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Flux Reconstruction (FR) Method

Unifying framework that recovers several popular Discontinuous
Finite Element methods:

Nodal Discontinuous Galerkin (nodal DG)
Spectral Difference (SD)

Energy Stable Flux Reconstruction (ESFR) formulation proven to be
linearly stable for advection-diffusion problems
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Review of Existing Methodology

Consider a 1D scalar conservation
law:

∂u

∂t
+
∂f (u)

∂x
= 0

Represent solution and flux within
each element using Lagrange
interpolating polynomials through
P + 1 interior solution points.
Resulting polynomials are of order
P.

uj(r) =
P+1∑
n=1

unln

fj(r) =
P+1∑
n=1

fnln
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Review of Existing Methodology

From left and right solution values
at each interface, compute a
common interface flux using an
appropriate flux formulation.

f I
L = fcn(uj−1,R , uj,L)

f I
R = fcn(uj,R , uj+1,L)
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Review of Existing Methodology

Acquire values of the discontinuous
flux at interfaces using existing
Lagrange representation.
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Review of Existing Methodology

Introduce left and right
correction polynomials of
degree P + 1.
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Review of Existing Methodology

Scale polynomials using
computed difference between
desired common interface
flux value and existing
discontinuous flux value.
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Review of Existing Methodology

Add the scaled correction
polynomials to the discontinuous
flux to obtain a C-0 continuous flux
of order P + 1.

f c
j (r) = fj(r) + (f I

L − fj(−1))gL(r)

+ (f I
R − fj(+1))gR(r)
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Review of Existing Methodology

Advance solution using derivative of the continuous flux.

d

dt
uj = −[Dfj + ILgL,x + IRgR,x]
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New Developments in Flux Reconstruction

While existing FR methodology has shown much promise, active
research is still being conducted to characterize and improve the
method.

From this research, several exciting new developments have
emerged:

Direct FR - Simplified formulation of the FR method that recovers
nodal discontinuous Galerkin (DG) method
Spectrally Optimal FR Schemes - New schemes that minimize
wave propagation errors for the range of resolvable wavenumbers
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Direct FR Method

In existing FR method, reconstruction process involves several
distinct computational steps, all aimed at applying correction
polynomials to construct the continuous flux.

Correction polynomials introduced by Huynh to generate continuous
flux of order P + 1 so that terms in conservation law are of
consistent order P.
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Direct FR Method

If this consistency constraint is
abandoned, entire reconstruction
process can be consolidated into a
single Lagrange interpolation
through the combined set of interior
solution points and interface flux
points.

f C = f I
L l̃0 +

P+1∑
n=1

fn l̃n + f I
R l̃P+2
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Direct FR Method

If this consistency constraint is
abandoned, entire reconstruction
process can be consolidated into a
single Lagrange interpolation
through the combined set of interior
solution points and interface flux
points.
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Advantages of the New Formulation

Simpler - Does not require explicit definition of correction functions,
implicit through selection of solution points

Cheaper - Less operations than existing FR methodology

Equivalent - Recovers nodal DG scheme if solution points are
positioned at the zeros of the Legendre polynomial of corresponding
order

Maintains linear stability properties of this scheme

Potential for new family of schemes - Numerical results indicate
that schemes derived through positioning the solution points at the
zeros of Jacobi polynomials (with some constraints) are linearly
stable.
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Equivalency Requirements

Solution update is only computed and applied discretely at interior
solution points

DFR can be made to recover the nodal DG scheme if the following
condition is met on the total continuous flux:

∂

∂r
(f (r)− fDFR(r))

∣∣∣∣
r=rj

= 0

for j = 1, ...,P + 1 which are the indices spanning only the interior
solution points.

f (r) = f D(r) + f C (r)
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Equivalency Requirements

It can be found that this equivalency requirement can be cast
equivalently using only the correction fluxes:

∂

∂r
(f C (r)− f C

DFR(r))

∣∣∣∣
r=rj

= 0 (1)

for j = 1, ...,P + 1
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Proof of Equivalency to Nodal DG

Consider splitting the DFR correction flux using effective left and right
correction functions, gLDFR and gRDFR

f C
DFR(r) = ∆fLgLDFR(r) + ∆fRgRDFR(r) (2)

and compare to the equivalent formula from the standard FR method

f C (r) = ∆fLgL(r) + ∆fRgR(r) (3)

J. Romero, K. Asthana, J. Bull, A. Jameson 23/65
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Proof of Equivalency to Nodal DG

Subtracting Eq.(3) and Eq.(2), taking a derivative, and substituting
results from Eq.(1) gives

∆fL
∂

∂r
(gL(r)− gLDFR(r))

∣∣∣∣
r=rj

+ ∆fR
∂

∂r
(gR(r)− gRDFR(r))

∣∣∣∣
r=rj

= 0

Since ∆fL and ∆fR are arbitrary, it suffices to prove

∂

∂r
(gL(r)− gLDFR(r))

∣∣∣∣
r=rj

= 0 (4)

∂

∂r
(gR(r)− gRDFR(r))

∣∣∣∣
r=rj

= 0 (5)

to prove scheme equivalency.
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Proof of Equivalency to Nodal DG

It is known that to recover the nodal DG scheme using the standard FR
methodology requires correction functions of the form

gL =
(−1)P

2
(LP − LP+1) (6)

gR =
1

2
(LP + LP+1) (7)

which are the left and right Radau polynomials respectively.
If the interior solution points using the DFR scheme are located at the
zeros of the Legendre polynomial, the effective DFR correction functions
that results from the Lagrange interpolation can be expressed in terms of
Legendre polynomials as

gLDFR =
(−1)P

2
(r − 1)LP+1 (8)

gRDFR =
1

2
(1 + r)LP+1 (9)

J. Romero, K. Asthana, J. Bull, A. Jameson 25/65



Brief Review of Flux Reconstruction
Direct FR Method

Spectrally-optimal FR Schemes
High Fidelity Turbulent Flow Simulations

Conclusions

Description of Method
Advantages of New Formulation
Proof of Equivalency to Nodal DG
Numerical Results
Recovery of Additional Stable Schemes

Proof of Equivalency to Nodal DG

To satisfy Eq.(5), consider a residual defined as

D =
∂

∂r
(gR − gRDFR) =

1

2
(
∂

∂r
LP − LP+1 − r

∂

∂r
LP+1) (10)

According to A.9 in Huynh (2007)

(1− r2)
∂

∂r
LP+1 = (P + 1) [Lp − rLP+1] (11)

Substitution into Eq.(10) yields

D =
1

2(1− r2)

[
(1− r2)(

∂

∂r
LP − LP+1)− (P + 1)(rLP − r2LP+1)

]
(12)
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Proof of Equivalency to Nodal DG

According to A.10 in Huynh (2007)

(1− r2)
∂

∂r
LP = (P + 1)(rLP − LP+1) (13)

Substitution into Eq.(12) yields

D = −1

2
(P + 2)LP+1 (14)

At the zeros of LP+1, which correspond to the locations of the interior
solution points, the residual is exactly equal to zero and Eq.(5) is
satisfied.
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Proof of Equivalency to Nodal DG

Eq.(4) can be satisfied in similar fashion. Consider a residual defined as

D =
∂

∂r
(gL − gLDFR) =

(−1)P

2
(
∂

∂r
LP − LP+1 − r

∂

∂r
LP+1) (15)

Observing that the bracketed term in Eq.(15) is identical to the term in
Eq.(10), it can be immediately said that

D =
(−1)P+1

2
(P + 2)LP+1 (16)

At the zeros of LP+1, which correspond to the locations of the interior
solution points, the residual is exactly equal to zero and Eq.(4) is also
satisfied. This proves the equivalence of the DFR scheme to the FR
formulation of the nodal DG scheme provided the solution points are
located at the zeros of the Legendre polynomial of order P + 1.
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Comparison of Correction Functions for P = 2
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Comparison of Correction Functions for P = 4
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2D Euler: Isentropic Vortex

Test Case Parameters:

P = 4

10K Degrees of Freedom

dt = 0.01

6000 Iterations (t = 60)
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2D Euler: Isentropic Vortex

FR (nodal DG): Direct FR:
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2D Euler: Isentropic Vortex
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FR 693.8270
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Percent Reduction 14.5%
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Recovery of Additional Stable Schemes

Beyond recovering the nodal DG scheme, numerical experiments
indicate that DFR is stable with solution points located at the zeros

of the Jacobi polynomial P
(α,β)
n (x), which is orthogonal on [−1, 1]

with respect to the weight:

W (x) = (1− x)α(1 + x)β

for 0 < α ≤ 0.12 and α = β

This may lead to a new family of schemes of interest.
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Spectral resolution

The fraction of resolved wavenumbers for which constituent waves would
be propagated with negligible numerical dispersion and dissipation

- The range of numerically resolved wavenumbers is limited by the
grid resolution:

uδ(x , t)|Ωδ =

kmax∫
k=−kmax

ûδ(k , ωδ)e i(kx−ωδt)dk

- For wave propogation problems, the numerical approximation of
derivatives provides the numerical dispersion relation

ωδ = ωδ(k)
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Importance of spectral resolution in fluid phenomena

High Reynolds number flows
- In DNS, to accurately capture viscous dissipation at smallest
scales, the numerical scheme must add minimal artificial dissipation
at high wavenumbers (Moin 1997)

Aeroacoustics
- The calculation of far field noise requires acoustic waves to
propogate undissipated and undispersed across several acoustic
wavelengths (Tam 2001)

Instabilites
- Numerical dissipation at low wavenumbers can damp out physical
instabilities, while negative numerical group velocities can lead to
spurious bypass transition (Sengupta 2008)
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FR formulation for 1-D convection

Consider the linear flux f (u) = u on a uniform grid of unit spacing:

∂u

∂t
+
∂u

∂x
= 0

Admit the fully upwinded interface flux so that the numerical update
becomes:

d

dt
uδj = −2[C0u

δ
j + C−1u

δ
j−1]

for the j th element, where C0 and C1 are discrete operators.
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Bloch waves

The governing eqn. admits analytical solutions of the form:

u(x , t) = e ik(x−t) = e ik(j−t)e ik (r+1)
2

where r |Ωj = 2
x−xj

xj+1−xj
− 1 represents the parent domain.

Project the exponential onto a polynomial basis:

uδj (t) = e ik(j−aδ(k)t)v

Admitting the above numerical solution into the numerical update:

−2i

k

(
C0 + e−ikC−1

)
v = aδv
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Semi-discrete dispersion relation

The eigenvalue problem above results into P + 1 eigenmodes.

The eigenvalues relate directly to the numerical wavespeeds which
provides for the numerical semi-discrete dispersion relation:

aδp(k) = aδpr
(k) + iaδpi

(k)

The exact/analytical dispersion relation requires ar = 1, ai = 0

The numerical solution can be expressed as:

uδ(x , t) = ekaδ
p i

te ik(j−aδ
p r

t)v

providing the error terms:

Dispersion: e ik(1−aδ
p r

t)

Dissipation: ekaδ
p i

t
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Eigenmodes for DG via FR on Gauss pts. for P = 2

Real part of the numerical wavespeed Imaginary part of the numerical
wavespeed
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Relative modal energies

The numerical initial condition is a projection of the exact one onto the
polynomial basis. Due to the Lagrangian nature of the basis, it is exact
at solution points:

v0 = e ik (r+1)
2 =

P+1∑
p=1

vδpλp = VΛ

- Complex weights λp relate to the
contribution of each mode to the
initial condition.

- A measure of relative energy
among modes can be expressed as:

βp =
|λp|2

P+1∑
q=1
|λq|2

Relative modal energies for DG, P=2
on Gauss pts.
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Choice of solution points

Numerical wavespeeds are independent of the choice of solution points.
However, relative energies depend directly on the eigenvectors which are
defined by the location of solution points

Relative modal energies for DG, P=2
on equidistant pts.

Relative modal energies for DG, P=2
on Gauss-Lobatto pts.

J. Romero, K. Asthana, J. Bull, A. Jameson 43/65



Brief Review of Flux Reconstruction
Direct FR Method

Spectrally-optimal FR Schemes
High Fidelity Turbulent Flow Simulations

Conclusions

Motivation
Modal analysis
Optimal Flux Reconstruction schemes
Numerical results

Wave propagation error

Spectral analyses of finite difference schemes have lead to the
development of several spectrally optimal compact schemes that trade
formal order of accuracy for better dispersion properties.

Tam (1993), Lele (1992), Ta’asan (1994), Kim (1996), Gaitonde (1997),
Chu (1998), Adams (1996), Zhong (1998), Sengupta (2003)

FR schemes
- essentially upwinded - both real and imaginary parts
- need to specify relative weights for dissipation and dispersion
- convenient to select the actual wave propagation error:

|ep(k , t)| = |uex(k , t)− uδ(k , t)|
= |e ik(x−t) − e ik(x−cδt)| = |1− e ik(1−cδ)t |
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Constrained minimization problem

An objective function for the optimization process can be specified as the
energy weighted error in wave propagation measured at a characteristic
time tc = 100h/c :

η =
1

(P + 1)2

P+1∑
p=1

(P+1)π∫
k=0

|1− e i100k(1−aδ
p (k))|βp(k)dk

where βp(k) is the relative modal energy of the pth mode.

The optimzation problem can then be stated as follows:

Min η(g(r),P, {r0})
subject to aδpimag

(k) ≤ 0 ∀k ∈ [0, (P + 1)π], p = 1, 2, ...P + 1
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O-ESFR schemes

Energy Stable Flux Reconstruction (ESFR) schemes
(Vincent-Castonguay-Jameson 2011)

- Proved to be stable for linear fluxes

- Correction functions belong to a one-parameter ‘c’ family associated
with the energy norm

- Recovers DG for c = 0, SD for c = 2P
(2P+1)(P+1)(aPP!)2

? Optimal ESFR schemes (O-ESFR)
- Can be obtained by optimizing over c for given P.

cDG = 0

cSD = 1.00× 10−3

cOESFR = 1.44× 10−4
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O-FR schemes

General FR scheme

- Generalized correction function on the left boundary

gL(r) =
PY

q=1

(r − ζq)

1 + ζq

(r − 1)

2

- The solution space of zeros {ζ} of gL is of dimension P
- Linear stability is not satisfied except in special subsets that may not

form subspaces

? Optimal FR schemes (O-FR) can be obtained by optimizing over the
set of P available zeros subject to the constraint that the resulting
scheme is stable.
→ For P = 1, the O-FR scheme recovers the O-ESFR scheme
→ For P > 1, the optimization procedure converges at zeros not
traced by ESFR family.
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Spectrally optimal FR schemes on Gauss pts. for P = 5

Real part of the numerical wavespeed
Imaginary part of the numerical
wavespeed
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Optimal correction functions for left boundary

Left boundary correction functions for P = 5
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Numerical integration: CFL restrictions

P RK44 RK45

DG OESFR OFR c+ DG OESFR OFR c+

2 0.235 0.238 0.241 0.688 0.352 0.356 0.361 0.864

3 0.139 0.148 0.126 0.376 0.220 0.224 0.191 0.473

4 0.100 0.103 0.108 0.245 0.152 0.158 0.164 0.311

5 0.068 0.076 0.085 0.174 0.110 0.117 0.128 0.223

Limiting CFL values

- c+ is the member of the ESFR family with highest stability limit
(Vincent (2011))

- RK45 is the 4th order accurate 5-stage RK scheme with enhanced
stability region
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1-D advection of a sharp Gaussian

6th order standard and optimal FR schemes with an initial condition
sharper than a single element

Exact and numerical solutions (across
two elements) at the end of one period

Evolution of numerical error across one
period
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1-D advection of a sharp Gaussian

6th order standard and optimal FR schemes with finer meshes to
accurately advect initial condition

Exact and numerical solutions (across
two elements) at the end of one period

Scheme No. of elements

DG 61

Tridiag.
implicit

compact FD

57

c+ 76

OFR 45

No. of elements required for < 5%
error in peak amplitude across one
period
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1-D advection of a high-wavenumber packet

6th order standard and optimal FR schemes with an initial condition as a
packet centered at half of Nyquist limit

Exact and numerical solutions (across
two elements) at the end of one period

Evolution of numerical error across one
period
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HiFiLES: Open Source High Fidelity Large Eddy
Simulation Code

High-Order via Flux Reconstruction scheme

RANS/LES

GPU/CPU scalability

Shock capturing

Unstructured grids

4th order explicit time-stepping
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Taylor Green Vortex - 64x64x64 mesh, 3rd order DG

Q criterion colored by velocity magnitude at 2.5, 5.0, 7.5 and 10.75 seconds
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Taylor Green Vortex - Comparison to Beck and Gassner DG
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Left: 3rd order DG via FR (Bull and Jameson 2014)
Right: 3rd order filtered DG (Beck and Gassner 2012)
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Taylor Green Vortex - Kinetic energy and dissipation rate
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Kinetic energy k (left) and dissipation rate −dk/dt (right) using 3rd order SD
via FR on 16x16x16, 32x32x32 and 64x64x64 meshes vs. DG (Beck and
Gassner 2012) and DNS using dispersion relation preserving (DRP) scheme
(Debonis 2013)
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Taylor Green Vortex - Vorticity-based dissipation rate
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Vorticity-based dissipation rate using DG, SD and OFR schemes on 32x32x32
mesh at 3rd-6th orders (Bull and Jameson 2014)
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Taylor Green Vortex - Energy spectra
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Close-up of energy spectrum at 9 seconds computed using 5th order DG, SD
and OFR on 32x32x32 mesh vs. spectral DNS (Carton de Wiart et al. 2014)
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Flow Over a Supersonic NACA 0012 Airfoil
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Density (left) and shock sensor (right) in flow over a NACA 0012 airfoil at
Mach 1.2 and 5◦ AoA using 6th order FR
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LES of Flow Over a Square Cylinder at Re = 22, 000

3rd order SD and WALE model on tetrahedral mesh with 130k elements.
Isosurface of Q criterion colored by velocity magnitude.
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Conclusions

DFR is a simplification of nodal DG which may lead to a new family
of schemes

Spectrally optimal FR schemes allow higher accuracy without
compromizing formal order, stability, or speed. This may enable the
extension of FR to industrial applications in aeroacoustics and
turbulence.

Initial simulations of the Taylor-Green vortex using OFR (Bull et. al.
2014) have been shown to capture the inertial range better than
conventional FR schemes.
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