High-Order Methods and High Fidelity Simulation of Unsteady Turbulent Fluid Flows

Prof. Antony Jameson

Department of Aeronautics & Astronautics – Aerospace Computing Laboratory – Stanford University jameson@baboon.stanford.edu Assisted by Freddie Witherden

> Arlington, VA August 9 2016

Outline

I. Context

- II. Current status of CFD
- **III. Flux Reconstruction**
- IV. PyFR
- V. LES computations and future work

Context

"When I die and go to Heaven there are two matters on which I hope enlightenment. One is quantum electrodynamics and the other is turbulence. About the former, I am really rather optimistic."

Outline

I. Context

II. Current status of CFD

- **III. Flux Reconstruction**
- IV. PyFR
- V. LES computations and future work

CFD Contributions to B787

CFD Contribution to A380

Current Status

The Future of CFD

Murray Cross, Airbus, Technology Product Leader - Future Simulations (2012)

Current Status & Future Trends

The Future of CFD

Outline

- I. Context
- II. Current status of CFD

III. Flux Reconstruction

- IV. PyFR
- V. LES computations and future work

• Consider the 1D Conservation Law

$$\frac{\partial u}{\partial t} + \frac{\partial f}{\partial x} = 0$$
 where $f = f(u)$

• Discretize the domain into elements

• Calculate the derivative of the flux and time-advance to get \hat{u}^D at next time-step

$$\frac{d\hat{u}_k^D}{dt} = -D^h \hat{f}_k^D - D\hat{f}_k^C$$

• For second order PDEs (diffusive fluxes), split into first-order PDEs and perform similar procedure for each

Linear Energy Stability

- There exists a family of Flux Reconstruction schemes that are guaranteed to be linearly stable [Vincent et al., J. Sci. Comput, 2011]
 - Parameterized with a constant c which changes the scheme
 - Recover NDG, SD, plus other previously-found energy-stable FR schemes

$$g_R = \frac{1}{2} \left[L_p + \frac{\eta_p L_{p-1} + L_{p+1}}{1 + \eta_p} \right] \quad \eta_p = \frac{c(2p+1)(a_p p!\,)^2}{2} \quad a_p = \frac{(2p)!}{2^p (p!\,)^2}$$

Accomplished showing a broken Sobolev type norm of the solution

$$||u^{\delta}||_{p,2} = \left[\sum_{n=0}^{N-1} \int_{x_n}^{x_{n+1}} (u_n^{\delta D})^2 + \frac{c}{2} (J_n)^{2p} \left(\frac{\partial^p u_n^{\delta D}}{\partial x^p}\right)^2 \mathrm{d}x\right]^{1/2}$$

is guaranteed to be non-increasing.

Linear Energy Stability

- Proof has been extended to simplex elements where the correction function is in a Raviart-Thomas space and advection diffusion problems.
 - Castonguay et al. J. Sci. Comput., 51(1):224–256, 2012.
 - Williams et al. Journal of Computational Physics, 2013.
- However, the proof did not extend to tensor product quadrilateral elements except for c = 0 which recovers nodal DG.
 - A. Jameson, AIAA paper 2011-3226, Hawaii, 2011.
- Proof has now been achieved by Abhishek Sheshadri by further augmenting the norm.

$$\|u^D\|_{W^{2p,2}_{\delta}}^2 = \sum_{k=1}^N \left(\int_{\Omega_k} \left[(u^D_k)^2 + \frac{c}{2} \left(\left(\frac{\partial^p u^D_k}{\partial \xi^p} \right)^2 + \left(\frac{\partial^p u^D_k}{\partial \eta^p} \right)^2 \right) + \frac{c^2}{4} \left(\frac{\partial^{2p} u^D_k}{\partial \xi^p \partial \eta^p} \right)^2 \right] d\Omega_k \right)$$

Shock Capturing

Method	Advantages	Disadvantages	
Limiting	 Eliminates oscillations Robust 	 Smeared over elements Expensive 	
Artificial Viscosity	 Sub-cell shock capturing Smoothly varying viscosity 	 High-order derivatives Time-step restrictions Too many parameters 	
Filtering	 Sub-cell shock capturing Very Inexpensive 	 Varying dissipation not easy Needs a good sensor 	

Shock Capturing

Method	Advantages	Disadvantages	
Limiting	 Eliminates oscillations Robust 	 Smeared over elements Expensive 	
Artificial Viscosity	 Sub-cell shock capturing Smoothly varying viscosity 	 High-order derivatives Time-step restrictions Too many parameters 	
Filtering	 Sub-cell shock capturing Very Inexpensive 	 Varying dissipation not easy Needs a good sensor 	

For explicit FR on GPUs filtering is attractive...but requires a good sensor.

Shock Capturing: Our Approach

Two-step approach

Minimize parameter fine-tuning

DORD JUNOP

Shock Capturing: Exponential Modal Filtering

$$\sigma(\eta) = \begin{cases} 1, & 0 \le \eta \le \eta_c = \frac{N_c}{P} \\ \exp(-\alpha \left(\frac{\eta - \eta_c}{1 - \eta_c}\right)^s), & \eta_c \le \eta \le 1 \end{cases}$$

Shock Capturing: Current Sensors

Physics based

- Specific to problem or type of discontinuity
- Need derivatives: expensive
- Hard to extend to unstructured grids

Smoothness based

- Used successfully in low-order schemes
- Persson and Peraire high order unstructured methods

TORD JUNOP

Shock Capturing: Concentration Method

- Used for image/MRI edge detection
- Works directly on Fourier spectral information

• Suppose we have the spectral projection of a function f

$$S_N(f) = -\sum_{k=-N}^N \hat{f}_k e^{ikx}$$

• If *f* has a discontinuity at a point then

$$\hat{f}_k = [f](c)\frac{e^{-ikc}}{2\pi ik} + \mathcal{O}(\frac{1}{k^2})$$

• There exist special kernels such that

$$K_{\epsilon} * S_N(f) = [f](x) + \mathcal{O}(\epsilon)$$

• Kernel action is of the form

$$K_N^{\sigma} * S_N(f) = i\pi \sum_{k=-N}^N sgn(k)\sigma(\frac{|k|}{N})\hat{f}_k e^{ikx}$$

• where the σ coefficients are *concentration factors*.

Shock Capturing: Concentration Method

• Jacobi polynomials are the eigenfunctions of the Sturm-Liouville problem

$$((1 - x^2)\omega(x)P'_k(x))' = -\lambda_k\omega(x)P_k(x) \quad -1 \le x \le 1$$

with weight $\omega(x) = (1 - x^2)^{\alpha}$

• Polynomial modes also show a decreased decay rate:

$$\hat{f}_k = \frac{1}{\lambda_k} [f](x)(1-x^2)\omega(c)P'_k(x) + \mathcal{O}(\frac{1}{\lambda_k^2})$$

where $\lambda_k = k(k+2\alpha+1)$

Concentration property for Jacobi polynomials

$$\left|\frac{\pi\sqrt{1-x^2}}{N}S_N(f)'(x) - [f](x)\right| \le \frac{\text{Const}}{(1-x^2)^{\alpha/2+1/4}} \cdot \frac{\log N}{N}$$

• Legendre polynomials are special cases Jacobi polynomials with $\alpha = 0$.

• Concentration factors are of the form $\sigma(\xi) = \xi \mu(\xi)$. Two forms have been

investigated

$$\mu(\xi) = r\xi^{r-1} \qquad \qquad \mu(\xi) = Ce^{\frac{1}{\alpha\xi(\xi-1)}}$$

Exponential factors have been found to work better in in practice

Shock Capturing: Our Sensor

Shock Capturing: Our Sensor

Shock Capturing: Implementation

TORD UNOP

- 1. At start-up compute the Concentration matrix C
- 2. Choose a quantity normalize the elemental solution to [0,1]
- 3. Evaluate the kernel by multiplying through by **C**
- 4. If any point in the element has a value greater than *threshold*, mark element for filtering
 - Take *threshold* to be mid point between *step* and *ramp*.
- 5. Apply a modal filter to these elements.

Shock Capturing: Shock Entropy Interaction

 $\rho = 3.857143; \qquad u = 2.629369; \quad p = 10.33333 \quad \text{for} \quad x \le 4$ $\rho = 1 + \epsilon \sin 5x; \quad u = 0; \qquad p = 1 \qquad \text{for} \quad x > 4$

- Mach 3 shock wave moving into a stationary fluid with density perturbations.
- Interactions generates oscillations and small amplitude shocks giving rise to a fine structure.

Filter Order	Filter Strength	Final Time	
2	1	0.038s	

HIGH CONTRACT OF THE CONTRACT

Shock Capturing: Shock Entropy Interaction

TO BD JUNGH HILLING

Shock Capturing: Shock Entropy Interaction

Shock Capturing: Flow Over a Step

Mach	Flow Angle	Num Elem	Order	Filter Order	Filter Strength
3.0	0°	63,004	3	2	5
Shock Capturing: Flow Over a Step

Shock Capturing: Flow Over a Step

Shock Capturing: Flow Over a Step

Convergence Acceleration

Recent work has focused on convergence acceleration on GPUs.

Convergence Acceleration: BDF1

$$\frac{\Delta \boldsymbol{u}_{\text{ele}}}{\Delta t} = \frac{(\boldsymbol{u}_{\text{ele}}^{n+1} - \boldsymbol{u}_{\text{ele}}^{n})}{\Delta t} = \boldsymbol{R}(\boldsymbol{u}_{\text{ele}}^{n+1}, \boldsymbol{u}_{\text{eleN}}^{n+1})$$

• Linearize to obtain global linear system

$$\left(\frac{I}{\Delta t} + \frac{\partial \boldsymbol{R}_{\text{ele}}^n}{\partial \boldsymbol{u}_{\text{ele}}}\right) \Delta \boldsymbol{u}_{\text{ele}} - \sum_{\text{eleN}} \frac{\partial \boldsymbol{R}_{\text{ele}}^n}{\partial \boldsymbol{u}_{\text{eleN}}} \Delta \boldsymbol{u}_{\text{eleN}} = \boldsymbol{R}(\boldsymbol{u}_{\text{ele}}^n, \boldsymbol{u}_{\text{eleN}}^n)$$

Element local Jacobian

Element neighbor Jacobian

41

Convergence Acceleration: BDF1

- Solve using multicolored Gauss-Seidel.
- For example with red/black coloring:

$$\left(\begin{array}{cc} D_R & C_B \\ C_R & D_B \end{array}\right) \left(\begin{array}{c} x_R \\ x_B \end{array}\right) = \left(\begin{array}{c} b_R \\ b_B \end{array}\right)$$

$$x_R^{n+1} = D_R^{-1} \left(b_R - C_B x_B^n \right)$$
$$x_B^{n+1} = D_B^{-1} \left(b_B - C_R x_R^n \right)$$

Convergence Acceleration: Mesh Coloring

Requirements

- Minimise number of colours
- Distribute work evenly

Convergence Acceleration: Mesh Coloring

Structured NACA 0012

A. Jameson AFOSR Computational Mathematics Review, August 9 2016, Arlington VA

Convergence Acceleration: Mesh Coloring

Unstructured NACA 0012

A. Jameson AFOSR Computational Mathematics Review, August 9 2016, Arlington VA

Convergence Acceleration: NACA 0012

Euler eq, NACA 0012, 32 by 32 grid, P = 4, Ma = 0.5, a = 1.25°

Convergence Acceleration: NACA 0012

Rapid improvement compared with explicit RK4.

Outline

- I. Context
- II. Current status of CFD
- **III. Flux Reconstruction**

IV. PyFR

V. LES computations and future work

D PyFR Imperial College London

- Open source implementation of FR for modern hardware.
- Started at Imperial College London
 - PI: Peter Vincent.
 - Lead developer: Freddie Witherden
 - Many other contributors!

Governing Equations	Compressible Euler/Navier-Stokes (Incompressible Euler/Navier-Stokes)			
Spatial Discretisation	Arbitrary order FR on mixed unstructured grids			
Temporal Discretisation	Range of explicit Runge-Kutta schemes			
Backends	CPUs, NVIDIA GPUs, AMD GPUs, (Intel MIC).			
Precision	Single, Double			
Input	Gmsh, (CGNS)			
Output	VTK, (In situ)			

• Multi node heterogeneous performance on the same grid.

PyFR

- Scaling evaluated on the *Titan* cluster at *ORNL*.
- Most powerful GPU cluster with 18,000 NVIDIA K20X GPUs.
- Test case is a turbine blade with fourth order solution polynomials.

Implementation Details

• Weak scaling

• Strong scaling

- I. Context
- II. Current status of CFD
- **III. Flux Reconstruction**
- IV. PyFR
- V. LES computations and future work

LES Computations

Flow past a Circular Cylinder: Re_D = 3600

• Parnaudeau et al. experiment.

• Parnaudeau et al. experiment + Parnaudeau et al. LES.

• Parnaudeau et al. experiment + PyFR (5th order hex) ILES.

• Parnaudeau et al. experiment.

• Parnaudeau et al. experiment + Parnaudeau et al. LES.

• Parnaudeau et al. experiment + PyFR (5th order hex) ILES.

T106c Cascade

- Have also performed ILES of a T106c
 cascade at Re = 80,000 and Ma = 0.65.
- Domain is meshed with 60,000hexahedra and run with p = 2.
- Compare with experimental data of

Michálek et al.

LES Computations

T106c Cascade

Exact SFS Model

$$\widetilde{\mathbf{u}} = \mathcal{G}[\mathbf{u}] = (1 - \alpha^2 \nabla^2)^{-1} \mathbf{u}.$$

• which has an inverse

$$\mathcal{Q} = \mathcal{G}^{-1} = \left(1 - \alpha^2 \nabla^2\right).$$

 We can use this to derive an *exact* expression for the resolved SFS stress tensor

$$\mathcal{G}[\mathbf{u}\mathbf{u}^{T}] = \mathcal{G}[(\widetilde{\mathbf{u}} - \alpha^{2}\nabla^{2}\widetilde{\mathbf{u}})(\widetilde{\mathbf{u}} - \alpha^{2}\nabla^{2}\widetilde{\mathbf{u}})^{T}]$$

$$= \mathcal{G}[\widetilde{\mathbf{u}}\ \widetilde{\mathbf{u}}^{T} - \alpha^{2}(\widetilde{\mathbf{u}}\ \nabla^{2}\widetilde{\mathbf{u}}^{T} + \widetilde{\mathbf{u}}^{T}\ \nabla^{2}\widetilde{\mathbf{u}}) + \alpha^{4}\nabla^{2}\widetilde{\mathbf{u}}\ \nabla^{2}\widetilde{\mathbf{u}}^{T}].$$

$$\tau_{SFS} = \mathcal{G}[2\alpha^{2}\nabla\widetilde{\mathbf{u}}\ \nabla\widetilde{\mathbf{u}}^{T} + \alpha^{4}\nabla^{2}\widetilde{\mathbf{u}}\nabla^{2}\widetilde{\mathbf{u}}^{T}].$$

$$\mathcal{Q}\tau_{SFS} = (1 - \alpha^{2}\nabla^{2})\tau_{SFS} = 2\alpha^{2}\nabla\widetilde{\mathbf{u}}\ \nabla\widetilde{\mathbf{u}}^{T} + \alpha^{4}\nabla^{2}\widetilde{\mathbf{u}}\ \nabla^{2}\widetilde{\mathbf{u}}^{T},$$

Exact SFS Model: Channel Flow at Re_T = 180

- Test case is turbulent channel flow at $Re_{\tau} = 180$.
- Compare with:
 - DNS
 - Implicit filtering, no SGS
 - Explicit filtering, no SFS
 - Implicit filtering, dynamic Smagorinsky SGS
 - Explicit filtering, dynamic Smagorinsky SFS
 - Explicit filtering, rational LES SFS

LES Computations

Exact SFS Model

Model	Re_{δ}	Re_{τ}	U_B/U_{τ}	U_C/U_B	$C_f imes 10^3$
DNS	3440	180	15.63	1.16	8.18
no model, unfiltered	4126.7	232.1	17.78	1.132	6.33
no model, filtered	4144.6	234.1	17.70	1.129	6.38
dynamic, unfiltered	4329.3	216.8	19.97	1.126	5.02
dynamic, filtered	4315.6	216.2	19.96	1.123	5.02
rational LES	2987.0	184.1	16.22	1.155	7.59
exact SFS	2975.7	184.5	16.12	1.157	7.68

Exact SFS shows strong agreement with DNS compared with other models

Ideal MHD

- Also working towards an FR based ideal MHD solver.
- Uses Powell's method.
- Right: snapshot of pressure for a 2D
 Orszag-Tang vortex test-case.

Acknowledgement

The research is a combined effort by

- Postdocs: Peter Vincent, Guido Lodato, Jonathan Bull, Freddie Witherden
- Ph.D. students: Patrice Castonguay, Yves Allaneau, Kui Ou, David Williams, Manuel López, Kartikey Asthana, Abhishek Sheshadri, Jacob Crabill, Joshua Romero, Jerry Watkins

It has been made possible by the support of

- the Air Force Office of Scientific Research under grants FA9550-10-1-0418 and FA9550-14-1-0186 monitored by Jean-Luc Cambier
- the National Science Foundation under grants 0708071 and 0915006 monitored by Dr. Leland Jameson
- Stanford Graduate Fellowship

Thank you for listening