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Abstract

A steady transonic flow over an airfoil is
computed by solving the full potential equation
discretized over a contour-fitting grid in full
conservation form. Near shock waves, the density
is corrected to account for the rise in entropy in

the region. A multigrid alternating direction
methed is used to drive the iteration. In super-
sonic  flow regions, artificial dissipation s

introduced either by & flux biasing scheme or by a
density biasing scheme. The two schemes are second
order accurate, while the density biasing ocheme is

second order accurate throughout the flow field
except for a small region near shock waves.
Results of calculations with the two schemes show
that the flux bitasing scheme gives a sharper
resotution of the shock than the density biasing
scheme when the shock itself is weak. As  shock
strength increases, the shock-capturing ahilities
of the two schemes become equal. Throughout the
range of cases tested, the two schemes exhibited

comparable speed and robustness,

I. Introduction

The transonic full potential equation is still

a very useful and very competitive model for
describing the flow over an airfoil at transonic
speeds. Very efficient algorithms have been
deve10pfd for its _solution, in particular by
Jameson® and Holst, The algorithm devised by
Jameson, known as FLO36, has also been coupled with
a viscous interaction method by Meinik et al,” thus
resulting in a widely used tcol for computing the
viscous transonic flow over airfoils. In all

shock-capturing methods, artificial dissipation has

to be introduced in regions of supersonic flow to
account for the hyperbolicity of the equation
there, Dissipation can be added either by the

addition of an artificial viscosity term as shown
in Ref. 1 or by vretarding the density as
demonstrated in Ref. 4. To enhance the stability
of numerical schemes employing one of these forms
of artificial dissipation, the second author found
that the dissipation had to be activated at a Mach
number stightly below one, In addition, second
order accurate spatial differencing could not be
maintained near shock waves. The accuracy of the
schemes had to be reduced to first order there.
These two factors contributed to smear the shock
over some mesh fintervals, the number of which
depended on the shock strength.
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More recently Boerstoe15 and Hafez et a1® have
introduced algorithms which use an artificial
dissipation based on flux biasing. These methods
follow from a f1ux7 splitting scheme described by
Engquist and Osher’ which sp%sﬂfical]y rules out
expansion shocks. Osher et al” proved this rigor-
ously for two-dimensional flow and alsc showed
that, at least for one-dimensicnal flow, a compres-
sion shock could be captured within one mesh
interval, In principle, then, it should be
possible to get a sharper shock definition with
flux biasing since there 1is no need to switch on
the artificial dissipation below the sonic Mach
number and no need to reduce spatial accuracy near
a shock. The other advantage 1is that there is no
need to define parameters to control when the
dissipation is to be activated.

In this paper, second order spatially accurate
artificial dissipation forms based con both flux
biasing and density biasing are presented. Except
for the dissipation terms, the discretization of
the full potential equation is otherwise identical
in the two methods. The discretized eguations are
solved via a multigrid alternating direction (MAD)
algorithm first described by Jameson in Ref. L.

II. Numerical Method
The equation we seek to salve is the

continuity equation

[ o) -

™ (pu) + T {pv) =0 {1)
where x and y are Cartesian coordinates, p is the
density, and u and v are the two velocity
compenents. Assuming irrotationality, these can be

expressed as components of the potential function ¢

U= A (2

The actual computations are carried out in a region
obtained by conformally mapping the exterior of the
airfoil in question onto the interior of a circle.

A uniform polar coordinate mesh, described by r and

0, then gives an excellent discretization of the
flow field. In the mapped plane, the flow equation
becomes

L) +r 3 (av) =0 (3)



where

U=90g »V=ras, (4)

and the physical velocity components in the two
coordinate directions are
ri _ry
U"'l_T s V_H (5)

where K is the modulus of the transformation to the
exterior of the c¢ircle.

As described in Ref. 1, at a mesh point i,j in
the flow field, Eq (3) is discretized as

1
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where
Uielj,g = 11,5 " %5 (72)
Vig w12 = "5 a1y2(00 a1 - 850 (7b)
with simitar expressions for “i-llz.j and vi,j-l/Z‘

Here i+1/2 and j+1/2
of a mesh interval.
cell centers. Hence,

denote values at midpoints
The density p is computed at

1
Pisise,] ~ 7 (p1'+1/2,j+1/2 * pi+1/2,j—1/2]
) (8)
At supersonic points, artificial dissipation

is introduced by modifying the density in Eq (6).

Density Biasing

At supersonic points, the density term, p, in
the first bracket in Eg (6) is replaced by a
density which is biased in the upstream direction

according to the density gradient; call this 5.
Thus assuming the flow to be in the direction of
increasing i, we take

5 - - 2p
Pias2,5 " Parz,g T Mg 80 ), )
A similar expression holds for Pi1/2,5 °

Simitarly the density terms in the second bracket
of Eq (6) are replaced by a biased density, p,
which is taken to be

~ = - ap
Bige1/2 © PiLgerse T Wi G (10}
In Eq {9) and {10), we define
e
by = Max [0, v (1 - <5)] (11)

where M is the local Mach number and Mc2 is a user-
defined parameter slightly less tham one, typically

0.9. v is another user-defined parameter usually
set at one. In our scheme, the density is eval-
uated at each of the cell centers. Thus

2p 2p it 1]
(ae}i,j and (6r]i,j at the mesh point i,j can be
evaluated from averaged differences of the
densities at the encircling ¢ell centers. Thus,
for example

20y .1
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Application of Eg (9) and {10) results in a
spatially first order accurate scheme in supersonic

regions. Second order accuracy can be recovered by
defining

° = - opy %p
Pisrga,5 = Pivlsz,s MigoelGeh 5 &y GElia, )

(13)

and taking &, = 1. The numerical scheme, however,
proved unstahie unless g5 s made zero near shock
waves, A straightforward way of implementing this
is to define

e.. = Max (0, %-%|w @E

5}
i s9)ij +or 3R ()

the scheme is first crder accurate
For vy = 1 partial second
is a parameter of order

An expression similar to

When w, 1s zero,
in supérsonic regions.
accuracy is introduced.
one defined by the user.
£q (13} defines Pi j+l/2

Flux Biasing

An alternate method of fintroducing artificial
dissipation in the numerical scheme is by retarding
the density based on the flux. Thus, in both
brackets of Eq (6) we substitute the density p with

a retarded density p defined as

A il
PP T s (15)



with

F = pq for M> 1

= p*q* for M <1 (186)

where q represents the total velocity, s represents
the streamwise direction, and the asterisk denates
sonic conditions. The quantity F, as p and g, is

evaluated at each cell center. The streamwise
gradient is broken up into components in the
coordinate directions by

oF _u aF v aF

— = = —t — — 17
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In our numerical scheme, this leads %o the
following representation for the retarded density

terms we define at cell centers

~

Pisl/2,5+1/2° Pi+l/2,3+1/2

rel aF v aF y
- L) a0 Ll ¢ () o el iz, jage (18
Second order accurate approximations for the

gradients in Eq (13) are given by
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where similar

is given by Egq {14). A

%j
; oF
expression holds for [EF}1+1/2,j+1/2 .

The obvious advantage of this scheme is that
the dissipation is switched on when the local Mach
numher is unity rather than a smaller subsonic

value. The density bhiasing scheme is not stahle
with M.5 = 1,
Entropy_Correction

Shocks computed by a potential flow scheme

such as the present one tend to be stronger and,
for airfoil flows, are usually located downstream
of the location computed by a_solution to the Euler
equations. Hafez and Lovell? devised a method to
account for the entropy rise through a shock within
the context of a potential formulation. Thus.
following Hafez and Lovell, at a mesh point just
downstream of a shock, the density is multiplied by
a factor proportional to the entropy rise through
the shock, a5/R. For a normal shock and with flow
in the direction of increasing i,

+> E_AS/R
®i41/2 5412 Pi+172,541/2
where
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M, is the Mach number computed two points upstream
o% the shock.

Thig resuits
to the potential
{6}, equal to

in a correction to the residual
equation, as represented by Eq

MRes = lk-(eAS/R—I]

%) %54172,5%i41/2,;5

(21)

Iteration Scheme

The difference equations obtained with either
scheme are solved by the MAD altgorithm described in
Ref. 1. This method employs a multigrid strategy
with a generalized alternating direction method as
a smoothing algorithm on each of the meshes. On
each mesh, the flow field is alternately swept from
the far field toward the airfoil surface and then
sequentially along the upper and lower surfaces

from leading to trailing edge. With the o-type
meshes that we are using, the sweep directions
follow the flow directions reasonably well in
supersonic regions, Breakdown of the iteration
scheme occurs only when the supersonic region
extends all the way to the trailing edge. When
this conditicn does not arise, the method works

equally well with either difference scheme,

II1. Results

A1l the flows that will be shown were computed
on a 192 x 32 mesh, and a total of five mesh levels
were employed 1in the multigrid sequence in each
case. FEach case was computed twice, once employing
the flux biasing scheme and again using the density
biasing scheme. The same set of ADI parameters was
used for both calculations. In Fig. 1, the flow
over the NACA0Q12 airfoil at a free stream Mach
number of (0.720 and an angle of attack of 1° is
depicted as computed by the two schemes. The shock
on the upper surface is very weak in this case, as
can be gathered from the very low drag values, and
one can see how much better it is resolved by the
flux biasing scheme. As we 1increase the Mach
number and, thus, increase the strength of the
shock, the shock capturing capability of the
density biasing scheme as compared to the flux
biasing scheme improves as we see from Fig. 2 and
3. With a still stronger shock at M, = 0.75 and «
= 2 (Fig. 4}, we note that the differences between
the two schemes become even smaller. In each of
these cases the flux biasing scheme spreads out the
jump from supersonic to subsonic conditions over
three mesh intervals with most of the jump
occurring in the middle one. The smearing with the
density biasing scheme is more substantial with the
weaker shocks but is drastically reduced as the
shock strength increases. These observations are
also borne out by comparisens of computations for
the Korn airfoil at a Mach number of 0.70 for « =
1° and 2° (Fig. 5 and 6, respectively) and a Mach
number of 0.75 for o = 0.2° and 0.7° {Fig. 7 and
8). Both schemes could be run throughout the range
of applicability of the potential approximation.,
With only first order accuracy in the supersonic
region {w = 1} both methods could be made to run
until the shock reaches the trailing edge as seen
in Fig. 9, which gives the Mach contours for the
Korn airfoil at M, = 0.78, « = 0,9, The pressures



computed by the two schemes are shown in Fig. 10. 1

This case is included only for numerical! interest
since it is far beyond the physically acceptable

imit of our assumptions. Overshoots develop ahead

of the shock with both schemes,
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Fig. 1 Pressure distributions computed by flux biasing and Fig. 3 Pressure distributions computed by flux biasing and
density biasing schemes; NACA 0012 airfoil; density biasing schemes; NACA 0012 airfoil;
M, = 0.720, ¢ = 1.0°, M., = 0.750, o= 1.0°.
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Fig. 4 Pressure distributions computed by flux biasing and

Fig. 2 Pressure distributions computed by flux biasing and
density biasing schemes; NACA 0012 airfoil;
M, =0.730, « = 1.0°.

density hiasing schemes; NACA 0012 airfoil;
M, = 0.750, o= 2.0°,
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Fig. 5 Pressure distributions computed by flux biasing and Fig. 7 Pressure distributions computed by flux biasing and
density biasing schemes; Korn airfoil;

density biasing schermes; Korn airfoil;
M., = 0.750, a = 0.2°,

M, = 0.700, o = 1.0°.
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Fig. 6 Pressure distributions computed by flux biasing and Fig. 8 Pressure distributions computed by flux biasing and
density biasing schemes; Korn airfoil; density biasing schemes; Korn airfoil;
M., = 0.700, o= 2.0°, M., = 0.750, o = 0.7°.



Fig. 9 Mach number contours computed by flux biasing schemae;
Korn airfoil; M., = 0.780, o = 0.9°.

G| G

Table 1 gives the rnumber of cycles needed to
obtain convergence, defined as attainment of a
specified value in the maximum residual, In most
cases, the density biasing scheme is marginally
faster. The flux bifasing scheme shows a substan-
tial advantage only in the last example. As men-
tioned abgve, runs were made with the same set of
ADI parameters for both dissipation schemes, It is
possible that convergence might be speeded up far
either scheme with different parameters.

Table 1 Cycies required for convergence
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Fig. 10 Pressure distributions computed by flux biasing and
density biasing schemes; Korn airfoil;
M., =0.780, « = 0.9°.

! E "Flux |Density

Airfoil M., @ Biasing|Biasing

NACA 0012 0.720| 1.0¢ 19 13 |
NACA 0012 0.730! 1.0° 17 15

NACA 0012 0.750) 1.0° 19 24

NACA 0012 0.750| 2.0°| S9 | 55 |

;| Korn Airfeid  {0.700} 1.0°! 25 % 18 |

| Korn Airfoil  [0.7001 2.0°| 43 | 43

| . g

\ Korn Airfoil 0.750¢ 0.2° i 3% | q1 '[

[ Cu | Korn airfoil  |0.750] 0.7° 108 | 95 |

 Korn Airfoil  [0.780 ] 0.¢" | 138 | 260:1

I¥. Concluding Remarks

Two second order accurate forms of artificial
dissipation based on density biasing and flux
biasing have been introduced 1in an otherwise
identical numerical method for computing the steady

transanic flow over an airfoil. The numerical
experiments have shown that the two schemes are
equally robust and have similar convergence

qualities. For weak shock waves, the flux biasing
schenme gives a sharper definition of the shock than
the density biasing scheme, In all cases, the
former scheme captures most of the jump in one mesh
interval and all of it within three intervals. The
density biasing scheme shock-capturing ability
improves with increasing shock strength and equals
that of the other scheme for strong shock waves.
This smearing is apparently due to the need to
switch on the dissipation at a Mach number lower
than one in the density biasing method to enhance
stability, The attractive feature of the flux
biasing method is the fact that the dissipation is
nmeeded only at supersonic points.
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