼ rDt=Dx is the Courant number.

Alternatively, one may use the Jacobian splitting defined as

A+ ¼ 1

2
A + jAjð Þ, A� ¼ 1

2
A�jAjð Þ, (49)

where jAj ¼ V jLjV�1, and jLj is the diagonal matrix whose entries are the

absolute values of the eigenvalues of the Jacobian matrix A, while V and

V�1 are the modal matrix of A and its inverse as defined in Section 2. Then

Eqs. (41) and (42) can be written

I + ajAjf gd~wi ¼�Dt~Ri, (50)

I + ajAjf gd~~wi ¼�Dt~~Ri, (51)

and, in the limit as the time step Dt goes to infinity, these equations represent

the SGS Newton iteration

jAjd~wi ¼�Dx~Ri, (52)

jAjd~~wi ¼�Dx~~Ri: (53)

The introduction of the splitting defined by Eq. (49) is motivated, in part, by

the success of the similar preconditioner introduced by Allmaras (1993) and

used by Pierce and Giles (1997) to accelerate the convergence of codes based

on explicit Runge–Kutta time stepping. This preconditioner seems to have its

roots in the diagonally dominant ADI scheme (Bardina and Lombard, 1987;

MacCormack, 1997).

When the scheme corresponding to Eqs. (52) and (53) is implemented for

the finite volume form (Jameson et al., 1981) of the equations, it can be repre-

sented (in two dimensions) as

jAj+ jBjf gd~wi, j ¼�s~Ri, j, (54)

jAj+ jBjf gd~~wi, j ¼�s~~Ri, j, (55)

where

~Ri, j ¼F�
i+ 1, j�F�

i, j +F
+
i, j� ~F

+

i�1, j +

G�
i, j+ 1�G�

i, j +G
+
i, j� ~G

+

i, j�1,
(56)

~~Ri, j ¼ ~~F
�
i+ 1, j� ~F

�
i, j +

~F
+

i, j� ~F
+

i�1, j +

~~G
�
i, j + 1� ~G

�
i, j +

~G
+

i, j� ~G
+

i, j�1,
(57)

and s is a relaxation factor that can be used to optimize convergence rates. In

these equations F+, F�, G+ and G� represent the split approximations of the

flux vectors in the corresponding mesh coordinate directions.

The Design of Steady State Schemes Chapter 11 317

Numerical experiments indicate that it can be beneficial to perform addi-

tional corrections in supersonic zones, when they are present in the solution.

The CPU time required for these multiple sweeps is reduced by “freezing”

the matrix coefficients jAj and jBj that appear in Eqs. (52) and (53). The addi-

tional memory required to store these coefficient matrices is minimized by

storing only the symmetrized form of the Jacobians (which requires only

seven additional quantities to be stored for each mesh cell).

3.4 Acceleration Methods

Acceleration methods fall into two main classes. The first class consists of

modifications to the underlying differential equations which do not alter the

steady state. Some ways of modifying the differential equations to accelerate

the rate of convergence to a steady state are as follows:

1. to increase the speed at which disturbances are propagated through the

domain,

2. to equalize the wave speeds of different types of disturbance, thereby

enabling the use of larger time steps in the numerical scheme without vio-

lating the CFL condition,

3. to introduce terms which cause disturbances to be damped.

The second class of acceleration techniques consists of modifications to the

numerical techniques. These range from modification to the time integration

schemes to the adoption of general iterative methods for the solution of linear

and nonlinear equations. The next sections explore both classes of accelera-

tion methods.

3.4.1 Variable Local Time Stepping

An obvious way in which Eq. (1) can be modified without changing the

steady state is to multiply the space derivatives by a preconditioning matrix

P to produce

@w

@t
+P

@

@x
f ðwÞ+ @

@y
gðwÞ

� �
¼ 0 (58)

in the two-dimensional case. The simplest choice of P is a diagonal matrix aI
with more general choices of P being discussed in Section 3.4.3. Then, one

can choose a locally so that the equations are advanced at the maximum

CFL number permitted by the time integration scheme at every point in the

domain. This is equivalent to using different local time steps at different

points. Typically, one uses meshes with small cells adjacent to the body and

increasingly large cells as the distance from the body increases, thus allowing

increasingly large time steps in the far field.

As a model for this procedure, consider the wave equation in polar coordi-

nates r and y

318 Handbook of Numerical Analysis

ftt ¼ c2
1

r

@

@r
ðrfrÞ+

1

r2
fyy

 �
:

Suppose that the wave speed c is proportional to the radius, say c ¼ ar. Then,

ftt ¼ a2 r
@

@r
ðrfrÞ+fyy

 �
:

This has solutions of the form

f¼ 1

rn
e�ant,

indicating the possibility of exponential decay.

In practice, there are often very large variations in the size of the cells in

body fitted meshes, such as the O-meshes, typically used for airfoil calcula-

tions. Then, the use of variable local time steps with a fixed CFL number gen-

erally leads to an order of magnitude reduction in the number of time steps

needed to reach a steady state.

3.4.2 Enthalpy Damping

Solutions of the wave equation in an infinite domain have constant energy. If,

on the other hand, the wave equation is modified by the addition of a term

aft, the energy decays. The modified equation takes the form

ftt + aft ¼ c2ðfxx +fyyÞ:
Now, multiplying by ft and integrating the right-hand side by parts as before,

we find that

d

dt

Z ∞

�∞

Z ∞

�∞

1

2
f2
t +f

2
x +f

2
y

� �
dx dy¼�

Z ∞

�∞

Z ∞

�∞
af2

t dx dy:

If a> 0, the nonnegative integral on the left must continue to decrease as long as

ft 6¼ 0 anywhere in the domain. In fact, the over-relaxation method for solving

Laplace’s equation may be interpreted as a discretization of a damped wave

equation, and the rate of convergence may be optimized by a proper choice of a.
Provided that the flow is irrotational, as can be expected in subsonic flow, the

Euler equations are satisfied by solutions of the unsteady potential flow equa-

tion. This does not contain a term in ft. However, in unsteady potential flow

@f
@t

+H�H∞ ¼ 0, (59)

where H is the total enthalpy and H∞ is the total enthalpy in the far field. This

suggests that the difference H�H∞ can serve in the role of ft. Moreover, H is

constant in steady solutions of the Euler equations, so such a term can be

added without altering the steady state.

The Design of Steady State Schemes Chapter 11 319

With enthalpy damping (Jameson, 1982) the Euler equations are modified

by the addition of source terms proportional to H�H∞ as follows

@w

@t
+
@f1ðwÞ
@x1

+
@f2ðwÞ
@x2

+ sðwÞ¼ 0,

where

w¼

r

ru1
ru2
rE

2
6664

3
7775, f1 ¼

ru1
ru21 + p

ru1u2
ru1H

2
6664

3
7775, f2 ¼

ru2
ru2u1
ru22 + p

ru2H

2
6664

3
7775, s¼ r

c2
ðH�H∞Þ

1

u1

u2

H

2
6664

3
7775:

The energy equation has a quadratic term in H, like a Riccati equation, which
could be destabilizing. An alternative is to modify the energy equation to the

form

@

@t
rE +

@

@x1
ðru1HÞ+ @

@x2
ðru2HÞ+ bðH�H∞Þ¼ 0,

which tends to drive H towards H∞ if the coefficient b is positive.

3.4.3 Preconditioning

When the spatial derivatives are multiplied by a preconditioning matrix, as in

Eq. (58), P is typically designed to equalize the eigenvalues, so that all the

waves can be advanced with optimal time steps. van Leer et al. (1991) have

proposed a symmetric preconditioner, which minimizes the ratio between

the largest and smallest eigenvalues. When the equations are written in

stream-aligned coordinates with the symmetrizing variables, which may be

written in differential form as

d ~w¼ dp

c2
,
r
c
du1,

r
c
du2,

r
c
du3,

dp

c2
�dr

� �T

,

it has the form

P¼

t

b2
M2 �t

b
M 0 0 0

�t
b
M

t

b2
+ 1 0 0 0

0 0 t 0 0

0 0 0 t 0

0 0 0 0 1

2
6666666664

3
7777777775
,

320 Handbook of Numerical Analysis

where

b¼ t¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

p
, if M< 1,

or

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2�1

p
, t¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

M2

r
, if M� 1,

Turkel has proposed an asymmetric preconditioner designed to treat flow

at low Mach numbers (Turkel, 1987). A special case of the Turkel precondi-

tioner advocated by Smith and Weiss (1995) has the simple diagonal form

P¼

E2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
66664

3
77775,

when written in the symmetrizing variables. If E2 varies as M2 as M! 0, all

the eigenvalues of PA depend only on the speed q. In order to improve the

accuracy, the absolute Jacobian matrix jAj appearing in the artificial diffusion

should be replaced by P�1jPAj. In effect, this makes the diffusion depends on

the modified wave speeds. The use of preconditioners of this type can lead to

instability at stagnation points, where there is a zero eigenvalue which cannot

be equalized with the eigenvalues �c. With a judiciously chosen limit on E2 as
M! 0, they have been proved effective in treating low speed flows.

3.4.4 Residual Averaging

Another approach to increasing the time step is to replace the residual at each

point by a weighted average of residuals at neighbouring points. Consider the

multistage scheme described by Eq. (13). In the one-dimensional case, one

might replace the residual Rj by the average

�Rj ¼ ERj�1 + ð1�2EÞRj + ERj+ 1 (60)

at each stage of the scheme. This smooths the residuals and also increases the

support of the scheme, thus relaxing the restriction on the time step imposed

by the Courant–Friedrichs–Lewy condition. In the case of the model problem

(7), this would modify the Fourier symbol (11) by the factor

A¼ 1�2Eð1� cosxÞ:

As long as c<
1

4
, the absolute value jAj decreases with increasing wave num-

bers x in the range 0 	 x 	 p. If E¼ 1

4
, however, �Rj ¼ 0 for the odd–even

mode Rj ¼ (�1)j.

The Design of Steady State Schemes Chapter 11 321

In order to avoid restriction on the smoothing coefficient, it is better to

perform the averaging implicitly by setting

�E �Rj�1 + ð1�2EÞ �Rj� E �Rj+ 1 ¼Rj: (61)

This corresponds to a discretization of the inverse Helmholtz operator. For an

infinite interval, this equation has the explicit solution

�Rj ¼ 1� r

1 + r

X∞
q¼�∞

rjqjRj+ q, (62)

where

E¼ r

ð1� rÞ2 , r< 1:

Thus, the effect of the implicit smoothing is to collect information from resi-

duals at all points in the field, with an influence coefficient which decays by a

factor r at each additional mesh interval from the point of interest.

Consider the model problem (7). According to Eq. (61), the Fourier sym-

bol (11) will be replaced by

Z¼�l
isinx+ 4mð1� cosxÞ2

1 + 2Eð1� cosxÞ :

In the absence of dissipation,

jZj ¼ l
sinx

1 + 2Eð1� cosxÞ

:
Differentiating with respect to x, we find that jZj reaches a maximum when

cosx¼ 2E
1 + 2E

, sinx¼
ffi
1� 2E

1 + 2E

� �2
s

:

Then, jZj attains the maximum value

jZjmax ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1 + 4E

p :

Accordingly, if l* is the stability limit of the scheme, the CFL number l
should satisfy

l	 l�
ffiffiffiffiffiffiffiffiffiffiffi
1 + 4E

p
:

It follows that we can perform stable calculations at any desired CFL number

l by using a large enough smoothing coefficient such that

E� 1

4

l
l�

� �2

�1

 !
:

322 Handbook of Numerical Analysis

Implicit residual averaging was originally proposed by Jameson and Baker

(1983). We note that this approach is similar to the simplified implicit scheme

of Lerat et al. (1982). In practice, it has been found that the most rapid rate of

convergence to a steady state is usually obtained with
l
l�

in the range of 2–3,

or l
 8 for a four-stage Runge–Kutta scheme.

3.5 Multigrid Methods

Radical improvements in the rate of convergence to a steady state can be rea-

lized by the multigrid time-stepping technique. The concept of acceleration by

the introduction of multiple grids was first proposed by Fedorenko (1964).

There is by now a fairly well-developed theory of multigrid methods for

elliptic equations based on the concept that the updating scheme acts as a

smoothing operator on each grid (Brandt, 1977; Hackbusch, 1978). This the-

ory does not hold for hyperbolic systems. Nevertheless, it seems that it ought

to be possible to accelerate the evolution of a hyperbolic system to a steady

state by using large time steps on coarse grids so that disturbances will

be more rapidly expelled through the outer boundary. Various multigrid

time-stepping schemes designed to take advantage of this effect have been

proposed (Anderson et al., 1986; Caughey, 1987; Hall, 1985; Hemker and

Spekreijse, 1984; Jameson, 1983, 1986a,b; Ni, 1982).

One can devise a multigrid scheme using a sequence of independently

generated coarser meshes by eliminating alternate points in each coordinate

direction. In order to give a precise description of the multigrid scheme, sub-

scripts may be used to indicate the grid. Several transfer operations need to be

defined. First the solution vector on grid k must be initialized as

w
ð0Þ
k ¼ Tk,k�1wk�1,

where wk�1 is the current value on grid k � 1, and Tk,k�1 is a transfer operator.

Next it is necessary to transfer a residual forcing function such that the solu-

tion on grid k is driven by the residuals calculated on grid k � 1. This can be

accomplished by setting

Pk ¼Qk,k�1Rk�1 wk�1ð Þ�Rk w
ð0Þ
k

h i
,

whereQk,k�1 is another transfer operator. ThenRk(wk) is replaced byRk(wk) +Pk

in the time-stepping scheme. Thus, the multistage scheme is reformulated as

w
1ð Þ
k ¼w

0ð Þ
k �a1Dtk R

0ð Þ
k +Pk

h i
⋯

(63)

w
ðq + 1Þ
k ¼w

ð0Þ
k �aq+ 1Dtk R

ðqÞ
k +Pk

h i
: (64)

The Design of Steady State Schemes Chapter 11 323

The result w
ðmÞ
k then provides the initial data for grid k + 1. Finally, the accu-

mulated correction on grid k has to be transferred back to grid k � 1 with the

aid of an interpolation operator Ik�1,k. With properly optimized coefficients

multistage time-stepping schemes can be very efficient drivers of the multigrid

process. A W-cycle of the type illustrated in Fig. 4 proves to be a particularly

effective strategy for managing the work split between the meshes.

In a three-dimensional case the number of cells is reduced by a factor of

eight on each coarser grid. On examination of the figure, it can therefore be

seen that the work measured in units corresponding to a step on the fine grid

is of the order of

1 + 2=8 + 4=64 +⋯< 4=3,

and consequently the very large effective time step of the complete cycle

costs only slightly more than a single time step in the fine grid.

This procedure has proved extremely successful for the solution of the

Euler equations for inviscid flow. The most dramatic results to date have been

E

E
A

B

C

E

E

T

E

E

E

E

T

E

E

E

E

E

E

T

E

T
E

E

E T

E

E E T
E

E E

4 Level cycle 4 Level cycle

FIG. 4 Multigrid W-cycle for managing the grid calculation. E, evaluate the change in the flow

for one step; T, transfer the data without updating the solution. (A) Three levels. (B) Four levels.

(C) Five levels.

324 Handbook of Numerical Analysis

achieved by using the nonlinear SGS scheme to drive a multigrid procedure

using W cycles (Jameson and Caughey, 2001). Figs. 5, 6 and Table 1 illustrate

the results for two-dimensional transonic flow calculations. In Fig. 6 the fully

converged solution is shown by the solid lines, and it can be seen that the

results are essentially fully converged after five cycles. This is an example

of “text book” multigrid efficiency.

The multigrid method can be applied on unstructured meshes by interpo-

lating between a sequence of separately generated meshes with progressively

increasing cell sizes (Jameson and Mavriplis, 1987; Mavriplis and Jameson,

1990; Mavriplis and Martinelli, 1991; Peraire et al., 1992). It is not easy to

generate very coarse meshes for complex configurations. An alternative

approach, which removes this difficulty, is to automatically generate succes-

sively coarser meshes by agglomerating control volumes or by collapsing

edges. This approach yields comparable rates of convergence and has proved

1e−12

1e−10

1e−08

1e−06

1e−04

0.01

1

A B

C D

0 50 100 150 200 250 300 350 400 450 500

Lo
g

(r
es

id
ua

l)

Multigrid cycles

Convergence history for LU-SGS multigrid scheme

Residual
Delta H0

Lift coeff.
Drag coeff.

1e−12

1e−10

1e−08

1e−06

1e−04

0.01

1

0 50 100 150 200 250 300 350 400 450 500

Lo
g

(r
es

id
ua

l)

Multigrid cycles

Convergence history for LU-SGS multigrid scheme

Residual
Delta H0

Lift coeff.
Drag coeff.

FIG. 5 Grid and convergence history of flow past the RAE 2822 at M∞¼0.75, a ¼ 3 degrees

and NACA 0012 airfoil at M∞ ¼ 0:8, a ¼ 1.25 degrees. (A) and (C) RAE 2822. (B) and

(D) NACA 0012.

The Design of Steady State Schemes Chapter 11 325

−2
A B

C D

−1.5

−1

−0.5

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e
co

ef
fic

ie
nt

, C
p

Chordwise station, x/c

RAE 2822 airfoil; Mach 0.75, 3.0 degrees

Pressure coeff.
Delta p0 (× 10)

−2

−1.5

−1

−0.5

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e
co

ef
fic

ie
nt

, C
p

Chordwise station, x/c

NACA 0012 airfoil; Mach 0.80, 1.25 degrees

Pressure coeff.
Delta p0 (× 10)

−2

−1.5

−1

−0.5

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e
co

ef
fic

ie
nt

, C
p

Chordwise station, x/c

RAE 2822 airfoil; Mach 0.75, 3.0 degrees

Pressure coeff.
Delta p0 (× 10)

−2

−1.5

−1

−0.5

0

0.5

1

1.5
0 0.2 0.4 0.6 0.8 1

P
re

ss
ur

e
co

ef
fic

ie
nt

, C
p

Chordwise station, x/c

NACA 0012 airfoil; Mach 0.80, 1.25 degrees

Pressure coeff.
Delta p0 (× 10)

FIG. 6 Pressure distribution for flow past the RAE 2822 and NACA 0012 airfoil. Solid lines

represent fully converged solution. (A) RAE 2822 after three cycles. (B) NACA 0012 after three

cycles. (C) RAE 2822 after five cycles. (D) NACA 0012 after five cycles.

TABLE 1 Force Coefficients for the Fast, Preconditioned Multigrid

Solutions Using CUSP Spatial Discretization

Case Figures

MG

Cycles CL CD

RAE 2822; M∞ ¼0:75; a¼3:00 — 100 1.1417 0.04851

Fig. 6C 5 1.1429 0.04851

Fig. 6A 3 1.1451 0.04886

NACA 0012; M∞ ¼ 0:80; a¼ 1:25 — 100 0.3725 0.02377

Fig. 6D 5 0.3746 0.02391

Fig. 6B 3 0.3770 0.02387

326 Handbook of Numerical Analysis

to be quite robust (Crumpton and Giles, 1995; Lallemand and Dervieux, 1987;

Lallemand et al., 1992; Mavriplis and Venkatakrishnan, 1996).

3.6 RANS Equations

Multigrid methods have generally proved less effective in calculations of tur-

bulent viscous flows using the Reynolds-averaged Navier–Stokes equations.

These require highly anisotropic grids with very fine mesh intervals normal

to the wall to resolve the boundary layers. While simple multigrid methods

still yield fast initial convergence, they tend to slow down as the calculation

proceeds to a low asymptotic rate. This has motivated the introduction of

semicoarsening and directional coarsening methods (Allmaras, 1993, 1995,

1997; Mulder, 1989, 1992; Pierce and Giles, 1997; Pierce et al., 1997).

In 2007 Cord Rossow proposed using several iterations of an LUSGS

scheme as a preconditioner at each stage of an explicit RK scheme (Rossow,

2007). This hybrid RKSGS scheme was further developed by Swanson et al.

(2007), and it has been proven to be an effective driver of a full approximation

multigrid scheme for steady state RANS calculations, yielding rates of conver-

gence comparable to those that have been achieved for Euler calculations.

Schemes of this type have also been extensively studied by the present authors

and the following paragraphs describe an RKSGS scheme which has proved

effective. The scheme is generally similar to the Swanson–Turkel–Rossow
implementation but differs in some significant details.

In order to solve the equation

dw

dt
+RðwÞ¼ 0 (65)

where R(w) represents the residual of the space discretization, an n stage

RKSGS scheme is formulated as

w 1ð Þ ¼w 0ð Þ �a1Dt P�1R 0ð Þ,

w 2ð Þ ¼w 0ð Þ �a2Dt P�1R 1ð Þ,
…

w mð Þ ¼w 0ð Þ �Dt P�1R m�1ð Þ,

(66)

where P denotes the LUSGS preconditioner. As in the case of the basis addi-

tive RK scheme the convective and dissipative parts of the residual are treated

separately. Thus if R(k) is split as

RðkÞ ¼QðkÞ +DðkÞ, (67)

then

Qð0Þ ¼Q wð0Þ
� �

, Dð0Þ ¼D wð0Þ
� �

,

and for k > 0,

The Design of Steady State Schemes Chapter 11 327

QðkÞ ¼Q wðkÞ
� �

,

DðkÞ ¼ bkD wðkÞ
� �

+ ð1�bkÞDðk�1Þ,
(68)

Two- and three-stage schemes which have proved effective are as follows.

The coefficients of the two-stage scheme are

a1 ¼ 0:24, b1 ¼ 1,a2 ¼ 1, b2 ¼ 2=3,

while those of the three-stage scheme are

a1 ¼ 0:15, b1 ¼ 1,

a2 ¼ 0:40, b2 ¼ 0:5,

a3 ¼ 1, b3 ¼ 0:5,

While the residual is evaluated with a second-order accurate discretization,

the preconditioner is based on a first-order upwind discretization. Without

loss of generality we consider a quadrilateral cell, numbered zero, whose

neighbours are numbered k ¼ 1 to 4. The residual of a central difference

scheme in this case is

Rc
0 ¼

1

S0

X4
k¼1

hk0 (69)

where S0 is the cell area and

hk0 ¼ 1

2
ðfk + f0ÞDyk0�ðgk + g0ÞDxk0½ �: (70)

Introducing a Roe matrix Ak0 satisfying

Ak0ðwk�w0Þ¼ ðfk� f0ÞDyk0�ðgk�g0ÞDxk0, (71)

and noting that the sums

X4
k¼1

Dyk0 ¼ 0,
X4
k¼1

Dxk0 ¼ 0,

we can write

Rc
0 ¼

1

S0

X4
k¼1

Ak0ðwk�w0Þ: (72)

The residual of the first-order upwind scheme is obtained by subtracting

jAk0j(wk �w0) from hk0 to produce

R0 ¼ 1

2S0

X4
k¼1

Ak0�jAk0jð Þðwk�w0Þ:

328 Handbook of Numerical Analysis

Also noting that we can split Ak0 as

Ak0 ¼A +
k0 +A

�
k0,

where

A�
k0 ¼

1

2
Ak0�jAk0jð Þ

have positive and negative eigenvalues, respectively, we can write

R0 ¼ 1

S0

X4
k¼1

A�
k0ðwk�w0Þ: (73)

We now consider an implicit scheme of the form

wn+ 1 ¼wn�Dt ERðwn+ 1Þ+ ð1� EÞRðwnÞ� �
and approximate Rn+ 1

0

Rn+ 1
0 ¼Rn

0 +
1

S0

X4
k¼1

A�
k0ðdwk�dw0Þ,

where dw denotes wn+1 �wn. This yields the approximate implicit scheme

I� E
Dt
S0

X4
k¼1

A +
k0

 !
dw0 + E

Dt
S0

X4
k¼1

A�
k0dwk ¼�DtRn

0: (74)

The LUSGS preconditioner uses symmetric Gauss–Seidel forward and

backward sweeps to approximately solve the equation using the latest avail-

able values for dwk, and starting from dw ¼ 0. In practice it has been found

that a single forward and backward sweep is generally sufficient, and very

rapid convergence of the overall multigrid scheme can be obtained with both

the two- and the three-stage schemes. Moreover, a choice of the coefficient

E < 1 is effectively a way to over-relax the iterations, and it turns out that

the fastest rate of convergence is obtained with E around 0.65 for the

two-stage scheme, and E less than 0.5 for the three-stage scheme.

At each interface A� is modified by the introduction of an entropy fix to

bound the absolute values of the eigenvalues away from zero. Denoting the

components of the unit normal to the edge by nx and ny, the normal velocity is

qn ¼ nxu+ nyv

and the eigenvalues are

lð1Þ ¼ qn,

lð2Þ ¼ qn + c,

lð3Þ ¼ qn� c,

The Design of Steady State Schemes Chapter 11 329

where c is the speed of sound. Velocity components, pressure p and density r

at the interface may be calculated by arithmetic averaging and then c¼
ffiffiffiffiffi
gp
r

r
.

The absolute eigenvalues jl(k)j are then replaced by

ek ¼
jlðkÞj, jlðkÞj> a

1

2
a+

lðkÞ
2

a

 !
, jlðkÞj 	 a

8>><
>>:

where a is set as a fraction of the speed of sound

a¼ d1c:

Without this modification the scheme diverges. In numerical experiments it

has been found that the overall scheme converges reliably for transonic flow

with d1
 0.10. The modified eigenvalues of A� are then

lð1Þ ¼ qn� e1,

lð2Þ ¼ qn + c� e2,

lð3Þ ¼ qn� c� e3:

It also proves helpful to further augment the diagonal coefficients by a term

proportional to a fraction d2 of the normal velocity qn. The interface matrix

is also modified to provide for contributions from the viscous Jacobian. The

final interface matrix A� can be conveniently represented via a transformation

to the symmetrizing variables defined in differential form as

dŵT ¼ dp

c2
,

r
c
du,

r
c
dv,

dp

c2
�dr

� �

Let s be the edge length. Then the interface matrix can be expressed as

AI ¼ s ~M ~Ac +
s

rS0
~Av�d2qnI

� �
~M�1,

where ~Ac and ~Av are the convective and viscous contributions, d2qnI is the

diagonal augmentation term, and ~M is the transformation matrix from the

conservative to the symmetrizing variables. Here

~M¼

1 0 0 �1

u c 0 �u

v 0 c �v

H uc vc �q2

2

2
666664

3
777775

330 Handbook of Numerical Analysis

and

~M�1 ¼

~g
q2

2
�~gu �~gv ~g

�u

c

1

c
0 0

�v

c
0

1

c
0

~g
q2

2
�1 �~gu �~gv ~g

2
666666666664

3
777777777775

where

q2 ¼ u2 + v2, ~g¼ g�1

c2
:

Define

r1 ¼ 1

2
ðq2 + q3�1Þ,

r2 ¼ 1

2
ðq2�q3Þ:

Then the modified convective Jacobian is

~Ac ¼

r1 + q1 nxr2 nyr2 0

nxr2 n2xr1 + q1 nxnyr1 0

nyr2 nxnyr1 + q1 n2yr1 + q1 0

0 0 0 q1

2
66664

3
77775:

Also let u, l and k be the viscosity, bulk viscosity and conductivity coeffi-

cients. Then the viscous Jacobian is

~A¼

�ðg�1Þk 0 0 �k

0 �ðm+ n2xm�Þ �nxnym� 0

0 �nxnym� �ðm+ n2ym�Þ 0

�ðg�1Þk 0 0 �m

2
6664

3
7775

where

m� ¼ m + g,

and typically l¼�2

3
m. Here it is assumed that the Reynolds stress is mod-

elled by an eddy viscosity. Then if mm and mt are the molecular and eddy

viscosity,

m¼ mm + mt,

The Design of Steady State Schemes Chapter 11 331

while it is the common practice to take

k¼ mm
Pr

+
mt
Prt

,

where Pr and Prt are the molecular and turbulent Prandtl numbers.

An alternative implementation can be derived from a first-order flux vec-

tor split scheme with the interface flux

hk0 ¼ðf +0 + f�k ÞDyk0�ðg +
0 + g�k ÞDxk0,

where f and g are split as

f¼ f + + f�, g¼ g + + g�

and f� and g� have positive and negative eigenvalues, respectively. In this

case the implicit equation (74) should be replaced by

I� EDt
S0

X4
k¼1

A +
k0

 !
dw0 +

EDt
S0

X4
k¼1

A�
k0dwk ¼�DtRn

0:

where

A+
k0 ¼Dyk0

@f +

@w
�Dxk0

@g +

@w

and

A�
k0 ¼Dyk0

@f�

@w
�Dxk0

@g�

@w
:

This formula is similar to the scheme proposed by Swanson et al. (2007), but

the consistent procedure is then to evaluate Ak0
+ at cell zero, and Ak0

� at cell k.
Numerical tests indicate that the alternative formulations work about equally

well. In any case these preconditioners may be applied with alternative

second-order schemes for the residualR0 on the right-hand side. It turns out that

the scheme works very well when R0 is evaluated by the JST scheme (Jameson

et al., 1981) provided that the artificial viscosity coefficients are suitably tuned.

Fig. 7 shows the result for a standard test case, the RAE 2822, case 6,

calculated with the JST scheme and a Baldwin–Lomax turbulence model.

4 NEWTON–KRYLOV METHODS

4.1 Background

The most popular direct iterative method is the Newton–Krylov method. As

pointed out previously, an algorithm for obtaining steady solutions can also

be used for time accurate computations of unsteady flows in combination with

an implicit time-marching method. Hence Newton–Krylov methods are

equally applicable to steady and unsteady flows; our emphasis here is on their

application to the former.

332 Handbook of Numerical Analysis

RAE 2822 airfoil
Mach
Resid 1
Work 99.00
Grid 512 X 64

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Work

−2
4.

00
0

−2
0.

00
0

−1
6.

00
0

−1
2.

00
0

−8
.0

00
 −

4.
00

0
 0

.0
00

 4
.0

00
 8

.0
00

A CB

Lo
g

(e
rr

or
)

−0
.2

00
0.

00
0

0.
20

0
0.

40
0

0.
60

0
0.

80
0

1.
00

0
1.

20
0

1.
40

0

N
su

p

0.730
0.155E+05

Alpha 2.790

Rate 0.7337
Resid 2 0.756E−09

RAE 2822 airfoil
Mach 0.730 Alpha 2.790
CL 0.8119 CD 0.0115 CM –0.0944
Grid 512 × 64 Ncyc 100 Res 0.756E–09

1.
20

0
0.

30
0

0.
40

0
–0

.0
00

–0
.4

00

C
p

–0
.3

00
–1

.2
00

–1
.6

00
–2

.0
00

FIG. 7 RAE 2822 airfoil, Ma ¼ 0.730, a ¼ 2.790. RKSGS scheme using the Baldwin–Lomax turbulence model and the JST scheme. (A) Cp distribution;

(B) Mach contours; (C) the convergence history.

After discretization of the spatial derivatives in the Euler or Navier–Stokes
equations and the turbulence model equations, if applicable, a system of ordi-

nary differential equations is obtained (1). The steady state solution, if one

exists, is the solution to the nonlinear algebraic system of equations given by

RðwÞ¼ 0: (75)

The Newton method is a natural choice for the solution of nonlinear algebraic

equations due to its quadratic convergence property if certain conditions are

met. Application of the Newton method to large-scale problems in computa-

tional fluid dynamics has historically been limited by two issues. The first

is that the method requires the solution of a large linear system at each itera-

tion, and direct solution of these linear systems scales very badly with prob-

lem size and is generally infeasible for large-scale problems on current

computing hardware. The second issue is that the Newton method will con-

verge only if the initial guess is sufficiently close to the converged solution;

in practical problems it is generally only possible to provide a suitable initial

guess through a globalization procedure.

The first issue can be addressed through the use of iterative methods for

linear algebraic systems, leading to the so-called inexact Newton method

where the linear problem is solved iteratively to some tolerance at each

Newton iteration. While this enables large-scale problems to be solved, it

introduces the challenge of finding an iterative method that converges

successfully for the linear systems encountered. Krylov methods for nonsym-

metric linear systems, among which GMRES (Saad and Schultz, 1986) is

most commonly used, have proven to be effective in this context and will

be the focus of this section, hence the title Newton–Krylov methods.
The most common approach to globalization of the Newton method is

pseudo-transient continuation in which a nontime-accurate time-dependent

path is taken to partially converge the solution in order to provide a suitable

initial solution for an inexact Newton method. This leads back to the

time-marching methods described in Section 3. With this approach, the

Newton–Krylov method is divided into two phases: a globalization phase fol-

lowed by an inexact Newton phase. Recently, some success has been achieved

through the use of homotopy continuation as an alternative to pseudo-transient

continuation for the globalization phase (Brown and Zingg, 2016; Yu and

Wang, 2016).

While it is natural to classify time-marching methods as explicit or

implicit, in application to practical problems it is more accurate to view vari-

ous methods as lying somewhere on a spectrum ranging from fully explicit to

fully implicit, where implicitness is associated with the degree of coupling

among solution variables as the solution is advanced iteratively (Pulliam

and Zingg, 2014). In a purely explicit scheme, e.g., the explicit Euler

time-marching method, the solution is advanced in time locally, without

knowledge of the changes in the solution occurring at other nodes in the mesh.

334 Handbook of Numerical Analysis

With the Newton method, the solution is fully coupled, i.e., fully implicit, as

all variables at all nodes, including boundary conditions, are advanced concur-

rently. The methods described in Section 3 lie somewhere between these

extremes. For example, a multistage method uses intermediate solutions to

increase the number of mesh nodes that are coupled as the solution advances.

Similarly, implicit residual smoothing, multigrid and approximate factoriza-

tion accomplish increased coupling in different ways.

In this section, we will discuss fully implicit methods, in particular

Newton–Krylov methods that include a globalization phase. Our focus is on

methods that are fully coupled, such that the mean-flow and turbulence model

equations are coupled, and the boundary conditions and any interface condi-

tions between mesh blocks are fully implicit. First, it is important to understand

the motivation behind such methods and the problems for which they are likely

to be an efficient choice. For this purpose, the concept of stiffness is relevant;

with increasing stiffness an implicit approach becomes more efficient. Stiff-

ness can arise through physics, for example, in chemically reacting flows,

or through numerics, for example the high aspect ratio grid cells needed for

efficient spatial resolution of turbulent flows at high Reynolds numbers in

the solution of the RANS equations. Fully implicit methods can also be advan-

tageous for equations with stiff source terms, for example, in a turbulence

model. Finally, fully implicit methods have become increasingly popular when

high-order spatial discretization is used, for example, through discontinuous

Galerkin, flux reconstruction, or summation-by-parts methods, as such meth-

ods typically lead to increased stiffness (Persson and Peraire, 2008).

The Newton–Krylov approach to be described here is based on that devel-

oped in the third author’s research group over the past 20 years, as described

in the following four papers: Pueyo and Zingg (1998), Chisholm and Zingg

(2009), Hicken and Zingg (2008) and Osusky and Zingg (2013). For a review

of Newton–Krylov methods, the reader is directed to Knoll and Keyes (2004).

4.2 Methodology

4.2.1 Inexact Newton Method

Application of the implicit Euler method to (1) with a local time linearization

gives

I

Dt
+AðnÞ

� �
DwðnÞ ¼�RðwðnÞÞ, (76)

where

A¼ @R

@w
(77)

is the Jacobian of the discrete residual vector. It is easy to see that the Newton

method is obtained in the limit as Dt goes to infinity. This linear system must

The Design of Steady State Schemes Chapter 11 335

be solved at each iteration. In the inexact Newton method, an iterative method

is used for this purpose, and the system is solved to a specified finite relative

tolerance, �n, i.e.

TðnÞ +AðnÞ
� �

DwðnÞ +RðwðnÞÞ

2
	 �njjRðwðnÞÞjj2: (78)

Here the term containing the time step has been modified to allow for a local

time step as well as potentially a time step that varies between equations; for

example the turbulence model equation can have a different time step from

the mean-flow equations. Strictly speaking, this term is zero in an inexact

Newton method, but we retain it here, as it is included in the pseudo-transient

continuation approach to globalization. The sequence of relative tolerance

values, �n, affects both efficiency and robustness. If �n is too small, the linear

system will be over-solved, leading to an increase in computing time; if it is

too large, the number of Newton iterations will increase, similarly leading

to suboptimal performance. While an adaptive approach can be used that

enables q-superlinear convergence (Eisenstat and Walker, 1996), this does

not usually lead to the fastest performance in terms of CPU time. In their

Newton–Krylov algorithm for the Euler equations, Hicken and Zingg (2008)

use a sequence of values during the inexact Newton phase (which is preceded

by a globalization phase) decreasing from an initial value of 0.5 to 0.01 based

on the following formula (Eisenstat and Walker, 1996):

�n ¼ max 0:01,�
ð1 + ffiffi

5
p Þ=2

n�1

� �
: (79)

In contrast, Osusky and Zingg (2013) use �n ¼ 0.01 throughout the inexact

Newton phase in solving the RANS equations. However, a maximum number

of GMRES iterations is often reached before this tolerance is achieved.

4.2.2 Jacobian-Free Newton–Krylov Methods

One of the attributes of a Krylov method for solving linear systems in the

form Ax ¼ b, such as GMRES, is that the matrix A itself is never needed

explicitly. What is needed is the product of A with an arbitrary vector v.

Therefore, explicit formation and storage of the Jacobian matrix can be

avoided by approximating these matrix–vector products by a finite difference

approximation to a Frechet derivative as follows:

AðnÞv
RðwðnÞ + EvÞ�RðwðnÞÞ
E

: (80)

The parameter E must be chosen to balance truncation and round-off errors.

Both Hicken and Zingg (2008) and Osusky and Zingg (2013) use the follow-

ing formula from Nielsen et al. (1995):

E¼
ffiffiffiffiffiffiffiffi
Nd
vTv

r
, (81)

336 Handbook of Numerical Analysis

where N is the number of unknowns, and d is a small number that is further

discussed below.

Although the use of (80) avoids the need to form and store the Jacobian

matrix in the application of GMRES, it is generally necessary to precondition

the linear system prior to the application of GMRES. Some of the most effi-

cient preconditioners require the formation of a matrix that is an approxima-

tion to the Jacobian. With this approach, which is the subject of the next

section, the method is not matrix free, but the approximate Jacobian used in

the formation of the preconditioner generally requires less storage than the

exact Jacobian.

4.2.3 Preconditioning and Parallelization

The Jacobian matrices arising from the discretization of the Euler and RANS

equations are typically poorly conditioned such that GMRES will converge

very slowly unless the system is first preconditioned. The choice of precondi-

tioner has a major impact on the overall speed and robustness of the algorithm.

Pueyo and Zingg (1998) studied numerous preconditioners and showed that an

incomplete lower-upper (ILU) factorization with some fill based on a level of

fill approach, ILU(p), is an effective option, where p is the level of fill

(Meijerink and van der Vorst, 1977). The level of fill is an important parameter

that is discussed further below. Moreover, a block implementation of ILU(p) is
preferred over a scalar implementation (Hicken and Zingg, 2008).

The process of computing the incomplete factorization requires the forma-

tion and storage of a matrix. One option is to form the preconditioner based on

an approximation of the Jacobian matrix rather than forming the complete

Jacobian matrix. An approximation that includes nearest neighbour entries

only reduces the size of the matrix considerably. In a typical second-order spa-

tial discretization, next to nearest neighbour entries are associated with the

numerical dissipation and cross-derivative viscous and diffusive terms. The

cross-derivative terms can be neglected in forming the approximate Jacobian

matrix upon which the ILU factorization is based. With an upwind spatial

discretization, a first-order version can be used in the approximate Jacobian.

Similarly, with a centred scheme with added second- and fourth-difference

numerical dissipation, the approximate Jacobian can be formed by eliminating

the fourth-difference dissipation terms and increasing the coefficient of the

second-difference dissipation. This can be achieved by adding a factor s times

the fourth-difference coefficient to the second-difference coefficient in the

approximate Jacobian. Values of s between 4 and 6 are effective in the solution

of the Euler equations (Hicken and Zingg, 2008), while higher values are pre-

ferred for the RANS equations, for example s ¼ 5 with scalar dissipation and

10 	 s 	 12 with matrix dissipation (Osusky and Zingg, 2013).

Pueyo and Zingg (1998) showed that an ILU(p) preconditioner based on

such an approximate preconditioner is substantially more effective than an

ILU(p) factorization of the full Jacobian. This arises from the off-diagonal

The Design of Steady State Schemes Chapter 11 337

dominance of the full Jacobian matrix, which leads to poorly conditioned

incomplete factors such that the long recurrences associated with the backward

and forward solves can be unstable. The reduced off-diagonal dominance

associated with the approximate Jacobian formed in the manner described

above alleviates this behaviour. This conclusion was reached in the context

of a typical second-order spatial discretization. Further study is needed in order

to determine the optimal approach when high-order methods are used.

Two popular strategies for developing a parallel preconditioner are the

additive-Schwarz (Saad, 2003) and approximate-Schur (Saad and Sosonkina,

1999) methods. Some form of domain decomposition is needed to assign

blocks of data to unique processes. The incomplete factorization is then

applied only to the local submatrices. The approximate-Schur approach neces-

sitates the use of a flexible linear solver such as FGMRES (Saad, 1993).

Hicken et al. (2010) found the approximate-Schur preconditioner to outper-

form the additive-Schwarz preconditioner when over 100 processors are used.

Osusky and Zingg (2013) showed that the approximate-Schur approach scales

well for over 6000 processors.

4.2.4 Globalization

A continuation or globalization phase provides a suitable solution to initiate

the inexact Newton phase. Recently Yu and Wang (2016) and Brown and

Zingg (2016) have shown promising results with homotopy continuation.

However, the predominant approach to date is known as pseudo-transient con-

tinuation, in which a time-marching method is applied in a nontime-accurate

manner to the system of ordinary differential equations (1). For a fully

implicit solver, it is natural to use the implicit Euler method with a local time

linearization and local time stepping:

TðnÞ +AðnÞ
� �

DwðnÞ ¼�RðwðnÞÞ, (82)

where T(n) is a diagonal matrix containing the reciprocal of the local time

step. When an implicit algorithm is applied in this delta form, the converged

steady solution is independent of the left-hand side matrix (Lomax et al.,

2001). Consequently, since we seek neither time accuracy nor quadratic con-

vergence during the globalization phase, in addition to the use of local time

stepping, the Jacobian matrix can be approximated and a lagged Jacobian

update can be used (Hicken and Zingg, 2008; Osusky and Zingg, 2013).

Both robustness and efficiency can be improved by substituting the

approximate Jacobian matrix used in the formation of the preconditioner for

A(n) in (82). Hence this globalization is often described as the approximate
Newton phase. This substantially reduces the number of iterations needed by

the linear solver to achieve the specified convergence tolerance. Formation

of the ILU factorization is one of the more expensive tasks of a nonlinear iter-

ation. Consequently, it can be advantageous to reuse the approximate Jacobian

338 Handbook of Numerical Analysis

for three to five nonlinear iterations, thereby reducing the number of times the

preconditioner must be formed during the approximate Newton phase.

In addition to a spatially varying local time step, the time step is steadily

increased during the approximate Newton phase according to the formula

DtðnÞref ¼ abm
n
mb c, (83)

where the floor operator returns the largest integer less than or equal to its

argument, Dtref
(n) is a reference time step used in calculating the local time step,

and m is the Jacobian update period. If the Jacobian is updated every iteration,

then (83) simplifies to

DtðnÞref ¼ abn: (84)

Suitable values of a and b are discussed in Section 4.2.5.

The switch from the approximate Newton phase to the inexact Newton

phase is made when the normalized residual falls below a specified

tolerance t, i.e.

R
ðnÞ
d ¼ jjRðnÞjj2

jjRð0Þjj2
< t: (85)

If the parameter t is too large, the inexact Newton phase will not converge. If

it is too small, then the overall solution time will be increased. Suitable values

of t are presented in Section 4.2.5.

It is advantageous for robustness to include a local time step during the

inexact Newton phase as well; this should increase rapidly as the residual

decreases. An approach based on the successive evolution relaxation approach

(Mulder and van Leer, 1985) is effective for this purpose. The reference time

step used in computing the local time step increases according to the follow-

ing formula:

DtðnÞref ¼ max a R
ðnÞ
d

� ��b
, Dtðn�1Þ

ref

� �
, (86)

where 3/2 	 b 	 2. A smooth transition between the approximate and inexact

Newton phases is obtained with

a¼ abm
nd
mb c R

ðndÞ
d

� �b
, (87)

where nd is the index of the first inexact Newton iteration, while a and b are

consistent with (83). Here m is the period of formation of the approximate

Jacobian matrix and its factorization used for preconditioning. If this is

updated at each Newton iteration, (87) becomes

a¼ abnd R
ðndÞ
d

� �b
: (88)

The Design of Steady State Schemes Chapter 11 339

4.2.5 Additional Considerations and Algorithm Parameters

The parallel Newton–Krylov algorithm described earlier, consisting of an

approximate Newton pseudo-transient continuation phase followed by a

Jacobian-free inexact Newton phase, both based on an approximate Schur

parallel preconditioner using local block ILU(p) factorization, is an effective

algorithm, but there are some additional considerations to ensure reliable per-

formance. Moreover, the algorithm includes several user defined parameters

that must be selected appropriately to provide the desired balance between

robustness and fast convergence to steady state. Fortunately, sets of para-

meters can be found that provide excellent performance over a wide range

of flow problems. Moreover, parameter tuning is possible to obtain conver-

gence for particularly challenging problems. The parameters presented below

have been used extensively in the context of gradient-based aerodynamic

shape optimization, which provides a stiff challenge to a flow solver as a

result of the many different geometries encountered and the need for reliable

flow solution in order for the optimization algorithm to converge. Challenging

aerodynamic shape optimization examples based on the application of the par-

allel Newton–Krylov algorithm for the Euler and RANS equations described

here can be found in Hicken and Zingg (2010), Gagnon and Zingg (2016),

Osusky et al. (2015) and Reist and Zingg (2016).

The accuracy of an incomplete lower-upper factorization is sensitive to the

matrix structure, e.g., its bandwidth, and therefore to the ordering of the grid

nodes. Pueyo and Zingg (1998) and Chisholm and Zingg (2009) have shown

that the reverse Cuthill–McKee ordering (Liu and Sherman, 1976) can be very

effective if a node on the downstream boundary is selected as the root node.

With reverse Cuthill–McKee ordering, such a root node leads to an ordering

from upstream to downstream, which improves the accuracy of the ILU

factorization. Chisholm and Zingg (2009) also introduced a downstream bias

into the tie-breaking strategy used in applying the reverse Cuthill–McKee

ordering. The use of this ordering with a downstream root node can have a

surprisingly large impact on the effectiveness of an ILU(p) preconditioner

and hence the convergence of a Newton–Krylov algorithm. In a parallel

implementation, the reverse Cuthill–Mckee ordering can be applied on each

process independently.

The scaling of the solution variables and residual equations is another

important consideration. Several difficulties can arise if either the solution

variables or the residual values can vary greatly in magnitude either from

equation to equation or from node to node. This can occur, for example, if

the turbulence model variable takes on values much different from the

mean-flow variables as a result of a particular nondimensionalization. If the

residual equations are proportional to the cell volume, then their values will

vary by several orders of magnitude. Such discrepancies can cause several

problems. For example, they can make finding a value of E in (80) that bal-

ances round-off and truncation error difficult or impossible to find. If the

340 Handbook of Numerical Analysis

entries in v vary greatly in magnitude, the scalar vTv will be representative

only of the larger entries, leading to a value of E that is inappropriately small

for the smaller entries. Moreover, convergence tolerances are often defined

with respect to residual norms, e.g., (78) and (85). If some residual entries

dominate these norms, then tolerances will appear to be satisfied even if they

are not met for the equations with smaller residual values that have little effect

on the norm. A similar effect can arise in the time step formula used during

the inexact Newton phase (86). If a large residual component is being reduced

more rapidly than a smaller component, the time step will increase more rap-

idly than is desired for the smaller component.

In order to avoid the convergence difficulties associated with such issues,

row and column scaling can be used to balance the components of both the

solution variables and the residual. The precise approach taken will depend

on the solver details, such as the nondimensionalization, in particular those

associated with the turbulence model equations in a RANS solver. Examples

for specific spatial discretizations of the RANS equations are given by

Chisholm and Zingg (2009) and Osusky and Zingg (2013).

Convergence problems can also arise with turbulence models that require a

quantity to be positive. Ideally, the turbulence model should be robust to small

negative values, such as the negative Spalart–Allmaras one-equation turbu-

lence model (Allmaras et al., 2012). This avoids the need to trim the values

to nonnegative values. Nevertheless, a turbulence model can produce large

destabilizing updates when time step values are used that are effective for

the mean-flow equations. This can arise, for example, when the

laminar-turbulent transition trip terms in the Spalart–Allmaras model are acti-

vated or when a local correlation-based transition model is solved. Under

these circumstances, it can be advantageous to reduce the time step for the

turbulence model equation to a value smaller than that used for the mean-flow

equations. For example, Osusky and Zingg (2013) use a time step for the

Spalart–Allmaras turbulence model one hundred times smaller than that used

for the mean-flow equations in the presence of the trip terms, but found that

this is not necessary when the trip terms are not used and fully turbulent flow

is assumed.

User defined algorithm parameters are dependent on the nature of the par-

ticular equations, e.g., the turbulence model, the spatial discretization and how

dissipative it is, and the range of flow problems of interest. We will present

sample parameters from Hicken and Zingg (2008) for the Euler equations

and Osusky and Zingg (2013) for the RANS equations, both applied to exter-

nal aerodynamic flows. Both use multiblock structured meshes discretized

using second-order summation-by-parts finite difference operators with block

coupling and boundary conditions imposed weakly through a penalty

approach. The solver also includes higher-order operators, but these have pri-

marily been used for unsteady flows. Some of the algorithm parameters also

depend on the specific nondimensionalization used in the solver, so the reader

The Design of Steady State Schemes Chapter 11 341

is advised to establish suitable parameters for their specific solver; the para-

meters presented here provide only a starting point based not only on a partic-

ular solver but also on a particular balance between speed and robustness.

Beginning with the approximate Newton phase, Hicken and Zingg (2008)

use the following parameters in (83): a ¼ 0.1, 1.4 	 b 	 1.7 and 3 	 m 	 5,

while Osusky and Zingg (2013) use a ¼ 0.001, b ¼ 1.3, and m ¼ 1, as a much

smaller initial time step is needed for the RANS equations. A level of fill of

unity is used in the ILU(p) factorization for the Euler equations. For the RANS
equations, p ¼ 2 is used during the approximate Newton phase and p ¼ 3 dur-

ing the inexact Newton phase. Another major difference between the Euler and

RANS equations is in the parameter used to switch from the approximate

Newton to the inexact Newton phase, t in (85). A value of t ¼ 0.1 is effective

for the Euler equations, but was found to be inadequate for the RANS equations,

for which t ¼ 10�4 was found to provide a good balance between speed and

robustness. Hicken and Zingg (2008) use a value of �n ¼ 0.5 for the linear solu-

tion tolerance during the approximate Newton phase for the Euler equations,

whereas Osusky and Zingg (2013) use �n ¼ 0.05 for the RANS equations.

Parameters used for the inexact Newton phase are as follows. For the Euler

equations, Hicken and Zingg (2008) use b ¼ 2 in (86), an ILU(p) fill level of
p ¼ 1, d ¼ 10�13 in (80), and �n determined according to (79). For the RANS

equations, Osusky and Zingg (2013) use 3/2 	 b 	 2, p ¼ 3, d ¼ 10�10 and

�n ¼ 0.01.

With these parameters, efficient convergence is achieved for a wide range

of flow problems and grids. Sample convergence histories are presented in the

next section.

4.2.6 Examples

In this section, convergence histories are presented for two popular flow pro-

blems governed by the RANS equations; parallel scaling performance is

shown as well. The Spalart–Allmaras one-equation turbulence model is used

in all cases. Convergence plots are shown with respect to the number of

GMRES iterations. In addition, the residual is plotted vs CPU time in seconds

and in equivalent residual evaluations. Intel Nehalem processors were used

interconnected with nonblocking 4x- and 8x-DDR infiniband. The equivalent

residual evaluations are determined by dividing the total CPU time by the

CPU time required for a single complete residual evaluation. This enables

comparisons that are independent of the particular hardware used.

The first test case is a transonic flow over the ONERA M6 wing at

M ¼ 0.8395, Re ¼ 11.72 million, a ¼ 3.06 degrees. Experimental data are

available in Schmitt and Charpin (1979). The flow is assumed fully turbulent.

The grid used has 15.1 million nodes in 128 blocks with an off-wall spacing

of 2.3 � 10�7 root chord units, giving an average y+ value of 0.4. Load bal-

ancing is performed by hand during grid generation such that all blocks have

the same number of nodes, and each block is assigned to a processor, i.e., 128

processors are used. Fig. 8 shows that the residual is reduced by twelve orders

342 Handbook of Numerical Analysis

of magnitude in roughly 83 minutes, requiring just over 3000 GMRES itera-

tions. The switch from the approximate Newton to the inexact Newton phase,

which occurs once the residual has been reduced by four orders of magnitude,

is indicated on the figure. The globalization phase takes just under half of the

total CPU time. Roughly 8000 equivalent residual evaluations are required to

achieve a 12-order reduction in the residual.

The next test case is a wing-body geometry known as the NASA Common

Research Model (Vassberg, 2011). The flow conditions are M ¼ 0.85, Re ¼ 5

million, CL ¼ 0.5, where the Reynolds number is based on the mean aerody-

namic chord. The convergence results shown in Fig. 9 were computed on a grid

with 19 million nodes in an O–O topology on 704 processors. As a result of the

original grid construction, the load balancing is not perfect; better performance

is possible through a more formal load balancing approach. A 12-order residual

reduction is achieved in roughly 80 min or 15,000 equivalent residual evalua-

tions, requiring roughly 2300 GMRES iterations. In this case, the approximate

Newton phase requires about one third of the total CPU time.

The same test case and flow conditions are used to examine the parallel

scaling of the algorithm. Two grids are considered, one with 48 million nodes

(“X” grid), the other with 154 million nodes (“S” grid). Both are subdivided

into 6656 blocks, with the same number of grid nodes in each block, enabling

perfect load balancing. Fig. 10 plots the CPU time required to reduce the

residual by ten orders of magnitude for varying numbers of processors, with

the number of blocks fixed at 6656, showing that the algorithm scales

almost perfectly under these conditions. The number of GMRES iterations

is nearly constant as the number of processors is varied, suggesting that the

approximate-Schur preconditioning is performing very well.

B

Time (s)

Equivalent residual evaluations

R
e

s
id

u
a

l

0 1000 2000 3000 4000 5000

0 2000 4000 6000 8000

End of startup phase

10−6

10−4

10−2

100

102

104

Linear iterations

R
e

s
id

u
a

l

0

A

500 1000 1500 2000

10−6

10−4

10−2

100

102

104

End of startup phase

FIG. 8 Convergence history for computation of flow over the ONERA M6 wing at M ¼ 0.8395,

Re ¼ 11.72 million, a ¼ 3.06 degrees on a grid with 15.1 million nodes using scalar dissipation

and 128 processors. Each symbol represents a nonlinear or Newton iteration. (A) Residual norm

vs number of GMRES iterations. (B) Residual norm vs CPU time in seconds and equivalent

residual evaluations.

The Design of Steady State Schemes Chapter 11 343

5 CONCLUSIONS

Time-marching methods, when paired with geometric multigrid, represent an

extremely effective means by which to obtain steady state solutions to the

Euler and RANS equations. A variety of schemes and acceleration methodol-

ogies have been presented along with results for several benchmark flow

Processors

T
im

e
 (

s
)

2000 4000 6000

5000

10,000

15,000

20,000
25,000
30,000

"X " grid

"S" grid

Ideal time

FIG. 10 Parallel scaling performance for computation of flow over NASA Common Research

Model wing-body configuration at M ¼ 0.85, Re ¼ 5 million, CL ¼ 0.5 on grids with 48 million

nodes (“X” grid) and 154 million nodes (“S” grid).

B

10−6

10−4

10−2

100

102

104

Time (s)

Equivalent residual evaluations

R
e
s
id

u
a
l

0 1000 2000 3000 4000 5000

0 5000 10,000 15,000

End of startup phase

Linear iterations

R
e

s
id

u
a

l

0

A

1000 2000 3000

End of startup phase

10−6

10−4

10−2

100

102

104

FIG. 9 Convergence history for computation of flow over the NASA Common Research Model

wing-body configuration at M ¼ 0.85, Re ¼ 5 million, CL ¼ 0.5 on a grid with 19 million nodes

using matrix dissipation and 704 processors. Each symbol represents a nonlinear or Newton

iteration. (A) Residual norm vs number of GMRES iterations. (B) Residual norm vs CPU time

in seconds and equivalent residual evaluations.

344 Handbook of Numerical Analysis

problems. In particular, the hybrid RKSGS scheme is observed to converge a

RANS problem in under 100 iterations.

Newton–Krylov methods provide an efficient option for problems with

higher than usual stiffness. This can arise, for example, from the turbulence

model, reacting flows, very high Reynolds numbers, or when high-order

spatial discretization is used. The basic components of a Newton–Krylov
algorithm have been described and convergence results presented for two well

known flow problems.

REFERENCES

Allmaras, S., 1993. Analysis of a local matrix preconditioner for the 2-D Navier-Stokes equations.

In: AIAA 11th Computational Fluid Dynamics Conference, AIAA Paper 93-3330,

Orlando, FL.

Allmaras, S., 1995. Analysis of semi-implicit preconditioners for multigrid solution of the 2-D

Navier-Stokes equations. In: AIAA 12th Computational Fluid Dynamics Conference, AIAA

Paper 95-1651, San Diego, CA.

Allmaras, S., 1997. Algebraic smoothing analysis of multigrid methods for the 2-D compressible

Navier-Stokes equations. In: AIAA 13th Computational Fluid Dynamics Conference, AIAA

Paper 97-1954, Snowmass, CO.

Allmaras, S.R., Johnson, F.T., Spalart, P.R., 2012. Modifications and clarifications for the imple-

mentation of the Spalart-Allmaras turbulence model. In: ICCFD7, Hawaii.

Anderson, W.K., Thomas, J.L., Whitfield, D.L., 1986. Multigrid acceleration of the flux

split Euler equations. In: AIAA 24th Aerospace Sciences Meeting, AIAA Paper 86-0274,

Reno, NV.

Bardina, J., Lombard, C.K., 1987. Three-dimensional hypersonic flow simulations with the CSCM

implicit upwind Navier-Stokes method. In: AIAA 8th Computational Fluid Dynamics Confer-

ence, AIAA Paper 87-1114, Honolulu, HI.

Beam, R.W., Warming, R.F., 1976. An implicit finite difference algorithm for hyperbolic systems

in conservation form. J. Comput. Phys. 23, 87–110.

Brandt, A., 1977. Multi-level adaptive solutions to boundary value problems. Math. Comput.

31, 333–390.

Brown, D.A., Zingg, D.W., 2016. A monolithic homotopy continuation algorithm with application

to computational fluid dynamics. J. Comput. Phys. 321, 55–75.

Caughey, D.A., 1987. A diagonal implicit multigrid algorithm for the Euler equations. In: AIAA

25th Aerospace Sciences Meeting, AIAA Paper 87-453, Reno, NV.

Chakravarthy, S.R., 1984. Relaxation methods for unfactored implicit upwind schemes. In: AIAA

23rd Aerospace Sciences Meeting, AIAA Paper 84-0165, Reno.

Chisholm, T.T., Zingg, D.W., 2009. A Jacobian-free Newton-Krylov algorithm for compressible

turbulent flows. J. Comput. Phys. 228, 3490–3507.

Crumpton, P.I., Giles, M.B., 1995. Implicit time accurate solutions on unstructured dynamic

grids. In: AIAA 12th Computational Fluid Dynamics Conference, AIAA Paper 95-1671,

San Diego, CA.

Eisenstat, S.C., Walker, F.H., 1996. Choosing the forcing terms in an inexact Newton method.

SIAM J. Sci. Stat. Comput. 7, 16–32.

Fedorenko, R.P., 1964. The speed of convergence of one iterative process. USSR Comput. Math.

Math. Phys. 4, 227–235.

The Design of Steady State Schemes Chapter 11 345

http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0010
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0010
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0010
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0015
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0015
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0015
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0020
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0020
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0020
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0025
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0025
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0030
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0030
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0030
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0035
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0035
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0035
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0040
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0040
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0045
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0045
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0050
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0050
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0055
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0055
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0060
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0060
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0065
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0065
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0070
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0070
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0070
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0075
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0075
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0080
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0080

Gagnon, H., Zingg, D.W., 2016. Euler-equation-based drag minimization of unconventional

aircraft configurations. J. Aircr. 53 (4), 1361–1371.

Giles, M.B., Drela, M., 1987. Two-dimensional transonic aerodynamic design method. AIAA J.

25 (9), 1199–1206.

Giles, M., Drela, M., Thompkins, W.T., 1985. Newton solution of direct and inverse transonic

Euler equations. In: AIAA 7th Computational Fluid Dynamics Conference, AIAA Paper

85-1530, Cincinnati, pp. 394–402.

Gourlay, A.R., Mitchell, A.R., 1966. A stable implicit difference scheme for hyperbolic systems

in two space variables. Numer. Math. 8, 367–375.

Hackbusch, W., 1978. On the multi-grid method applied to difference equations. Computing

20, 291–306.

Hall, M.G., 1985. Cell vertexmultigrid schemes for solution of the Euler equations. In: Morton, K.W.,

Baines, M.J. (Eds.), Conference on Numerical Methods for Fluid Dynamics, University Reading.

Oxford University Press, Oxford, pp. 303–345.

Hemker, P.W., Spekreijse, S.P., 1984. Multigrid solution of the steady Euler equations. In: Proc.

Oberwolfach Meeting on Multigrid Methods.

Hicken, J.E., Zingg, D.W., 2008. A parallel Newton-Krylov solver for the Euler equations discre-

tized using simultaneous approximation terms. AIAA J. 46 (11), 2773–2786.

Hicken, J.E., Zingg, D.W., 2010. Aerodynamic optimization algorithm with integrated geometry

parameterization and mesh movement. AIAA J. 48 (2), 401–413.

Hicken, J.E., Osusky, M., Zingg, D.W., 2010. Comparison of parallel preconditioners for a

Newton-Krylov solver. In: ICCFD6, St. Petersburg.

Jameson, A., 1982. Steady state solution of the Euler equations for transonic flow. In: Meyer, R.E.

(Ed.), Proc. Symposium on Transonic, Shock, and Multidimensional Flows, Madison, 1980.

Academic Press, Cambridge, MA, pp. 37–70.

Jameson, A., 1983. Solution of the Euler equations by a multigrid method. Appl. Math. Comput.

13, 327–356.

Jameson, A., 1985. Transonic flow calculations for aircraft. In: Brezzi, F. (Ed.), Numerical Meth-

ods in Fluid Dynamics, Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg,

pp. 156–242.

Jameson, A., 1986a. Multigrid algorithms for compressible flow calculations. In: Hackbusch, W.,

Trottenberg, U. (Eds.), Proceedings of the 2nd European Conference on Multigrid Methods,

Lecture Notes in Mathematics, vol. 1228. Springer-Verlag, Berlin, pp. 166–201.

Jameson, A., 1986b. A vertex based multigrid algorithm for three-dimensional compressible flow

calculations. In: Tezduar, T.E., Hughes, T.J.R. (Eds.), Numerical Methods for Compressible

Flow—Finite Difference, Element and Volume Techniques, vol. AMD 78. ASME

Publication, New York, NY, pp. 45–73.

Jameson, A., 1991. Time dependent calculations using multigrid, with applications to unsteady

flows past airfoils and wings.

Jameson, A., 1995a. Analysis and design of numerical schemes for gas dynamics 1, artificial

diffusion, upwind biasing, limiters and their effect on multigrid convergence. Int. J. Comput.

Fluid Dyn. 4, 171–218.

Jameson, A., 1995b. Analysis and design of numerical schemes for gas dynamics 2, artificial dif-

fusion and discrete shock structure. Int. J. Comput. Fluid Dyn. 5, 1–38.

Jameson, A., 2015. Application of dual time stepping to fully implicit Runge-Kutta schemes

for unsteady flow calculations. In: 22nd AIAA Computational Fluid Dynamics Conference,

pp. 2753.

346 Handbook of Numerical Analysis

http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0085
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0085
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0090
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0090
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0095
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0095
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0095
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0100
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0100
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0105
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0105
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0110
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0110
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0110
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0115
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0115
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0120
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0120
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0125
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0125
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0130
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0130
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0135
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0135
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0135
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0140
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0140
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0145
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0145
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0145
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0150
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0150
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0150
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0155
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0155
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0155
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0155
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0160
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0160
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0165
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0165
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0165
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0170
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0170
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0175
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0175
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0175

Jameson, A., Baker, T.J., 1983. Solution of the Euler equations for complex configurations.

In: Proc. AIAA 6th Computational Fluid Dynamics Conference, Denvers, pp. 293–302.

Jameson, A., Caughey, D.A., 2001. How many steps are required to solve the Euler equations of

steady compressible flow. In: 15th AIAA Computational Fluid Dynamics Conference, AIAA

Paper 2001-2673, Anaheim, CA.

Jameson, A., Mavriplis, D.J., 1987. Multigrid solution of the Euler equations on unstructured and

adaptive grids. In: McCormick, S. (Ed.), Multigrid Methods, Theory, Applications and Super-

computing, Lecture Notes in Pure and Applied Mathematics, vol. 110. Marcel Dekker,

New York, NY, pp. 413–430.

Jameson, A., Turkel, E., 1981. Implicit schemes and LUdecompositions. Math. Comput. 37, 385–397.

Jameson, A., Schmidt, W., Turkel, E., 1981. Numerical solution of the Euler equations by finite

volume methods using Runge-Kutta time stepping schemes. In: 4th Fluid Dynamics and

Plasma Dynamics Conference, AIAA Paper 81-1259, Palo Alto, CA.

Kinnmark, I.P.E., 1984. One step integration methods with large stability limits for hyperbolic par-

tial differential equations. In: Vichnevetsky, R., Stepleman, R.S. (Eds.), Advance in Computer

Methods for Partial Differential Equations, vol. 5. Publ. IMACS, New Brunswick, NJ.

Knoll, D.A., Keyes, D.E., 2004. Jacobian-free Newton-Krylov methods: a survey of approaches

and applications. J. Comput. Phys. 193, 357–397.

Lallemand, M.H., Dervieux, A., 1987. A multigrid finite-element method for solving the

two-dimensional Euler equations. In: McCormick, S.F. (Ed.), Proceedings of the Third Copper

Mountain Conference on Multigrid Methods, Copper Mountain, Lecture Notes in Pure and

Applied Mathematics. Marcel Dekker, New York, NY, pp. 337–363.

Lallemand, M.H., Steve, H., Dervieux, A., 1992. Unstructured multigridding by volume aggrega-

tion: current status. Comput. Fluids 21, 397–433.

Lerat, A., Sidès, J., Daru, V., 1982. An implicit finite-volume method for solving the Euler equa-

tions. In: Krause, E. (Ed.), Eighth International Conference on Numerical Methods in Fluid

Dynamics: Proceedings of the Conference, Rheinisch-Westf€alische Technische Hochschule

Aachen, Germany, June 28–July 2, 1982. Springer, Berlin, Heidelberg, pp. 343–349.

Liou, M.-S., Steffen, C.J., 1993. A new flux splitting scheme. J. Comput. Phys. 107, 23–39.

Liu, W.H., Sherman, A.H., 1976. Comparative analysis of the Cuthill-McKee and reverse

Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer. Anal. 13, 198–213.

Liu, X.D., Osher, S., Chan, T., 1994. Weighted essentially non-oscillatory schemes. J. Comput.

Phys. 115, 200–212.

Lomax, H., Pulliam, T.H., Zingg, D.W., 2001. Fundamentals of Computational Fluid Dynamics.

Springer, Germany.

MacCormack, R.W., 1985. Current status of numerical solutions of the Navier-Stokes equations.

In: AIAA 23rd Aerospace Sciences Meeting, AIAA Paper 85-0032, Reno.

MacCormack, R.W., 1997. A new implicit algorithm for fluid flow. In: Proc. AIAA 13th CFD

Conference, AIAA Paper, Snowmass, Colorado, pp. 112–119.

Mavriplis, D.J., Jameson, A., 1990. Multigrid solution of the Navier-Stokes equations on triangu-

lar meshes. AIAA J. 28 (8), 1415–1425.

Mavriplis, D.J., Martinelli, L., 1991. Multigrid solution of compressible turbulent flow on unstruc-

tured meshes using a two-equation model. In: AIAA 29th Aerospace Sciences Meeting,

AIAA Paper 91-0237, Reno, NV.

Mavriplis, D.J., Venkatakrishnan, V., 1996. A 3D agglomeration multigrid solver for the

Reynolds-averaged Navier-Stokes equations on unstructured meshes. Int. J. Numer. Methods

Fluids 23, 1–18.

The Design of Steady State Schemes Chapter 11 347

http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0180
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0180
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0185
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0185
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0185
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0190
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0190
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0190
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0190
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0195
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0200
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0200
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0200
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0205
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0205
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0205
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0210
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0210
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0215
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0215
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0215
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0215
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0220
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0220
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0225
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0225
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0225
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0225
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0225
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0230
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0235
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0235
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0240
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0240
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0245
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0245
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0250
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0250
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0255
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0255
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0260
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0260
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0265
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0265
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0265
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0270
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0270
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0270

Meijerink, J.A., van der Vorst, H.A., 1977. An iterative solution method for linear systems of

which the coefficient matrix is a symmetric M-matrix. Math. Comput. 31, 148–162.

Mulder, W.A., 1989. A new multigrid approach to convection problems. J. Comput. Phys.

83, 303–323.

Mulder, W.A., 1992. A high-resolution Euler solver based on multigrid, semi-coarsening, and

defect correction. J. Comput. Phys. 100, 91–104.

Mulder, W.A., van Leer, B., 1985. Experiments with implicit upwind methods for the Euler equa-

tions. J. Comput. Phys. 59, 232–246.

Ni, R.H., 1982. A multiple grid scheme for solving the Euler equations. AIAA J. 20, 1565–1571.

Nielsen, E.J., Walters, R.W., Anderson, W.K., Keyes, D.E., 1995. Application of Newton-Krylov

methodology to a three-dimensional unstructured Euler code. In: AIAA 12th Computational

Fluid Dynamics Conference, AIAA Paper 95-1733, San Diego, CA.

Obayashi, S., Kuwakara, K., 1984. LU factorization of an implicit scheme for the compressible

Navier-Stokes equations. In: AIAA 17th Fluid Dynamics and Plasma Dynamics Conference,

AlAA Paper 84-1670, Snowmass.

Obayashi, S., Matsukima, K., Fujii, K., Kuwakara, K., 1986. Improvements in efficiency and reli-

ability for Navier-Stokes computations using the LU-ADI factorization algorithm. In: AIAA

24th Aerospace Sciences Meeting, AlAA Paper 86-0338, Reno.

Osusky, M., Zingg, D.W., 2013. A parallel Newton-Krylov-Schur flow solver for the Navier-Stokes

equations discretized using summation-by-parts operators. AIAA J. 51 (12), 2773–2786.

Osusky, L., Buckley, H.P., Reist, T.A., Zingg, D.W., 2015. Drag minimization based on the

Navier-Stokes equations using a Newton-Krylov approach. AIAA J. 53 (6), 1555–1577.

Peraire, J., Peir€o, J., Morgan, K., 1992. A 3D finite-element multigrid solver for the Euler equa-

tions. In: AIAA 30th Aerospace Sciences Conference, AIAA Paper 92-0449, Reno, NV.

Persson, P.-O., Peraire, J., 2008. Newton-GMRES preconditioning for discontinuous Galerkin

discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput. 30 (6), 2709–2722.

Pierce, N.A., Giles, M.B., 1997. Preconditioning compressible flow calculations on stretched

meshes. J. Comput. Phys. 136, 425–445.

Pierce, N.A., Giles, M.B., Jameson, A., Martinelli, L., 1997. Accelerating three-dimensional

Navier-Stokes calculations. In: AIAA 13th Computational Fluid Dynamics Conference,

AIAA Paper 97-1953, Snowmass, CO.

Pueyo, A., Zingg, D.W., 1998. Efficient Newton-Krylov solver for aerodynamic flows. AIAA J.

36 (11), 1991–1997.

Pulliam, T.H., Steger, J.L., 1985. Recent improvements in efficiency, accuracy and convergence

for implicit approximate factorization algorithms. In: AIAA 23rd Aerospace Sciences

Meeting, AIAA Paper 85-0360, Reno.

Pulliam, T.H., Zingg, D.W., 2014. Fundamental Algorithms in Computational Fluid Dynamics.

Springer, Switzerland.

Reist, T.A., Zingg, D.W., 2016. High-fidelity aerodynamic shape optimization of a lifting fuselage

concept for regional aircraft. J. Aircr. http://dx.doi.org/10.2514/1.C033798 (accepted for

publication).

Rieger, H., Jameson, A., 1988. Solution of steady three-dimensional compressible Euler and

Navier-Stokes equations by and implicit LU scheme. In: AIAA 26th Aerospace Sciences

Meeting, AIAA Paper 88-0619, Reno, NV.

Roe, P.L., 1981. Approximate Riemann solvers, parameter vectors, and difference schemes.

J. Comput. Phys. 43, 357–372.

Rossow, C.-C., 2007. Efficient computation of compressible and incompressible flows. J. Comput.

Phys. 220 (2), 879–899.

348 Handbook of Numerical Analysis

http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0275
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0275
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0280
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0280
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0285
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0285
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0290
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0290
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0295
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0300
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0300
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0300
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0305
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0305
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0305
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0310
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0310
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0310
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0315
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0315
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0320
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0320
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0325
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0325
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0325
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0330
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0330
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0335
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0335
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0340
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0340
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0340
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0345
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0345
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0350
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0350
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0350
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0355
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0355
http://dx.doi.org/10.2514/1.C033798
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0365
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0365
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0365
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0370
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0370
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0375
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0375

Rusanov, V.V., 1961. Calculation of interaction of non-steady shock waves with obstacles.

J. Comput. Math. Phys. USSR 267–279.

Saad, Y., 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Stat. Com-

put. 14, 461–469.

Saad, Y., 2003. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia.

Saad, Y., Schultz, M.H., 1986. GMRES: a generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869.

Saad, Y., Sosonkina, M., 1999. Distributed Schur complement techniques for general sparse linear

systems. SIAM J. Sci. Comput. 21, 1337–1357.

Schmitt, V., Charpin, F., 1979. Pressure distributions on the ONERA M6 wing at transonic Mach

numbers. Tech. Rep., ONERA, France.

Smith, W.A., Weiss, J.M., 1995. Preconditioning applied to variable and constant density flows.

AIAA J. 33 (11), 2050–2057.

Swanson, R., Turkel, E., Rossow, C.-C., 2007. Convergence acceleration of Runge-Kutta schemes

for solving the Navier-Stokes equations. J. Comput. Phys. 224 (1), 365–388.

Toro, E.F., Spruce, M., Speares, W., 1994. Restoration of the contact surface in the HLL-Riemann

solver. Shock Waves 4 (1), 25–34. ISSN 1432-2153.

Turkel, E., 1987. Preconditioned methods for solving the incompressible and low speed equations.

J. Comput. Phys. 72, 277–298.

van Leer, B., 1974. Towards the ultimate conservative difference scheme. II, Monotonicity and

conservation combined in a second order scheme. J. Comput. Phys. 14, 361–370.

van Leer, B., Lee, W.T., Roe, P.L., 1991. Characteristic time stepping or local preconditioning of

the Euler equations. In: AIAA 10th Computational Fluid Dynamics Conference, AIAA Paper

91-1552, Honolulu, Hawaii.

Vassberg, J.C., 2011. A unified baseline grid about the common research model wing-body for the

fifth AIAA CFD drag prediction workshop. In: 29th AIAA Applied Aerodynamics Confer-

ence, AIAA Paper 2011-3508, Honolulu, HA.

Venkatakrishnan, V., 1988. Newton solution of inviscid and viscous problems. In: AIAA 26th

Aerospace Sciences Meeting, AIAA Paper 88-0413, Reno, NV.

Wilcox, D.C., 1998. Turbulence Modelling of CFD. DCW Industries, La Canada, CA.

Yee, H.C., 1985. On symmetric and upwind TVD schemes. In: Proc. 6th GAMM Conference on

Numerical Methods in Fluid Mechanics, Gottingen.

Yoon, S., Jameson, A., 1987. Lower-upper Symmetric-Gauss-Seidel method for the Euler and

Navier-Stokes equations. In: AIAA 25th Aerospace Sciences Meeting, AIAA Paper

87-0600, Reno, NV.

Yu, M.L., Wang, Z.J., 2016. Homotopy continuation of the high-order flux reconstruction/

correction procedure via reconstruction (FR/CPR) methods for steady flow simulation.

Comput. Fluids 131, 16–28.

The Design of Steady State Schemes Chapter 11 349

http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0380
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0380
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0385
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0385
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0390
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0395
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0395
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0400
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0400
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0405
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0405
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0410
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0410
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0415
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0415
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0420
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0420
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0425
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0425
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0430
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0430
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0435
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0435
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0435
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0440
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0440
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0440
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0445
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0445
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0450
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0455
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0455
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0460
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0460
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0460
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0465
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0465
http://refhub.elsevier.com/S1570-8659(16)30061-8/rf0465

	The Design of Steady State Schemes for Computational Aerodynamics
	Introduction
	Equations of Gas Dynamics and Spatial Discretizations
	Time-Marching Methods
	Model Problem for Stability Analysis of Convection Dominated Problems
	Multistage Schemes for Steady State Problems
	Implicit Schemes for Steady State Problems
	Acceleration Methods
	Variable Local Time Stepping
	Enthalpy Damping
	Preconditioning
	Residual Averaging

	Multigrid Methods
	RANS Equations

	Newton-Krylov Methods
	Background
	Methodology
	Inexact Newton Method
	Jacobian-Free Newton-Krylov Methods
	Preconditioning and Parallelization
	Globalization
	Additional Considerations and Algorithm Parameters
	Examples

	Conclusions
	References

