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As cfficient sumerical method for the solution of the two- and three-dimensions] iransonic Euler equations
has been used (o compute the flow over sirfoils, wings, and wing-body combinations. For iwo-dimensions! flow,
the Euler equation code has bees coupled with aa inverse boundary-layer inlegral method 10 compuits viscous
flow over transoaic alrfolls with shocks. All Euler methods are using the same mesh sysiems (@ or C type) ae well-
established full-polential codes which can optiomally also provide initial solulions. This aliows for detuiled
comparisons with the full-potential solutions. Results are discussed in detall for lifting snd aonlifling sirfuile »»

well as the DFVLR-F4 transonic transport configuration,

1. latroduction

HILE potential flow solutions have proved extremely
useful for predicting transonic two- and three-
dimensional flows with shocks of moderate strength, (¢.§., see
Refs. 1-3) typical of cruising flight of transport and some
class of fighter aircraft, the approximation of ignoring en-
tropy changes and vorticity production cannot be expected to
give acceptable accuracy when the flight speed is increased
into the upper transonic range. However, more important
than the change in pressure rise across a shock as pointed out
by Lock* are the effects on lifting flows due to the assump-
tions inherent to the Kutta condition in potential flow theory.
One part of this paper will study this effect in detail.
Methods available for simulating transonic viscous flow

over airfoils are either Navicr-Stokes methods, e.g., Ref. 5, or .

inviscid methods coupled with boundary-layer solutions.
Whereas the Navier-Stokes equations properly describe in-
teracting flows, these equations are currently restricted from
foutine use because of computer requirements and lack in
physical understanding. Inviscid flow boundary-layer
coupling methods on the other hand require less computer
resources, but have been developed only for irrotational
inviscid flows and usually attached boundary layers, sec Refs,
4, 6, and 7. In the present paper the Euler equation solver

allowing for rotational inviscid flow is coupled with an in-

verse integral boundary-layer method to allow for attached or
separated boundary layers, thus avoiding problems in dealing
with strong shocks as reported by Lock.*

The third past of the paper deals with three-dimensional
wing and wing-body flow. At present, only potential flow

il solvers based on cither the small disturbance or full-potential
B solution are in use. Reference 8 presents an interesting review

B comparing different

methods with experimental data.
However, all methods exhibit the need for an added vortex
sheet as discontinuity surface. Since the introduced jumps in
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potential are confined to be constant along y=const lines
rather than streamlines, those methods are physically in-
correct near the wing tip or for small aspect ratio wings. These
problems can be overcome by solving the full Euler equations
in conservation form since they can capture discontinuitics
without explicitly introducing vortex shects.

Based on previous experiences on airfoil, inlet, and wing
computations the finite-volume approach as introduced by
MacCormack? has been chosen. Recent efforts, however, to
improve the efficiency have led to a new multistage, two-level
scheme which is described in detail in another paper of the
1981 AIAA-FPD conference.’® The Euler codes based on
these schemes operate on Q or C meshes provided by existing
full-potential solvers, Since the same mesh ic being used, this
allows for direct comparisons between full potential and Euler
solution, moreover, the full-potential solution can be used as
starting solution for the Euler solver.

At present the methods have been applied 10 lifting and
nonlifting airfoils, cascades, wings, wing-body combinations,
and inlets. In the present paper detailed comparisons are given
for lifting and nonlifting airfoils as well as the DFVYLR-F4
wing-body combination which is a standard test case in
GARTEur AGO1. Special attention is given to the eftect of
separation in inviscid compressible flow as studied on the
circular cylinder. This phenomenon was apparently first
noted by Salas.'® Most cases have been run on an 1BM 3031;
the codes, however, have also been tested on CDC 6600,
CYBER 203, and CRAY | machines.

11. Euler Equation Method

The numerical method used to solve the time-dependent
Euler equations is described in detail in Ref. 10. The version
used for all cases discussed in the present paper is the unsplit
four-stage two-level scheme with the enthalpy-forcing term
and the local time stepping. A blend of second and fourth
differences is used to «. .struct dissipative terms of a filter-
type. :

The far field bouna. , conditions are nonreflecting and
allow either for sub- or supcrsonic freestream Mach numbers.
All solid surfaces have no flux boundary conditions, the wall
pressurc being extrapolated from the field. For viscous
simulations the flux through the wall is given by the source

velocity equivalent to the boundary-layer displacement
thickness.
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II]. Inverse Bbuudary-l.ayer Method
The singularity associated with boundary-layer com-
putations at scparation is avoided by using an inverse

boundary-layer method. By specifying, for example, the '
displacement thickness distribution instecad of the pressure

distribution (a so-called inverse method) this singularity is

removed!! and boundary-layer computations can proceed
through separated regions. Tbemvascmahoduwdhaeis_’_r
the mean-flow kinetic energy-integral method: described in .
Ref. 12. This method is based on turbulent boundary-layer .
velocity profiles that describe separated or attached flow. The

malcuhﬁonschcmeisundwhahalhcﬂoykmached

proﬁlaandthecheu-Smnhalacbnkeddyvmtymodd.
In an inverse boundary-layer method,  pressure is a
. dependent variable, and in the particular inverse method used
here the displacement thickness (5°) distribution is specified.
The method used to provide a rational, a priori, specification
of the &° dinnbuuonhthcmahodofCum“ Carter’s
mcthodanbewrinenu ' :

whete 6““"“ B thc new dispbeunau thacknes at a
thickness from

streamwise location; 3*“ is the
&, is the local velocity at the edge of

solution; lgl,, is the magnitude of the local velocity vector

obumedfromthelutﬁuktequdonsolu&ion.mduhthe

relaxation panmeur .
V. Vhdd-lnvhdd Coupllg

mmfemodusedmmemdd—mmdmpmmhe

surface source model (or the method of equivalent sources of .

Lighthill!), This method has an advantage over the effective’

displacement surface approach in that a surface source mass.

flux is imposed as a boundary condition in theinvi;dd

mlaﬂaﬁonatthephyximlbodymrfmorintheukc,’md
hence mesh adjustment during the iteration process is not
required. The surface source mass flux, (pv).. imposed uthe
physical surface is given by ‘
dlp.u.a-) Cor o

where (pv), is the local mass flux normal to the surface. The

right-hard side of Eq. (2) Is evaluated aftcr each inverse

boundary-layer wlunon to determine (ov), for mbuquent -
calculations.

inviscid

The viscid-inviscid interaction calculation scheme proceeds‘

in the following steps.

l)Tbchkreqwionwluuonbndvancedzo-wcycb :

with (pv) ,, =0,

2) An inverse boundary-layer solution is obtained with :
3*4h given by Eq. (1), where 8°'? {s a flat plate distribution, -
u,, is constant at the freestream value (v, ), and Igi,, Is

obtained from the last cycle of the Euler equation solution,

3) The Euler equation solution is advanced 20-50 cyda

with (pv) , held fixed at the value given by Eq. (2).

4) An inverse boundary-layer solution is obu!ned \vith ;

5°tm+D given by Eq. (1).

5) Steps 3 and 4 are repeated until convesgence on 8 or c,
(surface pressure coefficient) is obtained.

example, if strong shocks form in the early cycies of the Euler
cquation solution and if over-relaxation is used, like w=2, it
can be advantageous to call the inverse boundary-layer
solution atter only a few cycles. It is possible to obtain a
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converged viscid-inviscid interaction solution in fewer cycie,
than required to obtain a converged inviscid solution due 10 4
weaker shock resulting from the inclusion of viscous effect.,,
However, all solutions presented ‘were cycled from 1.5 10 2

times, the same number of cycles required for a purely in-
viscid solution.

V Mesh Guention
'l'\vo- and three-dimensional contous-conformal grids arc

. constructed using standasd O- or C-type procedures. Since the

mesh generation has been separated from the Euler solver,
. any mesh can be used, as long as the O or C logics are rot
- violated, because they will influence the lines or surfaces
where boundary conditions have to be provided. In the
present paper parabolic coordinates are used as C-type mesh
Mampmwanwmdcuo-typemcsh For threc-
dimensional wings parabolic coordinates are used in coastant
spanwise nationswhﬂcfor arbitrary wing-body combinations

- Standard meshes tor two-dimensional studies have been
128 x32 for the O-type and 121 x30 for the C-type. Special
attention has been given to the O-type mesh since it allows for
a very dense spacing at the trailing edge, thus allowing studies
of the trailing-edge behavior. For viscous flows, however, the
C-type mesh seems to be favorable since it allows for a dense
spacing of the wake region. The mesh near the trailing edge
and in. the wake can casily be aligned with the wake-
streamline, which will provide a good capturing of the
posducdiminuhyinungauhlvdomy
Sundardmahaforﬂuee-dnmcnsiom!smdmuptonow
luve been restricted 10 40x8x 8 and 80X 16X 16, since the

' whole computation is being done in core.

Mesh refinement techniques can easily be adapted, but,
bowever, have not been used in the present study because of
the use of {ull-potcnnal methods to provide starting solutions.

Vl. Kuua Condlﬂon

”"’In two-dimensional lifting inviscid isentropic flows a Kutta
condition has to be specified at the trailing edge which

g:nenlly is implcmenwd in computational methods by
'~ requiring the static pressure to be equal at both the upper and
.. lower surface trailing edge. Since in potential flow, total
: pressure is constant everywhere, this condition will force the
.- total velocity wat both sides 1o be zero for non-zero trailing-

, " edgeangle and equal and finite for zero truiling-edge angle.

In rotational flow, ¢.g., transonic flow with a shock on the
upper surface, the total piessure behind the shock on the

- upper surface is smaller than on the lower surface
" corresponding point, thus forcing a difference in the speed for
. continuous static pressure. This forces the inviscid flow to
% leave at the trailing edge and o be single valued since no
-~ solution with. Igl #0 on both the upper or lower surface is

possible. The only possible solution is the one depicted on Fig.
1 wheré the flow will leave tangent to the surface with the
higher total pressure smoothly and form a slip line. In
compressible flows without shocks, again, only the one
solution with Igl =0 at the trailing edge and a flow leaving in
the bisector direction is possible. This is due to the fact that
any flow around the trailing edge would cause expansion to
M=o which has 10 be terminated by a shock if the flow will
leave the upper surface (Fig. 1). Again, this would cause two
different tangential velocities at both sides of the fictitious

L Kutta point which is impossible.

To study these effects for smooth, round trailing edges,

" some numerical experiments have been performed on the
The number of cycles the Euler equation solution is ad-

vanced in steps | and 3 depends upon the problem. For -

circular cylinder test cases initiated by Salas'* who found
similar results. The results shown in Figs. 2 and 3 have been
achieved in a 64 x 32 0-mesh for a half-cylinder.

Figure 2 portrays nicely the results for M, =0.20 in
pressure distribution solving the full-potential equation and
the Euler equations. Both solutions are fully converged to a
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residual of 10-'2 and both agree completely. For M_ = 0.50,
Fig. 2 shows quite different results. The highly converged full-
potential solution gives a very strong shock and stagnation is
reached with the correct static pressure and ¢ =0 at the reur
stagnation point. The Euler solution indicates only minor
differences at the forward part of the cylinder; howcver,
shock position as well as pressure ahead and behind the shock
differ quite a lot from the full-potential solution. Most
surprisingly, starting from 2x/D~0.78 the static pressuse
from the Euler solution is constant and almost equal to ¢, =0.
Figure 3 clarifies the results by presenting the direction of the
local velocity vectors. The flow separates from the smooth
surfaces and forms a recirculating **dead-air’* region with
very small velocities (¢=<0.01U_). Tt is interesting that the
well-known phenomena of nearly constant pressure in such a
dead-air region is computed by the present method without
specifying anything specifically about this region. Although
inviscid separation sounds strange at first, it can be proven to
be correct. The reason for this separation is the total pressure
loss and the vorticity due to the shock, rather than due to the
boundary layer. However, the consequences are similar since
the flow due to the total pressure loss at the wall streamline
does not have enough kinetic energy 10 stagnate at the rear
stagnation point, [t should be noted that this inviscid
scparation point can be found to be always behind the one
known from viscous flow analysis. It can arise as a limit for
Re—o in compressible flow if the total pressure losses are
significant or the onset flow is rotational.

Since these examples indicate the basic capabilities of in-
viscid flow computations with the full Euler equations, the
treatment of wakes in three-dimensional flow will only be
mentioned briefly. All Kutta conditions pertinent to the
problem in consideration will show up automatically. Since
the method is written in full conservation form, discon-
tinuities like shocks and slip lines are also captured properly.
As known from supersonic flow studies, the accuracy can be
improved by mesh alignment, which recommends the usc of a

C-type mesh for wings since this will allow easily for wake
alignment.

Vil. Results

The efficiency and accuracy of the Euler solver has been
confirmed by numerical experiments. Some typical results are
presented here. Noulifting results are shown in Ret’. 10 for the
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NACA 0012 airfoil. In a 64 x 32 O-mesh for the half-plane the
highly converged full-potential solution using multi-grid
and the Euler solution show 8% chord difference in shock
position, the pressure jump is smaller, as expected from the
Ranhine-Hugonoit condition, and the trailing-edge pressure is
teduced owing to the total pressure loss. Figure 4 shows
corresponding results for a supersonic freestream Mach
number, demonstrating the flexibility of the present method.
Figure 5 portrays the comparison for lifting flow over the
NACA 0012 airfoil using a 128 X 32 O-mesh. Again, the full-

potential MAD solution has been used as starting solution for -

the Euler solver. The converged solution was reached after
500 Euler cycles with stability condition CFL = 2.8. This time,
not only are their differences in the shock strength and
position significant, but also in the complete pressure
distribution. Lift, drag, and moment coefficients are quite
different. Again, trailing-cdge pressure is slightly reduced.
The difference in lift can be explained as an e¢ffect coming
from the trailing-edge Euler solution which does not need any
explicit Kutta condition. Since there exists a total pressure loss
on the upper surface, the flow is leaving the lower surface
smoothly, which corresponds to a small flap deflected up-
wards in potential flow.

The experimental data of Cook, McDonald, and Firmin!’
include surface pressure and boundary-layer information for
transonic flow about the RAE 2822 airfoil. Two sets of ex-
perimental data, denoted as cases 6 and 9 in Ref. 17, are
considered. Unfortunately these data, like all available
transonic airfoil data, are not interference-free.

In the present computations only the nominal Mach
number of the wind tunnel results has been corrected by
AM =0.004 for both cases. The Reynolds number based on
chord was Re=6.5 x 10°. No adjustments have been made to
match lift. The solutions were all obtained in a C-type mesh
with 128 x 30 volumes. Both the interaction solutioas and the
. inviscid solutions were run 1000 cycles in the Euler code. For
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the viscous cases the boundary-layer method was called every
50 cycles.

Comparisons of calculated and measured surface pressure
data are given in Fig. 6. The agreement with the experimental
data is quite good, even for the trailing-edge region. The
difference in shock position for case 6 is within the un-
certaintics in Mach number corrections.

Comparisons of calculated and measured boundary-layer
data are given in Fig. 7. The calculated boundary-layer
displacement thickness (8°/c) and momentum thickness (9/¢)
distributions are slightly below the experimental data over the
aft portion of the airfoil for case 6. However, the calculated
shock location is slightly forward of the experimental shock
location as mentioned above, which may contribute to this
difference. The calculated c,, 5°/c, and 8/¢ distributions for
case 9 with the stronger shock are in fairly good agreement
with the experimental data, even in the shock-boundary-layer
interaction region. A more detailed comparison of calculated
and measured data throughout the shock region and at the
trailing edge is given in Fig. 8 by boundary-layer velocity
profile comparisons. The agreement between calculated and

measured data is considered good. Calculated distributions of

the source velocity (pv), are included in Fig. 7. This term
becomes significant in, and downstream of, the shock with
large positive values occurring in the shock region and at the
trailing edge. The source velocity becomes negative in the
wake and reaches a minimum just aft of the trailing edge.

Finally, the capabilitics of the present Euler method 1o

solve the inviscid three-dimensional transonic or supersonic
flow over wings and wing-body combinations are shown in
Fig. 9 for the DFVLR-F4 wing-body transport configuration.
This configuration represents a Transonic Action Group wing
design and was chosen to be a standard test case within the
Europecan GARTEur AGO!l. Since the three-dimensional
wing-body code is operating fully in core, we are presently
limited on the 1BM 3031 %o 80 16X 16 volumes. The Euler
solution was obtained using a finite-volume full-potential
(FPE) SLOR solution in the same mesh as the initial solution.
The FPE-solution was converged up to a residual of 10-4,
The Euler solution did converge after 300 cycles with
CFL = 2.8, and further 800 cycles did not change the solution
any more. It is interesting to note that in the same mesh the
Euler solution can resolve details better since velocities and
pressures are direct variables while in the potential solution
the velocities and ergo pressure result from numerical dif-
ferentiation. In comparison with the experimental data, both
the FPE and the Euler solution seem to need a correction in
Mach number to match the experimental data on the lower
surface. The upper surface, however, is in much better
agreement for the Euler solution and would even improve
owing to the expected Mach number correction. The dif-
ferences have not been explored completely yet, but they seem

10 be mainly due to the better Kutta and wake treatment in the
Euler solution.

Vill. Conclusions

The objectives of the present paper were to develop an
efficient and accurate Euler solver to compute transonic and
supersonic flow over two- and three-dimensional con-
figurations. Since the same meshes were used in the Euler
solver as for well-established finite-volume full-potential
solvers, the main differences between Euler and fully con-
servative FPE solutions could be demonstrated. The most
important information has been that Euler solvers do not
need any explicit Kutta condition to be unique in either two-
or three-dimensional flow, Even on smooth surfaces
separation can occur in inviscid compressible flow caused by
total pressure loss and vorticity due to a shock. These effects
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help explain the a priori unexpected differences between
lifting Euler and full-potential sclutions. For viscous flow the
Euler cquations solver has been successfully coupled with an
inverse boundary-layer method. In comparison with ex-
perimental data, the wind tunnel corrections in Mach number
and angle of attack as suggested by users of full-potential
solvers*® do not result in total agreement if the Euler
equations are being solved. High quality interference free
experimental data are needed to verify methods like the
present one in detail. Unfortunately such data are evidently
not available.

Computer times of the present Euler solver are | ms/vol.
and cycle on the IBM 4341 computer. Corresponding times on

the CRAY-] computer are 0.01 ms. The CYBER 203 requires
more than twice that time.
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