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Abstract 

A computer program has been developed to 
calculate inviscid transonic flow over a swept wing 
in a wind tunnel with specified normal flow at the 
walls. An approximately orthogonal computational 
grid which conforms to the wing and the tunnel 
walls was developed for application of the Jameson- 
Caughey finite volume algorithm. 
the full potential equations in fully conservative 
form using line relaxation. This program is to be 
used in place of the wind tunnel for preliminary 
studies of the adaptive wall concept for three 
dimensional configurations. It can also be used to 
assess the magnitude of wall interference in a 
conventional tunnel. 

Introduction 

The code solves 

It is possible to simulate free air flow about 
a wind tunnel model by controlling inflow and out- 
flow through parous or  slotted tunnel walls. 
correct normal flow distribution changes with model 
configuration, angle of attack and Mach number and 
is not known apriori. It has been proposed by Ferri 
and Barontil and by Sears2 to match the flow field 
provided by the tunnel to a computed flow field 
beyond the tunnel walls by an iterative adjustment 
of the boundary conditions at the interface of 
these two regions. This wedding of the wind tunnel 
and the computer eliminates the major problems 
associated with using either of these tools by 
itself, namely the incorrect flow constraints of 
the tunnel walls, and the inaccuracy andlor the 
expense of near field flow calculation, partic- 
ularly for transonic flow and separated flow. 

The 

i/ 

A typical iterative procedure for matching 
the inner flow solution supplied by the wind 
tunnel to the outer flow solution supplied by 
computer calculation is illustrated in Figure 1. 

The pressure is measured at or near the tunnel 
walls with the current wall normal flow velocity 
distribution. This pressure distribution is used 
for the boundary condition for the outer flow 
solution which provides an updated wall normal 
flow to close the iteration loop. Other iterative 
procedures are possible. The iteration could be 
made in the direction opposite to that shown in 
Figure 1. One alternative has been proposed using 
a laser velocimeter to measure the normal velocity 
on two surfaces. One surface is used to provide a 
boundary condition for the outer flow calculation. 
Another surface, farther removed from the model, 
is used for the matching of the tunnel flow with 
the outer calculation. 

The Arnold Engineering Development Center is 
sponsoring a preliminary investigation of the adap- 
tive wall wind tunnel concept to answer questions 
about plenum compartmentalization required for wall 
normal flow distribution, sensitivity to pressure 
measurements, iteration variables, convergence, and 
other considerations. In order to make this inves- 
tigation without actually building an adaptive wind 
tunnel, the tunnel flow shown in Figure 1 will be 
replaced by a computer calculation of that flow, 
and it is this part of the project that is the 
subject of this paper. Although it is not possible 
to model all the phenomena involved with transonic 
flaw over B wing, the code developed will handle 
the dominate inviscid effects for large flow per- 
turbations. In addition, the code developed can be 
used to assess the severity of wall interference in 
a conventional tunnel. Such calculations could be 
used as a basis for correcting wind tunnel data. 
This technique would be very useful in the tran- 
sonic regime where conventional wall correction 
methods fail. 

Wind Tunnel Code 

The code developed for the tunnel flow solu- 
tion is based on the finite volume method of 
Jameson and Caughey.3 
potential equation with “on-linear boundary condi- 
tions using fully conservative differencing. One 

The code solves the full 
TUNNEL 1 FLOW I 

great advantage of this method is that the grid 
generation scheme can be treated independently from 
the numerical algorithm. This allows considerable 

atwalls MAY BE REVERSED atwalls generated, the equation solver deals directly with 
Normal Flow DIRECTION OF ITERATION Pressure freedom in selecting the grid. Once the grid is 

h r? the corner mints of the mesh. No analytical ,/I mapping of ;he differential equation is-necessary. \l 
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CALCULATION 

Governing Equations and Boundary Conditions 
V 

We assume that vorticity senerated by shock . -  
waves can be ignored so that the velocity (u,v,w) 
is the gradient of the potential 0 L 

Figure 1. Iterative Matching of the Inner 
and Outer Flows. 
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Conservation of mass requires 

where the density is given by 

( 4 )  
2 2  2 q = "  + " 2 + W  

Discontinuities in velocity across surfaces are 
allowed provided the following shock jump conditions 
apply: 

(a )  Continuity of $ , implying continuity of the 
tangential velocity component. 

(b) Conrinuity of pun , where un is the com- 
ponent of velocity normal to the discontinuity 
surface. 

Increase of density across the discontinuity 
surface in the direction of flow. 

( c )  

l'wo types of tunnel wall boundary conditions 
are considered: 

Case A - Normal Velocity 
on Tunnel Wall 

Prescribed 

The Neumann type of boundary condition on 4 at 
the tunnel wall is equivalent to specification 
of the normal velocity according to 

(5) = -  a+ a n  

Case B 
~ 

Pressure Prescribed 
on the Tunnel Wall 

The Dirichlet type of boundary condition an  $ 
at the tunnel wall is equivalent to specifica- 
tion of the pressure coefficient, Cp, at the 
wall according to the small perturbation 
relation 

The exact relation between the pressure and 
velocity is more complex than Equation (6). 
However, for this application, the small 
perturbation assumption should be sufficient at 
the wall location, and it provides a convenient 
simplification. Equations ( 6 )  and (7) assume 
the choice for Cartesian axes given in 
Figure 2 .  

The boundary conditions used for the upstream 
and downstream boundaries of the calculation region 
are 

Upstream: ax = u = U, (8) 

- 
Figure 2. Cartesian Coordinates Chosen. 

Downstream: 2 = u = U, + 6u ( 9 )  

6u = - pvn dS (10) 

tunnel 
Walls 

p 

A = tunnel cross-sectional area 
at downstream boundary 

= density at downstream boundary d 

v = normal velocity at wall (positive into tunnel) 
W 

At the downstream boundary, the increment 6u over 
freestream, velocity U, assures conservation of 
mass. 

Mesh Generation 

One of the principal advantages of the finite 
volume method of Jameson and Caughey,3 which was 
applied to the wind tunnel flow problem at hand, is 
that transformation to boundary conforming coordi- 
nates is defined by a table of grid points, rather 
than by mapping functions. Thus, many and complex 
sequential mapping functions may be used to gen- 
erate these grid points, but once generated these 
functions are discarded, and three-dimensional 
linear interpolation in the transformed space, is 
used when coordinate values are needed at other 
than grid points. Similarly, scalar fields needed 
for the numerical calculation (e.g., the velocity 
potential) a r e  defined by their values at the grid 
points and tri-linear variation in the transformed 
space is assumed between grid points. 

The mapping from x, y, z physical space to 
the X, Y, 2 computational space that was developed 
for the flow about a swept wing in a wind tunnel 
will now be defined. Although the description 
involves a number of sequential mappings, it should 
be remembered that the final product needed for the 
numerical solution is a table of grid points. For 
the physical space, Cartesian axe8 are chosen (as 
shown in Figure 2) such that the x-axis is in the 
direction of the undisturbed flow and the z-axis is 
in the spanwise direction of the wing. 

LJ 
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The mapping in z is uniform in the region 
between the centerline and the tip and is a 
stretching in the region beyond the tip as illus- 
trated in Figure 3. For purposes of grid genera- 
tion, the wing planform is extended to the tunnel 
wall as shown in Figure 3 .  c 

Grid is Perpendicular to Wall' 

Figure 3. Z Grid Planes and Extension of Planform fa1 
Grid Generation. 

Removes Wing Sweep and Scales x According to 
the Mean y Dimensional Scale 

Places Origin of Coordinate System at Reference 
Point an Model 

0 y = ay' + bye2 
Moves Model to Center of Tunnel and Scales Dimension 
sothattheTunneiWallsareat f n 

There remains the task of obtaining a two- 
dimensional boundary conforming coordinate system 
for a physical x - y cut. The procedure is 
similar to that outlined by Caughey and Jameson.4 
After a shift in origin to the center of curvature 
of the airfoil nose, and an appropriate scaling in 
x , a quadratic distortion in y is chosen such 
that values for the upper and lower tunnel walls 
are 71 and -?I respectively (see Figure 4 ) .  Next 
an intermediate mapping is applied: 

- 
x + iy = log [l-cosh(& + iq)] - log 2 (11) 

This mapping allows unwrapping the domain about an 
arbitrarily chosen slit line emanating from the 
origin such that the upper and lower tunnel walls 
become the lower boundary 11 = 0 , upstream in- 
finity becomes the origin, and the two sides of the 
slit plus the airfoil become the upper boundary 
(located near q = n) as illustrated in Figure 5 
(b) and (c) .  This slit line is chosen to pass thru 
the trailing edge thus eliminating an acute angle 
on the transformed boundary. It is also convenient 
to make this slit coincide with the location of the 
shed vorticity sheet which is assumed to be tangent 
to the trailing edge bisector at the trailing edge 
and parallel to the tunnel wall far downstream. 

Finally, the computational domain with a 
coordinate conforming upper boundary ( s e e  Figure 
5d) is obtained by stretching the ordinate accord- 
ing to 

Y =  n I (12) 
q upper 

An example of the result of these sequential 
mappings is the computer generated mesh shown in 
Figure 6 .  

Numerical Method 

Details of the finite volume method are kiven 
in reference 3. The method is summarized in the 
following. 

The grid in computational space divides the 
space into cubical cells. This leads to simple 
difference schemes for the numerical analysis. It 
can be shown that in terms of quantities associated 
with computational space, the divergence of the 
mass flux vector is given by 

ui = physical velocity components 
U = contravariant velocity components 

xi = physical coordinates 
X = transformed coordinates 

h = determinant of the transformation matrix. 

i 

i 

Also it can be shown that 

Figure 4. Origin Shift X Scaling. and 
Y Distortion. 
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Figure 6. A Computer Plot of the Boundary 
Conforming Coordinates. 

where gi3 is the inverse of the metric tensor of 
the transformation. Thus to Satisfy the governing 
equation, Eq. (Z) ,  the finite volume algorithm uses 
an iterative procedure to make the right hand side 
of Eq. (13) approach zero. 

The Steps for one iteration for the algorithm 
are listed below. 

(1) Using the current values for c$ , the contra- 
variant velocity Ui is computed using a 
difference scheme for Eq.  (14).  

( 2 )  The density is computed from Eq. ( 3 ) .  
( 3 )  The divergence of the mass flux vector is 

computed at each grid point according to 
Eq. (13) using a box difference scheme on a set 
of secondary cells nested in the primary set. 

( 4 )  Additional terms are added to the divergence 
to obtain an artificial viscosity, to offset 
certain lumping errors, and to embed the steady 
state equation in a convergent time dependent 
process (the iteration) which evolves to the 
solution (see reference 3 for details). 

as to reduce the divergence to zero us ing  
successive line over-relaxation. 

The numerical solution initially gives the 

(5)  New grid point values for c$ are calculated so 

values of 0 at the grid points. The velocity is 
then calculated as fallows. Since gradients are 
easily evaluated in the computational plane, Eq. (1) 
is first reformulated using the chain rule to obtain 

The grid point values of the velocity are calcu- 
lated according to Eq. (15) by central differencing 
and are interpolated linearly in computational 
space to obtain the velocity at any point desired. 

W 

v 
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_- Exa-Calculations and Code Validation 

Various example calculations are presented, 
including those made for comparison with experi- 
mental and other theoretical results. All of the 
comparisons with experimental data are for insig- 
nificant wall effects. No three dimensional 
experimental results with significant wall effects 
and known wall boundary conditions were found to 
compare with calculations. 
to properly treat the tunnel wall boundary condi- 
tion was checked out using the results of other 
theoretical methods. These methods are two- 
dimensional so that the code calculations are made 
with unswept wings that span the tunnel. 

c 

The ability of the code 

Comparison with an exact incompressible poten- 
tial flaw calculation is presented in Figure 7 for 
a Karman-Trefftz airfoil in a tunnel. The exact 
solution was Obtained by calculating the free-air 
flow about the airfoil using analytical procedures. 
The normal component of velocity was calculated 
along a line parallel to the free stream and above 
the airfoil as the upper tunnel wall boundary 
condition for the finite volume method computer 
calculation and similarly for the lower wall. The 
agreement at the airfoil surface and at field 
points given in Figure 7 is excellent. Field point 

Analytic Solution 
e Finite Volume Calculation 

-0.21 

v cp 0.0 k&3iy 
..*I 1 

181 Surface Pressure Dlstrlbutlon 

Field Point, 
Analytic Solution - 

e Finite Volume Calculation 

ulU, or vIU, 

lbl Field Point Velocltlea Along X = 0 

Figure 7. Incompressible Potential Flow about a 
Karman Tretfu Alrfoll. 

comparison along a line going to the leading edge 
was chosen to illustrate the accuracy of the 
calculations where the errors would be most no- 
ticeable. Maximum descretization error for the 
finite volume method is expected near the leading 
edge where velocity gradients are largest. This 
comparison provides a validation for proper treat- 
ment of wall boundary conditions and for calcula- 
tion of field point velocities. 

To provide a transonic check case with tunnel 
walls, we calculated the two-dimensional flow about 
an NACA 0012 airfoil at a Mach numbeP of 0.8 with 
solid tunnel walls (no normal flow) four chord 
lengths apart. 
finite volume method to the small disturbance 
method described by Murman. Bailey, and J~hnson.~ 
Here again the agreeinen: is quite good. The pres- 
sure levels are very close and the shock positions 
are within one grid spacing. 
equation shack position is slightly upstream of the 
small disturbance equation. 
tions are expected due to the differences in the 
two equations being solved. 

Figure 8 shows a comparison of the 

The full potential 

These relative posi- 

I 
NACA 0012 
e h = 4 c  
i- c - 1  

I """'"-"-- 

2-D Codes / 

0.5 
I cp' 

I 
I 

Finite Volume \ 
7 !-I, 

Grid Spacing 

0.5 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figures. Calculation of theTransonlcFlow about 
an NACA 0072 Alrfoll In the Wind Tunnel 

In order to validate the code's treatment of 
the downstream boundary condition according to 
Equation 9, the tunnel flow problem of Figure 8 was 
repeated with normal flow at the wall. The field 
point velocities and densities calculated at the 
downstream boundary were found to satisfy Equa- 
tion 9. 

Three-dimensional transonic calculations were 
made far the ONERA Wing M6 for which experimental 
data are given in Reference 6 for a slotted wall 
tunnel that was simulating the free air case. The 
comparison is shorn in Figure 9 .  The calculation 
was repeated for solid tunnel walls. The effect is 
shown in Figure 10. No comparison with experiment 
is available for this calculation. 

Discussion and Conclusions 

A computer code for a wing in a transonic wind 
tunnel has been developed which can be used to 
evaluate active wall control configurations. 

5 



- 1.20 

-0.80 

CP 

C P * d  
-0.40 

0.00 

0.40 

0.80 

_--- __ Theory 
0 0 Experiment 

- 

- 

- 

- 

- 

- 

- 

Mach = 0.84 - 

- 
ONERA Wing M6 

(Reference 6)  

Figure 9. Finitevolume Method and WindTunnel 
Results forlransonic Flow about a Swept 
Wing in Free Air. 

Currently the code can treat arbitrary wall normal 
flow boundary conditions. Comparisons of the code 
with analytical and numerical results have proven 
its B C C U ~ ~ C ~ .  Comparisons with wind tunnel data 
have been limited to cases with insignificant wall 
effects because of a lack of appropriate data. 
Effort is currently being directed to gather appro- 
priate experimental data to further check the code 
with wall interference. 

The output from the code provides pressures, 
velocities and local Mach numbers on the wing and at 
any points in the flow field specified by the user. 
This feature allows for flexibility in checking 
various active wall control convergence algorithms. 
For example, measurements on surfaces inside the 
physical walls can be simulated. 

Future work will be devoted to further verify 
the code and extend its modeling capability to 
include wing-bodies. Also, pressure boundary 
conditions for the wall will be included. This 
latter change should allow the code to model all of 
the wall control algorithms currently under 
consideration. 
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