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The focus of this work is the development of a finite-volume multigrid Euler scheme for solving three-dimen-
sional, fully nonlinear ship wave problems. The flowfield and the a priori unknown free surface location are cal-
culated by coupling the free surface kinematic and dynamic equations with the equations of motion for the bulk
flow. The evolution of the free surface boundary condition is linked to the evolution of the bulk flow via a novel
iteration strategy that allows temporary leakage through the surface before the solution is converged. The
method of artificial compressibility is used to enforce the incompressibility constraint for the bulk flow. A multi-
grid algorithm is used to accelerate convergence to a steady state. The scheme is validated by comparing the
numerical results with experimental results for the Wigley parabolic hull. Waterline profiles from bow to stern
are in excellent agreement with the experimental results. The computed wave drag compares favorably with both
theory and experiment for a wide range of Froude numbers. Overall, the present method proves to be accurate
and efficient.

I. Introduction

THE modeling of aircraft flying in the transonic Mach num-
ber range has been the focus of great interest over the last two

decades. This regime typically results in the most favorable cruise
performance, but also produces flowfields with embedded regions
of supersonic flow. The need to predict these complex flowfields
has led to much progress in the numerical solution of compressible
air flows about arbitrary bodies in recent years.1 Unfortunately, the
most successful methods for compressible flow simulation are not
generally applicable to flows with low Mach numbers, and in the
limit of truly incompressible flow, or zero Mach number, alternate
methods must be used to compute the flowfield. As many of these
methods have drawbacks, the purpose of the present work is to
present a method for treating truly incompressible flows that
retains the favorable characteristics of the recently developed com-
pressible flow methods. The method is used here to predict waves
on the free surface around a ship. In general, this problem retains
many of the complexities associated with aircraft modeling, such
as the need to predict the fluid flow characteristics about arbitrary
fuselage/wing combinations (or hull/keel combinations for the
hydrodynamic case). The ship wave problem is further compli-
cated by the need to solve for the a priori unknown free surface
location.

The fundamental problem in the prediction of incompressible
flows, even flows without the complication of a free surface, is the
loss of an evolution equation for the density. Because the density is
constant, a time-independent constraint must be imposed on the
momentum equations to ensure a divergence-free velocity field. In
addition, the eigenvalues resulting from the system of conven-
tional hyperbolic Euler equations for compressible flows become
infinite in the limit of incompressible flow. This is due to the fact
that incompressible flows exhibit infinite sound speeds. Thus, the
well-established methods for computing compressible flows may
not be used for the incompressible case.
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The method of Hino2 is a widely used approach for solving
incompressible flow problems (see also the recent works of Miyata
et al.3 and Tahara et al.4).This method takes the divergence of the
momentum equations and solves implicit equations at each time
step for the pressure and the velocity fields such that continuity is
satisfied. The method is expensive both because of the need to
solve the implicit equations by an iterative method and because of
the cost of calculating the divergence of the momentum equations
in a curvilinear coordinate system.

The present work adopts the artificial compressibility method,
an approach first proposed by Chorin5 in 1967 as a method to solve
viscous flows. Since then, Rizzi and Eriksson6 have applied it to
rotational inviscid flow, Dreyer7 has applied it to low-speed, two-
dimensional airfoils and Kodama8 has applied it to ship hull forms
with a rigid free surface. In addition, Turkel9 has investigated more
sophisticated preconditioners than those originally proposed by
Chorin. The basic idea behind artificial compressibility is to intro-
duce a pseudotemporal equation for the pressure through the conti-
nuity equation. This approach removes the difficulties associated
with compressible flow formulations as the Mach number
approaches zero. The eigenvalues of the original system are
replaced with an artificial set that renders the new equations well-
conditioned for numerical computation. When combined with
multigrid acceleration procedures,10"12 artificial compressibility
proves to be particularly effective. Converged solutions of incom-
pressible flows over three-dimensional, isolated wings are
obtained in 25-50 cycles.

The general objective of this work is the development of a more
efficient method to predict free surface wave phenomena. A multi-
grid Euler scheme using artificial compressibility is coupled with a
free surface formulation in a new method13 and comparisons made
with available experimental data.14 The method is efficient and
allows for a straight forward extension to include viscous terms
associated with Navier-Stokes equations and a turbulence model.
With this extension it will be possible to predict both the free sur-
face wave patterns and the frictional and induced drag compo-
nents. Additional work will focus on hull/keel junctures inclined at
realistic attack angles.

II. Mathematical Model
Figure 1 shows the reference frame and ship location as used in

this work. A right-handed coordinate system Oxyz, with the origin
fixed at midship on the mean free surface is established. The z
direction is positive upwards, y is positive towards the starboard
side, and x is positive in the aft direction. The freestream velocity
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Fig. 1 Reference frame and ship location.

vector is parallel to the x axis and points in the same direction. The
ship hull pierces the uniform flow and is held fixed in place, i.e.,
the ship is not allowed to sink (translate in z direction) or trim
[rotate in (x, z) plane].

For a nonviscous incompressible fluid moving under the influ-
ence of gravity, the continuity and Euler equations may be put in
the form,2

ut + uux + vuy + wuz = -xj
(1)

+ W

Wt + UW + WWZ = —\\fz

Here u = u(x, v, z, r), v = v(x, v, z, r), and w = w(x, y, z, t) are total
velocity components in the jc, y, z directions. All lengths and veloc-
ities are nondimensionalized by the ship length L and freestream
velocity U, respectively. The pressure \|/ is the static pressure p
minus the hydrostatic component —zFr ~2 and may be expressed as
\j/ -p + zFr ~2, where Fr = U/JgL is the Froude number. The pres-
sure variable \j/ is nondimensionalized by pU2. This set of equa-
tions will be solved subject to the following boundary conditions.

When the effects of surface tension and viscosity are neglected,
the boundary condition on the free surface consists of two equa-
tions. The first, the dynamic condition, states that the pressure act-
ing on the free surface is constant. The second, the kinematic con-
dition, states that the free surface is a material surface: once a fluid
particle is on the free surface, it forever remains on the surface.
The dynamic and kinematic boundary conditions may be
expressed as

p - constant, -f = w = \ (2)

where z = (3 (x, v, f) is the free surface location. Equation (2) only
permits solutions where p is single valued. Consequently, it does
not allow for the breaking of bow waves, which can often be
observed with cruiser-type hulls. Breaking waves are difficult to
treat numerically and are not considered in this work.

The remaining boundaries consist of the ship hull, the bound-
aries which comprise the symmetry portions of the meridian plane,
and the far field of the computational domain. On the ship hull, the
condition is that of impermeability and is stated simply by

q • n = unx + vny + wnz = 0

where the normal vector n may be assumed to point into the flow.
On the symmetry plane [that portion of the (x, z) plane excluding
the ship hull], derivatives in the y direction as well as the v compo-

nent of velocity are set to zero. The upstream plane has u = U and
\j/ = 0 ( p = -zFr~2) with the v and w velocity components also set
to zero. Similar conditions hold on the bottom plane which is
assumed to represent infinitely deep water where no disturbances
are felt. One-sided differences are used to update the flow vari-
ables on the starboard plane. A radiation condition should be
imposed on the outflow domain to allow the wave disturbance to
pass out of the computational domain. Although fairly sophisti-
cated formulations may be devised to represent the radiation con-
dition,15 simple extrapolations proved to be sufficient in this work.

III. Numerical Solution
The formulation of the numerical solution procedure is based on

a finite-volume method (FVM) for the bulk flow variables (u, v, w,
and \|/), coupled to a finite-difference method for the free surface
evolution variables ((3 and \|/). Alternative cell-centered and cell-
vertex formulations may be used in finite-volume schemes.10 A
cell-vertex formulation is preferred in this work because values of
the flow variables are needed on the boundary to implement the
free surface boundary condition. The bulk flow is solved subject to
Dirichlet conditions for the free surface pressure, followed by a
free surface update via the bulk flow solution [i.e., constant values
for the velocities in Eq. (2)]. Each formulation is explicit and uses
local time stepping. Both.multigrid and residual averaging tech-
niques are used in the bulk flow to accelerate convergence.

A. Bulk Flow Solution
Following Chorin5 and more recently Dreyer,7 the governing set

of incompressible flow equations may be written in vector form as

= 0 (3)

where the vector of dependent variables w and flux vectors /, g,
and h are given by

W = [\|/, U, V, W]T

f= [U, U2 + \|/, UV, UW]T

g = [v, VW, V 2 + \j/, VW]7

/* = [w, WM, wv, w2 + \j/]r

The preconditioning matrix P is given by

P =

r2 o o o
0 1 0 0
0 0 1 0
0 0 0 1

where F2 is called the artificial compressibility parameter due to
the analogy that may be drawn between the preceding equations
and the equations of motion for a compressible fluid whose equa-
tion of state is given by

Thus, p is an artificial density, and F may be referred to as an arti-
ficial sound speed. When the temporal derivatives tend to zero, the
set of equations satisfy precisely the incompressible Euler equa-
tions, with the consequence that the correct pressure may be estab-
lished using the artificial compressibility formulation. The precon-
ditioning matrix P may be viewed as a device to create a well-
posed system of hyperbolic equations that are to be integrated to
steady state along lines similar to the well-established compress-
ible flow FVM formulation.12 In addition, the artificial compress-
ibility parameter may be viewed as a relaxation parameter for the
pressure iteration. Note also that temporal derivatives are now
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denoted by t* to indicate pseudotime; the artificial compressibility,
as formulated in the present work, destroys time accuracy.

To demonstrate the effect of the preconditioning matrix on the
preceding set of equations and to establish the hyperbolicity of the
set, Eq. (3) may be written in quasilinear form to determine the
eigenvalues.6 The eigenvalues are found to be

where

and
U = wcoz

+ OX)

The wave number components co ,̂ coy, and coz are defined on -«> <
co ,̂ cOy, coz < +00. Since the eigenvalues are real for any value of (&x,
ay and coz, the system is hyperbolic.

The choice of F is crucial in determining the convergence and
stability properties of the numerical scheme. Typically, the con-
vergence rate of the scheme is dictated by the slowest system
waves and the stability of the scheme by the fastest. In the limit of
large F, the difference in wave speeds can be large. Although this
situation would presumably lead to a more accurate solution
through the penalty effect in the pressure equation, very small time
steps would be required to ensure stability. Conversely, for small
F, the difference in the maximum and minimum wave speeds may
be significantly reduced, but at the expense of accuracy. Thus a
compromise between the extremes is required. Following the work
of Dreyer, the choice for F is taken to be

where the summation is over the n faces surrounding V^.
In practice, the grid is body fitted and hence non-Cartesian. A

curvilinear transformation from the physical coordinate system to
the computational coordinate system defined by

*, y, z), T| = r| (x, y, z), = £ (x, y, z)

is incorporated leading to a modified approach to the flux evalua-
tion in the transformed space. The new approach becomes

where

= J{u,uu + Sx\|/, vu + £ \|/, wu

g = J { V, UV + r^\J/, VV + Tly\|/, WV + T|z\|/}

h = J { w, uw + ̂ \|/, vw + ̂ \|/, ww + £z\|/}

and A^ = Arj = A£ = 1 . The contravariant velocity components u ,
v , and w are given by

v = ur\x + vr\y + wr\z

where C is a constant of order unity. In regions of high velocity
and low pressure where suction occurs, F is large to improve accu-
racy, and in regions of lower velocity, F is correspondingly
reduced.

The choice of F also influences the outflow boundary condition,
or radiation condition. If it can be demonstrated that all system
eigenvalues are both real and positive, then downstream or outflow
boundary points may be extrapolated from the interior upstream
flow. Even though an examination of the eigenvalues reveals that
this can never be the case, the condition can be approached by a
judicious choice of F. If F is large, extrapolation fails because the
flow has both downstream and upstream dependence. As F is
reduced, the upstream dependence becomes more pronounced and
the downstream dependence is reduced. Eventually the upstream
dependence is sufficiently dominant to allow extrapolation. Hence,
all outflow variables are updated using zero gradient extrapolation.

Following the general procedures for FVM, the governing equa-
tions may be integrated over an arbitrary volume Q. Application of
the divergence theorem on the flux term integral yields

where Sx, Sy, and Sz are the directed areas in the x, y, and z direc-
tions, respectively. The computational domain is divided into
hexahedral cells. Application of FVM to each of the computational
cells results in the following system of ordinary differential equa-
tions,

The Jacobian of the transformation is denoted by / and ̂ , r\x . . .
are identified with the grid metrics. In practice, the terms /^, Jr\x
... , required in the flux terms, are identified with the projected
areas of each cell face. They are computed by taking the cross
product of the two vectors joining opposite corners of each cell
face in the body-fitted coordinate system. The physical variables
required in the transformed flux evaluation may be averaged on
each cell face through the four nodal values associated with each
face.

This scheme reduces to a second-order accurate, nondissipative
central difference approximation to the Euler equations on suffi-
ciently smooth grids. A central difference scheme permits odd-
even decoupling at adjacent nodes which may lead to oscillatory
solutions. To prevent this unphysical phenomena from occurring, a
dissipation term is added to the system of equations such that the
system now becomes

(4)- (Vtft*0 + P[Qijt (w) - Dijk (w)] = 0

For the present problem a third-order background dissipation term
is added. The dissipative term is constructed in such a manner that
the conservation form of the system of equations is preserved. The
dissipation has the form

(5)

where

Here, the volume Vijk is given by the summation of the eight cells
surrounding node i,j9 k and Qtjk(w) is defined as

and

(6)

Similar expressions may be written for the r| and £ directions with
5^, 5^, 8^ representing second difference central operators.

In Eq. (6), the dissipation coefficient a is a scaling factor, pro-
portional to the local wave speed. The actual form for the coeffi-
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cient is based on the spectral radius of the system and is given in
the £ direction as

where u is the contravariant velocity component and Sx, Sy, and Sz
are the directed face areas. Similar dissipation coefficients are used
for the Tj and £ components in Eq. (5). The 8 term is used to manu-
ally adjust the amount of dissipation.

Equation (4) is integrated in time by an explicit multistage
scheme. For each bulk flow time step, the grid, and thus Vijk, is
independent of time. Hence Eq. (4) can be written as

dr* (7)

where

The actual time step Ar is limited by the Courant number (CFL),
which states that the fastest waves in the system may not be
allowed to propagate farther than the smallest grid spacing over
the course of a time step. In this work, local time stepping is used

such that regions of large grid spacing are permitted to have rela-
tively larger time steps than regions of small grid spacing. Of
course the system wave speeds vary locally and must be taken into
account as well. The final local time step is thus computed as

(CFL) We

where Kijk is the sum of the spectral radii in the jc, y, and z direc-
tions. In regions of small grid spacing and/or regions of high char-
acteristic wave velocities, the time step will be smaller than else-
where.

The allowable Courant number may be increased by smoothing
the residuals at each stage using the following product form in
three dimensions

(1 - =R

where e^, e^, and £^ are smoothing coefficients and the 8e? T1? ^ are
central difference operators in computational coordinates. Each
residual Rijk is thus replaced by an average of itself and the neigh-
boring residuals.

Very rapid convergence to a steady state is achieved with the aid
of a multigrid procedure.. The idea behind the multigrid strategy is
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Fig. 2 Wigley parabolic hull wave profiles.
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Fig. 3 Wigley parabolic hull wave resistance history.

to accelerate the evolution of the system of equations on the fine
grid by introducing auxiliary calculations on a series of coarser
grids. The coarser grid calculations introduce larger scales and
larger time steps with the result that low-frequency error compo-
nents may be efficiently and rapidly damped out. Auxiliary grids
are introduced by doubling the grid spacing, and values of the flow
variables are transferred to a coarser grid by the rule

^2h=T2h^h

where the subscripts denote values of the grid spacing parameter
(i.e., h is the finest grid, 2/z, 4/z, ... are successively coarser grids)
and T2h,h is a transfer operator from a fine grid to a coarse grid. The
transfer operator picks flow variable data at alternate points to
define coarser grid data as well as the coarser grid itself. A forcing
term is then defined as

where R is the residual of the difference scheme. To update the so-
lution on the coarse grid, the multistage scheme is reformulated as

where R(q} is the residual of the qth stage. In the first stage, the
addition of P2h cancels R2h O(0)) and replaces it by I,Rh(wh\ with
the result that the evolution on the coarse grid is driven by the
residual on the fine grid. The result w^ now provides the initial
data for the next grid w^ and so on. Once the last grid has been
reached, the accumulated correction must be passed back through
successively finer grids. Assuming a three-grid scheme, let wfy
represent the final value of w4h. Then the correction for the next-
finer grid will be

where Ia>b is an interpolation operator from the coarse grid to the
next finer grid. The final result on the fine grid is obtained in the
same manner:

W^+) = w^m) +Ih 2h (W^ — W^)

The process may be performed on any number of successively
coarser grids. The only restriction in the present work being use of
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a structured grid whereby elements of the coarsest grid do not
overlap the ship hull. A three-level "W-cycle" is used in the present
work for each time step on the fine grid.12

The multigrid acceleration procedure is embedded in a grid
refinement procedure to further reduce the computer time required
to achieve steady-state solutions on finely resolved grids. In the
grid refinement procedure the flow equations are solved on coarse
grids in the early stages of the simulation. The coarse grids permit
large time steps, and the flowfield and the wave pattern evolve
quite rapidly. When the wave pattern approaches a steady state, the
grid is refined by doubling the number of grid points in all direc-
tions and the flow variables and free surface location are interpo-
lated onto the new grid. Computations then continue using the
finer grid with smaller time steps. The multigrid procedure is
applied at all stages of the grid refinement to accelerate the calcu-
lations on each grid in the sequence, producing a composite "full
multigrid" scheme which is extremely efficient.

B. Free Surface Solution
Both a kinematic and dynamic boundary condition must be

imposed at the free surface. For the fully nonlinear condition, the
free surface must move with the flow (i.e., up and down corre-
sponding to the wave height and location) and the boundary condi-
tions are applied on the distorted free surface. Equation (2) can be
cast in a form more amenable to numerical computations by intro-
ducing a curvilinear coordinate system that transforms the curved
free surface p(x, y) into computational coordinates p(£, T|). This
results in the following transformed kinematic condition

(8)

where U and V are contravariant velocity components given by

Fig. 5 Overhead view of wave elevation (or pressure \|/) contours, Fr
= 0.2670.

ary, a second-order centered stencil is used along the boundary tan-
gent and a first-order, one-sided difference stencil is used in the
boundary normal direction.

As was necessary in the FVM formulation for the bulk flow,
background dissipation must be added to prevent decoupling of the
solution. The method used to compute the dissipation terms bor-
rows from a two-dimensional FVM formulation and appears as
follows:

The free surface kinematic equation may now be expressed as

where

and

where Qi/(P) consists of the collection of velocity and spacial gra-
dient terms which result from the discretization of Eq. (8). Note
that this is not the result of a volume integration and thus the vol-
ume (or actually area) term does not appear in the residual as in the
FVM formulation. Throughout the interior of the (x, y) plane, all
derivatives are computed using the second-order centered differ-
ence stencil in computational coordinates £ and r|. On the bound-

The expression for a may be written as

where Utj is the unsealed contravariant velocity component
defined by

Fig. 4 Perspective view of wave elevation, Fr - 0.2670 (wave elevation
multiplied three times).

Hence the system of equations for the free surface is expressed as

dt* ij = 0

where

The time-stepping scheme defined by Eq. (7) is also used here.
Once the free surface update is accomplished, the pressure is
adjusted on the free surface such that

The free surface and the bulk flow solutions are coupled by first
computing the bulk flow at each time step, and then using the bulk
flow free surface velocities to calculate the movement of the free
surface. After the free surface elevation is updated, its new values
are used as a boundary condition for the pressure on the bulk flow
for the next time step. The entire iterative process, in which both
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Convergence History (Fr — 0.2500)
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Fig. 6 Convergence history.

the bulk flow and the free surface are updated at each time step, is
repeated until some measure of convergence is attained; usually a
steady-state wave profile and wave resistance coefficient.

Since the free surface is a material surface, the flow must be tan-
gent to it in the final steady state. During the iterations, however,
the flow is allowed to leak through the surface as the solution
evolves towards the steady state. This leakage, in effect, drives the
evolution equation. Suppose that at some stage, the vertical veloc-
ity component w is positive [cf. Eq. (2) or (8)]. Provided that the
other terms are small, this will force $n+l to be greater than (3n.
When the time step is complete, \\f is adjusted such that \\tn + l > xjA
Because the free surface has moved farther away from the original
undisturbed upstream elevation and the pressure correspondingly
increased, the velocity component w [or better still q • n where n =
VF/\VF\ and F = z - p (jc, v)] will then be reduced. This results in a
smaller Ap for the next time step. The same is true for a negative
vertical velocity, in which case there is mass leakage into the sys-
tem rather than out. Only when steady state has been reached is the
mass flux through the surface zero and tangency enforced. In fact,
the residual flux leakage could be used in addition to drag compo-
nents and pressure residuals as a measure of convergence to the
steady state.

IV. Results for the Wigley Parabolic Hull
To validate the method we have performed calculations on the

well-known Wigley parabolic hull, for which extensive experi-

mental data is available. Figure 2 shows the computed wave pro-
files, from bow to stern along the hull, compared with experiments
conducted at the University of Tokyo.14 The agreement with
experiment is extremely good. Wavelength, and the amplitudes at
all peaks and troughs, are in excellent agreement with experiment.
The only discrepancy noted is near the stern where separation and
eddy losses, albeit small, may be present in the experiments.

Figure 3 shows the computed wave drag vs the experimentally
determined wave drag as the simulation proceeds. The computed
wave drag is found by integrating the longitudinal component of
the static pressure over the wetted surface of the hull. The experi-
mental wave drag is inferred by subtracting an estimate of the fric-
tion drag from the total drag or by wave analysis. Note that the
computed wave drag is evaluated after each multigrid cycle and
hence the evolution of the drag is plotted vs the experimentally
determined steady-state wave drag (marked by the jc's). The capital -
letters C, M, and F refer to coarse, medium, and fine grids, respec-
tively, in the grid refinement procedure. For each Froude number,
the computed wave drag overpredicts the experimentally deter-
mined wave drag by a small amount. This overprediction may
arise from the comparison of viscous experiments with a purely
inviscid numerical scheme. It remains to incorporate the viscous
terms and make a more meaningful comparison of the wave drag
via Navier-Stokes calculations. Aside from the overprediction, the
computed steady-state wave drag follows the general trend pre-
dicted by the Michell theory; interference between bow and stern
wakes lead to oscillations in a wave drag vs ship velocity curve.16
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Fig. 7 Computed Bernoulli constant.
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Figure 4 shows a perspective view of the final distorted grid for
the case Fr = 0.2670 (the wave elevation has been magnified for
clarity). Figure 5 shows an overhead view of the wave elevation
contours p, or the free surface pressure contours \|/ = Fr~2(3, for the
same case. The divergent and transverse wave patterns, originating
from both bow and stern, are in excellent agreement with the pat-
terns predicted by the linear Kelvin theory17; the waves are con-
fined by straight line sectors of ±19.46 deg.

Figures 6 and 7 show convergence history of the pressure resid-
ual and computed free surface Bernoulli constant for various
Froude numbers as the simulation proceeds. The pressure residual,
computed by taking the root mean square of d\|//dr, provides an
important measure of the error in divergence of mass, as evident
from the continuity equation of the vector system 3:

As shown in Fig. 6, the computed residual is small implying that
Eq. (1) is nearly satisfied. It is probably the "leap frog" nature of
the iterative scheme that prevents the error from becoming
smaller; the bulk flow solution and free surface solution continu-
ally adjust each other, leading to minute oscillations in free surface
height and pressure (A(3 ~ 10~6). The Bernoulli constant B is com-
puted by summing all the free surface nodal values of

and dividing by the number of free surface nodes. This quantity
represents another measure of convergence of the scheme since it
is fairly constant and close to the expected value of zero.

A final comment with regard to convergence and accuracy is
that the information desired from the simulation, usually wave
drag, can be obtained in approximately 100 multigrid cycles on the
fine grid following the coarse- and medium-grid computations.
One can see from Figs. 3, 6, and 7 that the wave drag, pressure
residual, and Bernoulli constant change little beyond this point.
What will change is the continuing evolution of the downstream
wave profile, but this evolution has little effect on the computed
drag once the profile near the ship hull has been established.

V. Conclusions
The objective of the present work was to develop an accurate

and efficient method to compute incompressible Euler solutions
for the nonlinear ship wave problem. The results for the Wigley
hull validate the method for the range of test cases examined. The
wave elevations predicted by the numerical simulations are in
excellent agreement with the experimental measurements. The
computed wave drag is in good agreement with the wave drag
inferred from the experimental results.

The computational time for the simulations is approximately
10 h for the Euler calculations on the Wigley hull. These simula-
tions consist of 100 steps on a 49 X 13 X 13 grid, 200 steps on a
97 X 25 X 25 grid, and 200 steps on a 193 X 49 X 49 grid. The
CPU time was recorded in calculations using a single-processor
Convex 3400 computer with 64-bit arithmetic. For the given reso-
lution the run times appear to represent about a tenfold decrease in
the CPU times reported in the earlier literature, which have usually
been presented for coarser grids. The CPU time required for the
free surface update and regriding procedures was approximately
7% of that required for the bulk flow calculations.

We plan to extend the method to include viscous fluxes and a
turbulence model. In addition to allowing the prediction of the fric-
tion drag, these improvements may also facilitate more accurate

comparisons of the wave drag with experimental results. A status
report may be found in Ref. 18. We also intend to simulate an
actual sailing yacht with attached keel at a nonzero angle of attack.
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