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Abstract,

An efficient numerical method for solution of the
two- and threedimensional transonic Euler equations
has been used to compute the flow over airfoils,
wings and wing-body combinations. For two-dimen-
sjonal flow the Euler equation code has been coup-
led with an inverse boundary layer integral method
to compute viscous flow over transonic airfoils with
shocks. A1l Euler methods are using the same mesh
systems (0- or C-Type) as well established full
potential codes which can optionally also provide
initial solutions. This allows for detailed compa-
risons with the full potential salutions. Results
are discussed in detail for 1ifting and nonlifting
airfoils as well as the DFVLR-F4 transonic trans-
port configuration.
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I. Introduction

While potential flow solutions have proved ex-
tremely useful for predicting transonic two- and
threedimensional flows with shocks of moderate
strength, e.g. see Ref. 1-3 typical of cruising
flight of transport and some class of fighter air-
craft, the approximation of ignoring entropy chan-
ges and vorticity production cannot be expected to
give acceptable accuracy when the flight speed is
increased into the upper transonic range. More im-
portant, however, than the change in pressure rise
for a shock as pointed out by Lock* seem to be the
effects on 1ifting flows due to the assumptions
inherent to the Kutta condition in potential flow
theory. One part of this paper will study- this
effect in detail.

Methods available for simulating transonic viscous
flow over airfoils are either Navier-Stokes me-
thods, e.g. Ref. 5, or inviscid methods coupled
with boundary-layer solutions. Whereas the Navier
Stokes equations properly describe interacting
flows, these equations are presently restricted




from routine use because of computer requirements
and Jack in physical understanding. Inviscid flow
boundary layer coupling metheds on the other hand
require less cdmputer resourcas, but these methods
have been developed for irrotational inviscid flow
and usually attached boundary layers, see Ref. 4,
6, 7. In the present paper the Euler equation sol-
ver allowing for rotational inviscid flow is coup-
led with an inverse integral boundary layer method
to allow for attached or separated bbundary layers,
thus avoiding problems in dealing with strong
shocks as reported by Lock*.

The third part of the paper deals with three-di-
mensional wing and wing-body flow. Presently only
potential flow solvers are in use based on the TSP
or full potential solution. Ref. 8 presents an in-
teresting review comparing different methods with
éxperimenta] data. However, all methods exhibit

the need for an added vortex sheet as disconuity
surface. Since the introduced jumps in potential
are confined to be constant along y = const lines
rather than streamiines, those methods exhibit
wrong physical models near the wing tip or for small
aspect ratio wings. These problems can be overcome
by solving the full Euler equations in conserva-
tion form since this will capture discontinuities
and no vortex sheets have to be added explicitly.

Based on previous experiences on airfoil, inlet and
wing computations the finite volume approach as
introduced by MacCormack? has been chosen. Recent
efforts, however, to improve the efficiency have
led to a new multi-stage, two-level scheme which
is described in detail in an other paper of the
present conferencel?. The Euler codes based on
these schemes operate on 0- or C-meshes provided
by existing full potential solvers. Since the same
mesh is being used, this allows for direct compa-
risons between full potential and Euler solution,
moreover, the full potential solution can be used
as starting solution fcr the Euler solver.

Presently, the methods have been applied to 1ift-
ing and nonlifting airfoils, cascades, wings, winé-
body combinations and inlets. In the present paper
detailed comparisons are given for 1ifting and
nonlifting airfoils as well as the DFVLR-F4 wing-
body combination which is a standard test case in

GARTEuUr AGOl. Special attention is given the effect
of separation in inviscid compressible flow as
studied on the circular cylinder. Most cases have
been run on an I[BM 3031, the codes, however have
also been tested on CDC 6600, CYBER 203 and

CRAY 1 machines.

I1. Euler Equation Method

The numerical methad used to solve the time-de-
pendent Euler equations is described in detail

in Ref. 10. The version used in all airfoil cases
and for the wing-body configuration is the un-
split three-stage two-level scheme with total
enthalpy constant and local time step. The Cour-
ant number is always set equal to two. The basic
time stepping scheme is followed by a filter at
each time step which introducas an effective arti-
ficial viscosity. Only for the present cylinder
fTow solutions the four-stage two-level scheme with
an enthalpy-forcing term and the additional dissi-
pative term as described in Ref. 10 has been used
to guarantee highly converged and accurate solu-
tions. The far field boundary conditions are non-
reflecting and allow either for sub- or supersonic
free stream Mach numbers. A1l solid surfaces have
no flux boundary conditions, the wall pressure
being extrapolated from the field. For viscous si-
mulations the flux through the wall is given by
the source velocity equivalent to the boundary
layer displacement thickness.

[II. Inverse Boundary Layer Method

The singularity associated with boundary-layer com-
putations at separation is avoided by using an
inverse boundary-layer calculation method. By
specifying, for example, the displacement thick-
ness distribution instead of the pressure dis-
tribution (a so-called inverse method) this sin-
gularity is removed!! and boundary-layer computa-
tions can proceed throughout separated regions.
The inverse method used here is the mean-flow
kinetic energy integral method described in

Ref. 12. This method is based on turbulent boun-
dary-layer velocity profiles that describe separa-
ted or attached flow. The same calculation scheme




is used whether the flow is attached or separated
and hence no switching or artificial fix is re-
quired for points near separation. The dissipation
integral is evaluated at each streamwise location
using the velocity profiles and the Cebeci-Smith
algebraic eddy viscosity model.

In an inverse boundary-layer method, pressure is a
dependent variable, and in the particular inverse
method used here the displacement thickness (&%)
distribution is specified. The method used to pro-
_vide a rational,a priori, specification of the &*
distribution is the method of Carter!3,
method can be written as

Carter's
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obtained from the last boundary-layer solution,

|a|w,i is the magnitude of the local velocity vec-
tor obtained from the last Euler equation solution,

and w is the relaxation parameter.

Figure 1 illustrates that Eq.
with an inverse method to solve a conventional
attached flow boundary-layer problem (albeit an

(1) can also be used

increasingly adverse pressure gradient flow)
with known pressure distribution. For such a prob-
lem, the known pressure distribution is used to
determine the velocity distribution which corres-
ponds to lalw,i in Eq. (1).
la'w,i would, of course, remain fixed at each
streamwise location and Eq. (1), with ue,v updated
after each inverse boundary-layer solution, is
used to obtain the converged §* distribution.
Figure 1 illustrates that the inverse method, with
. (1) used for updating &%, provides essentially
the same result as the direct method after about

In this case the term

4 iterations with w = 2 and the initial &* distri-
bution being that for a flat plate. Therefore,
although a direct method is faster than an inverse
method for attached flow because iteration is not
required, a direct method is not required.

IV. Viscid-Inviscid Coupling

The method used to achieve viscid-inviscid coupling
is the surface source model (or the method of
equivalent sources of Lighthil1l%). This method has
an advantage over the effective displacement sur-
face approach in that a surface source mass flux
is imposed as a boundary condition in the inviscid
calculation at the physical body surface or in the
wake, and hence mesh adjustment dufing the itera-
tion process is not required. The surface source
mass flux, (pv)n, imposed at the physical surface
is given by
-+
(o), - ael) (2)

where (pv)n is the 1oéa1‘hass flux normal to the
surface. The right hand side of £q. (2) is evalua-
ted after each inverse boundary-layer solution to

determine (pv)n for subsequent inviscid calcula-

The viscid-inviscid interaction calculation scheme
proceeds in the following steps.

1. The Euler equation solutions is advanced 20
to 50 cycles with (pv)n H

An inverse boundary-layer solution is obtain-
ed with 6 *(1) given by Eq. (1), where § *(0)
is a flat plate distribution, Ue,v is con-
stant at the free-stream value {u_), and
Ialw,i js obtained from the last cycle of

the Euler equation solution.

3. The Euler equation solution is advanced 20
to 50 cycles with (pv)n held fixed at the
value given by Eq. (2).

4, An inverse boundary-layer solutions is ob-
*
tained with § (m+1) given by Eq. (1).

5. Steps 3 and 4 are repeated until convergence
on §* or cp (surface pressure coefficient)

is obtained.

The number of cycles the Euler equation solution
is advanced in steps 1 and 3 depends upon the
problem. For example, if strong shocks form in
the early cycles of the Euler equation solution

and if over relaxation is used, like w = 2, it can




be advantageous to call the inverse boundary-~layer
solution after only a few cycles. It is possible to
obtain a converged viscid-inviscid interaction
solution in fewer cycles than required to obtain

a converged inviscid solution due to.a weaker shock
resulting from the inclusion of viscous effects.
However, most solutions presented were cycled 1.5
to 2 times the number of cycles reguired for a pu-
rely inviscid solution.

V. Mesh Generation

Two- and three-dimensional contour-conformal grids
are constructed using standard 0- or C-type proce-
dures. Since the mesh generation has been separa-
ted from the Euler solver, any mesh can be used,
as long as the @ or C-logics are not violated,
because they will influence the lines or surfaces
where boundary conditions have to be provided. In
the present paper parabolic caordinates are used as
C-type mesh and a mapping to a near circle as 0-
tpye mesh. For three-dimensional wings parabolic
coordinates are used in constant spanwise stations
while for arbitrary wingbody combinations a Thomp=
son-type mesh generator has been adapted based on
the concept of YulS,

Standard meshes for two-dimensional studies have
been 128x32 for the O-type and 121x30 for the C-
type. Special attention has been given to the 0-
type mesh since it allows for a very dense spacing
at the trailing edge, thus allowing studies of the
trailing edge behaviour. For viscous flows, how-
ever, the C-type mesh seems to be favourable since
it allows for a dense spacing of the wake region.
The mesh at the trailing edge and the near wake is
almost, resp. easily can be, adjusted to the stream-
lines, which will provide a good capturing of dis- -
continuities.

Standard meshes for three-dimensional studies up to
now have been 40x8x8 and 80x16x16, since the whole
computation is being done in core. Standard mesh for
runs on the CRAY will be 120x24x24.

Mesh refinement techniques can easily be adapted,
however have not been used in the present study be-
cause of the use of full potential methods to pro-
vide starting solutions. '

VI. Kutta Condition

In two-dimensional Tifting inviscid isentropic
flows a Kutta condition has to be specified at the
trailing edge which generally is implemented in
computational methods as static pressure to be
equal at both upper and lower surface trailing
edge. Since in potential flow total pressure is
constant everywhere this condition will force the
total velocity on both sides to be zero for non
zero trailing edge angle and equal and finite for
zero-trailing edge angle.

In rotational flow, e.g. transonic flow with a
shock on the upper surface, the total pressure be-
hind the shock on the upper surface is smaller than
on the lower surface cdr?esponding paint, thus for-
cing a difference in total velocity for constant
static pressure. This enforces the inviscid flaw to
Jeave at the trailing edge and to be single valued
since no solution with iai # 0 on the smooth upper
or lower surface is possible. The only possible
solution is the one depicted on Fig. 2 where the
flow will Teave the surface with the higher total
pressure smoothly and a slip line is formed. In
compressible flows without shocks again only the
one solution with |§] = 0 at the trailing edge and
a flow leaving in the bisector direction is pos-
sible. This is due to the fact that any flow around
the trailing edge would cause expansion to M + =
which has to be terminated by a shock if the flow
will leave the upper surface (Fig. 2). Again, this
would cause two different tangential velocities at
both sides of the fictitious Kutta-point which is
impossible.

To study these effects for smooth round trailing
edges, some numerical experiment§ on a circular cy-
linder have been performed initiated by South and
Salasl6 who found similar results. The results
shown in Fig. 3-5 have been achieved in a 34x32 0-
mesh for a half-cylinder using the four stage two
level scheme.

Fig. 3 partrayes nicely the results for M_ = 0.20
in pressure distribution solving the full potential
equation and the Euler equations. Both salutions
are fully converged to a residual of 107'% and both
agree completely. For M_ = 0.50 Fig. 4 shows quite
different results. While the highly converged full




p@tential solutions gives a very strong shock and
stagnation is reached with the corrects static pres-
sure and q = Q at the rear stagnation point. The
Euler solutions indicates only minor differences at
the forward part of the cylinder, shock position

as well as pressure alread and behind the shock,
however, differ quite a lot from the full potential
solution. Most surprisingly, starting from

.75 < 2x/DL.80 the static pressure from the Euler
solution is constant and almost equal to cp = 0.
Fig. 5 clarifies the results by presenting the di-
rection of the local velocity vectors (length is
scaled to the cell dimension!). The flow separates
from the smooth surfaces and forms a recirculating
"dead air"-region with very small velocities

(3 < .01 U_). It is interesting that the well known
phenomena of nearly constant pressure in such a
dead air region is computed by the present method
without specifying anything specifically about this
region. Although inviscid separation sounds strange
for the first moment, it can be proven to be cor-
rect. The reason for this separation is total pres-
sure loss by a shock rather than a boundary layer,
however the consequences are similar since the

flow due ta the total pressure loss does not have
enough kinetic energy to stagnate at the rear stag-
nation point. A possible potential flow model for
this flow would be one containing free line vorti-
ces due to Crocco's law in addition to the doubled
and parallel flow. However, it should be noted,
that this separation point can be found to be al-
ways behind the one known from viscous flow analy-
sis. It can be seen as a limit forlRe + = {n com-
pressible flow if total pressure losses are appa-
rent. This production of a vortex behind the cylin-
der can be also explained by other studies done on
flow angularity. If a rotational anset flow has to
pass a curved streamtube it is well known that un-
der certain circumstances vortices with an axis
normal to the flow can occur.

Since these examples indicate the basis capabili-
ties of inviscid flow computations with the full
Euler equations, the treatment of wakes in three-
dimensional flow will only be mentioned briefly. All
Kutta-conditions pertinent to the problem in con-
sideration will show up automatically. Since the
method is written in full conservation form, also
discontinuities like shocks and wakes are captured

properly. As known from supersonic flow studies,
the accuracy can be improved by mesh alignment,
which recommends to use a C-type mesh for wings
since this will allow easily for wake-alignment.

VII. Results

The efficiency and accuracy of the Euler solver has
been confirmed by numerical experiments. Some typical
results are presented here. One nonlifting result is
shown in Fig..6 for the NACA 0012 airfoil at M=0.85.
In a 64x32 0-Mesh for the half-plane the highly con-
verged full potential solution using MAD and the
Euler solution show 8% chord difference in shock
position , the pressure jump is smaller as expected
from the Rankine-Hugoniot condition, and the trailing
edge pressure is reduced due to the total pressure
loss. This Euler resuTt Used the full potential
solution as initial solution and-cp‘was converged
after 300 cycles with a Courant number of 2 . Typical
convergence characteristics for a similar case star-
ting from scratch are depicted on Fig. 7 . Convergence
behaviour is very smooth. Fig.8 shows corresponding
results for a supersonic free stream Mach number ,
demonstrating the flexibility of the present method.

Fig.9 portrayes the comparison for 1ifting flow over
the NACA 0012 airfoil using a 128x32 0-Mesh. Again,
the full potential MAQ-solution has been used as
starting solution for the Euler solver. 500 Euler
cycles with CFL=2 gave the converged solution. This
time, not only the shock strength and position are
different, but the complete pressure distribution.
Lift and drag and moment coefficiénts deviate largly.
Trailing edge pressure again is slightly reduced.

The difference in 1ift can be explained as effect
coming from the trailing edge Euler solution which
does not need any explicit Kutta condition.Since
there exists a total pressure loss on the upper sur-
face, the flow is leaving the lower surface smoothly
which corresponds to a small flap deflected upwards
in potential flow. It should be mentioned that the
Euler solver gave the same converged solution if the
nonlifting full potential solution for this angle of
attack was used having a flow around the trailing
edge.

Further 1ifting results are not given in the present

paper, since the next section will deal with airfoil
results viscous effects included.




The experimental data of Cook, McDonald, and
Firminl7 include surface pressure and boundary-
layer information for transonic flow about the RAE
2822 airfoil. Two sets of experimental data, deno-
ted as Cases 6 and 9 in Ref. 17, are considered.
Unfortunately these data, as all available trans-
onic airfoil data, are not.interference free. The
values of Mach number and angle of attack corres-
ponding to experimental (wind tunnel) conditions
were

Case 6 Case 9
M_ =0.725 M_ = 0.730
e =2,92° a =3.19°

-

and the corrected Mach rumber and angle of attack
values used for the present inviscid and viscid-
inviscid interaction calculations were

Case 6 Case 9

Mw,corr b 0.729 Ma,corr = 0,734
- 0 . _ 0

S opr 2.44 Sopr = 2.67

The Reynolds number based on chord was 6.5 x 108
for both cases. -

Comparisons of calculated and measured surface
pressure data are given in Figs.10 and 11.The

Mach number correction of 0.004 was that used by
Lock* to aobtain agreement between calculated and
measured lower surface pressure distributions using
a potential flow code for the inviscid flow. How-
ever, note in Figs.10 and 11that the lower surface
agreement obtained here using this Mach number cor-
rection is not good. The corrected angle of attacks
were determined by the information provided by Caook,
McDonald, and Firmin!7. The calculated shock loca-
tion using the corrected angle of attack is close

to the experimental shock location for Case 9 in
Fig.ll ,but the calculated shock location for Case 6
in Fig.101is about 3 percent chord forward of the
experimental shock location. Adjustments in Mach
number and angle of attack to match surface pressure
distributions and hence 1ift cosfficients were not
made.

Comparisons of calculated and measured boundary-
layer data are given in Figs.12-14.The calculated

boundary-layer displacement thickness (§%/c) and
momentum thickness (a/c) distributions are slightly
above the experimental data over the aft portion
of the airfoil for Case 6 in Fig.12 However, the
calculated shock Taocation is slightly forward of

the experimental shock location as mentioned above,
which may contribute to this difference. The cal-
culated Ces §*/c, and 8/c distributions for the
stronger shock case in Fig. 13 are in good agreement
with the experimental data, even in the shock-boun-
dary-layer interaction region. A more detailed com-
parison of calculated and measured data throughout
the shock region and at the trailing edge is given
in Fig. 14 by boundary-layer velocity profile com=
parisans. The agreement between calculated and mea-
sured data in Fig. 14 “is considered good. Calcula-
ted distributions of the source velocity (pv),, are
included in Figs. 12and 13. This term becomes signi-
ficant in, and downstream, of the shock with large

nositive values occurring in the shock region and

at the trailing edge. The source velocity becomes
negative in the wake and reaches a minimum just aft
of the trailing edge.

Finally, the capabilities of the present Euler method
to solve the three-dimensional transonic or supersanic.
flow over wings and wing-body combinations are shown
in Fig. 15 for the DFVLR-F4 wing-body transport con-
figuration. This configuration exhibits a transonic
wing design and was chosen to be a standard test case
within GARTEur AGOl. Since the three-dimensional
wing-body code is fully operating in core, we are
presently limited on the IBM 3031 to a 80x16x16 mesh.
However, we are prepared to run the same configuration
on a CRAY-1 using at Teast a 120x24x24 mesh which we
feel to be sufficient for geometry and flow resolu -
tion. The Euler solution was obtained using a finite
volume SLOR solution in the same mesh as initial so-
lution. The FPE-solution was converged up to a resi-
dual of 10'4. The Euler solution did converge after
300 cycles with CFL=2 and further 800 cycies did not
change the solution any more. It is interesting to
note that in the same mesh the Euler solution can
resalve details better since velocities and pressures
are direct variables while in the patential solution
the velocities and ergo pressure result from numeri-
cal differentiation. In comparison with the experi-
mental” data,both, the FPE and the Euler solution seem
to need a correction in Mach number to match the ex-
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Fig. 7: Convergence Characteristics for Euler solutian

Starting from Scratch
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Fig. 8: Non]'ift*ing Flow over NACA 0012 at M=1.2 Fig. 9: Comparison of Lifting Flow Over NACA 0012

Between Euler and FPE

Symbols: RAE Experiment M., = 0.725, a = 2.92° Symbols: RAE Experiment M= 0.73,a = 3.19
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Fig. 10: Surface Pressures on the RAE 2822 Airfoil

for Case 6
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Fig. 11: Slirfa'ce Pressures on the RAE 2822 Airfoil

for Case 9
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Fig. 12: Boundary Layer Data on the RAE 2822 Airfoil
Upper surface for Case 6
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Fig. 13: Boundary Layer Data on the RAE 2822 A1rfo11
Upper Surface for Case 9
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Fig. 14: Boundary

RAE 2822
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VISCOUS CODE

Layer Velocity Prrfiles on the
Airfoil Upper Surface for Case 9
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Fig. 15: Comparison of Euler and Full Potential
Solution Against Experimental Data far
the DFVLR-F4 Wing-Body Combination.
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