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Abstract

A new multigrid relaxation scheme, lower-upper
symmeiric successive overrelaxation (LU-SSOR)
scheme, is developed for the steady-state solution
of the Euler and Navier-Stokes equations. The
scheme, which is based on central differences, does
not require flux splitting for approximate Newton
iteration. Application to transonic flow shows
that the new method is efficient and robust. The
vectorizable LU-SSCR scheme needs only scalar
diagonal inversions.

Introduction

The Reynolds numbers for a large airplane are
of the order of thirty million. Therefore, laminar
flow in the boundary layer becomes unstable, result-
ing in turbulent flow over Most of the surface of
the airplane. However, the computational require-
ments for the simulation of turbulent flow are
clearly beyond the reach of current computers. The
first level of approximation - time averaging the
rapidly fluctuating components - yields the
Reynolds-averaged Navier-Stokes equations, which
require a turbulence model for closure. At the
present time not much is known about the behavior
of turbulence in separated regions, and this has
impeded the development of turbulence models for
complex three-dimensional flows. Since a unjver-
sally satisfactory turbulence model has yet to be
found, current turbulence models have to be tailored
to the particular flow. During the Jast decade the
feasibility of solving the Navier-Stokes equations
has been explored but the methods developed so far
have been too expensive to use in a routine produc-
tion mode.

Recently several implicit schemes have been
developed successfully in cenjunction with a mul-
tigrid method for steady—ftfte solution of the
unsteady Euler equations.”»“ Although the
alternating-direction implicit scheme could be
improved ta achieve the expected efficiency of the
multigrid method in two dimensions,® its inherent
Timitations_in three dimensions suggest alternative
approaches.© An alternative implicit scheme that
is stable in any number of space dimensions is based
on lower-upper (LU) factorization. The LU implicit
scheme proved to be rohust and efficient for high-
speed f1gws up to Mach 20 as well as for transonic
flows.3=2 It was also shown that a symmetric
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Gauss-Seidel relaxation method for solving the
unfactored implicit scheme was a variant of the LU
implicit schame,

The Newton iteration method has been investi-
gated to so]ge the steady Euler or Navier-Stokes
equations.S‘ Because of the rapid growth of the
operation count with the number of mesh cells, the
system was solved indjrectly. Jaspersen® and
Hemker and Spekreijse’ applied the symmetric
Gauss—Seidg] method to the Euler equations, while
MacCormack® applied the Tine Gauss-Seidel method
to the Navier-Stokes equations. In this paper an
efficient muitigrid relaxatien scheme is developed
for approximate Newton iteration. The new lower-
upper symmetric successive overrelaxation (LU-SSOR)
scheme requires scalar diagonal inversions while
the Gauss-5eide] method and the LU implicit scheme
require block matrix inversiens. The use of scalar
diagonal inversions offers the potential for order-
of-magnitude speedups when large systems of partial
differential equations must be solved, for example,
for hypersonic flows with finite-rate chemistry. It
is desirable that the matrix be diagonally dominant
to assure the convergence of a relaxation method.
The new method based on central differences achieves
this without the flux splitting that substantially
increases the computational work per cycle. Numeri-
cal examples include inviscid and viscous transenic
airfoils.

Governing Equations

The Navier-Stokes equations represent gas flow
in thermodynamic equilibrium, Let t, », E, T, and
p be time, density, total energy, temperature, and
pressure; u and v Cartesian velocity components;
and x and y Cartesian coordinates. Then for a
two-dimensional flow these equations can be written
as

oW , aF | 3G

v
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where W s the vector of dependent variables, and
F and G are convective flux vactors:
W= (p, pu, pv, pE}*
F = [ou, pu? + p, owu, ulef + p)7* (2)
G = [pv, puv, pVZ + p, v(sE * D)l*

Here denotes the transpose of a matrix.
fiux vectors for the viscous terms are

F. =10, « T ur,, tove +k~a—T*
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Here tha viscous stresses are

Tex = 2uly - % uluy * Vy)
Ty = u(uy + vx)
and
T = 2uv, - Z plu, +v.)
vy y T3 Ty
where 1y s the coefficient of viscosity and k

is the coefficient of thermal conductivity.

The pressure is obtained from the equation of
state:

p=oply -1) {E - % (UZ + V?)} (3)

where v 15 the ratio of specific heats.

Semi-Discrete Finite-Volume Method

A convenient way to assure a steady-state solu-
tion independent of the time step is to separate
the space and time discretization progcedures. In
the semi-discrete finite-volume method one begins
by applying a semi-discretization in which only the
spatial derivatives are approximated. Using a
finite-volume method for space discretization allows
one to handle arbitrary geometries and helps to
avoid problems with the metric singularities that
are usualtly associated with finite-difference meth-
ods. Finite~volume methods do not regquire special
treatment on a composite grid.g The scheme
reduces to a central difference scheme on a Carte-
sian grid and is second-order accurate in space pro-
vided the mesh is smooth enough, and uniform flow is
an exact solution of the difference equations. The
Gauss theorem is used to evaluate the viscous flux
terms.

Nonlinear Adaptive Dissipation

Using a central difference scheme when calcu-
lating flows with discontinuities typically produces
flowfield osciliations in the nefghborhood of shock
waves, where the pressure gradients are severe, To
suppress the tendency for spurious odd and even
point oscillations and to prevent nonphysical over-
shoots near shock waves, we augment the scheme by
artificial dissipative terms. The dissipative term,
which is constructed so that it is third-order accu-
rate in smooth regions of the flow, is explicitly
added to the residual. For the density equation,
for example, the dissipation d has the form

di+1/2,j - di-1/2,3 * di,j*1/2 - di,3-1/2

where
L (2
dierga, 5 = Sielsz,5t0ie1,5 ~ 01,50
(4)
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Here e(z) and (4} denote coefficients of

the sacond and fourth differences respectively.

cell area § 1is equivalent to the inverse of the
transformation Jacobian determinant. Both coeffi-
cients include a normalizing factor, Si+1/2 i/at,
proportional to the length of the cell side; and
(2)
i*1/2,]
ized second difference of the pressure:

is also made proportional to the normal-

Pivt, i~ 2% 5 7 Pilyj
Pisl, i " 2,5 " Pio,j

V. =

1.3 (5)

in the adjacent cells, The third-order terms pro-
vide background damping of high-frequency modes.

The first-order terms, which are needed to control
oscillations in the neighborhood of shock waves, are
activated when strong pressure gradients in the flow
are sensed, The dissipative terms for the other
equations are constructed from similar formulas.
Increasing the amount of artificial viscosity
improves the rate of convergence, although too much
dissipation can hinder this. However, dissipation
should be as small as possible so that the accuracy
of the solution is not degraded. The typical amount
of the third-order terms is almost negligible when
compared to the physical viscosity. Schemes con-
structed along these lines combine the advantages

of simplicity and economy of computation. They have
also proved robugt in calculations over a wide range
of Mach numbers, For more accurate capturing of
oblique shock waves in hypersonic flows, a total
variation diminishing (TVD)} scheme® can be used,

LU-SSOR Scheme
A prototype implicit scheme for a system of

nonlinear hyperbolic equations such as the Euler
equations can be formulated as

WL - gato F™) - Dye(w”+1)]

- (l—B)At[DXF(Nn) + Dys(w”ﬂ (6)
where Dy and Dy are central difference cper-
ators that approximate afax and 3fsy. Here n

denotes the time level, An enormous number of com-
putations must be performed when the scheme is in
this form because coupled nonlinear eguations must
be solved at each time step. Let the Jacobian
matrices be

I
|
-

o=}
i
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and let the correction be

gW = WML _oyn

The scheme can be linearized by setting

F(wn"'l) = F(WNY + pgw + 0{115N||2)

G(WLY - G(WN) + BoW + O(nsWu?)

where 0 is the order of the enclosed terms, and
dropping terms of the second and higher orders to
yield
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where 02 and 0% denote the second dif-
ference and the fourth difference operators
respectively.

Since one-sided difference schemes are natu—
rally dissipative, no implicit smoothing is required
on the left side. Only adaptive dissipation terms
are explicitly added to the residual on the right
side. It is interesting to note that the present
numerical method eliminates the need for block diag-
onal inversions without using the diagonalization
process. This i3 an especially desirable feature
for the analysis of hypersenic reacting flows. The
LU family of algorithms are fully vectorizable along
i+ j = constant lines on a vector computer,

Multigrid Method

The underlying idea of a muttigrid method is
to transfer some of the task of tracking the evolu-
tion of the sysiﬁm to a sequence of successively
coarser meshes, This has two advantages.

First, the computatioral effort per cycle is reduced
on a coarser mesh. Second, the use of larger con-
trol volumes on the coarser arids tracks the evolu-
tion on a larger scale, with the consequence that
global equilibrium can be more rapidly attained.
* In general one can conceive of a multigrid method
using a sequence of independently generated coarser
meshes which are not associated with each other in
any structured way. Here attention is restricted
to the case in which coarser meshes are generated
by eliminating alternating points in each coordinate
direction. Thus simple rules can be formulated for
the transfer of data between grids. The cells of
the fine mesh can be amalgamated into larger cells
which form a coarser mesh, Then in each coarse
mesh cell the conservation laws are represented by
summing the flux balances of its fine mesh cells;
consequently, the evolution on the coarse mesh is
driven by the disequilibrium of the fine mesh equa-
tions. The multigrid method used here is the cell-

centered mgthod which was used for the implicit
schemes.ls

Results

The first test case was for inviscid transonic
flow past the NACA 0012 airfoil at 1.25° angle of
attack. The freestream Mach number was 0.8, HNonre-
flecting boundary conditions were used to absorb
the waves impinging on the far-field boundary.2
Figure 1 shows the plot of Mach number cantours.
Convergence histories of the LU-SSOR scheme are
compared with those of the LU implicit scheme of
Ref. 2, Figure 2 shows the logarithm of the aver-
age density residuals, and Fig. 3 shows the lift
histories. Five-level multigrid calculations were
performec¢ on a 128 by 32 C-mesh without grid
sequencing. Uniform flow was given as the initial
conditien. As the results show, the convergence
rate of the LU-SSOR scheme is about 30 percent
faster than that of the LU implicit scheme. Maore-
over, the computational work per cycle foar the

LU-SSOR scheme is about 30 percent Tess than that
for the LU implicit scheme since the LU-SSOR scheme
does not need block diagenal inversion. This offers
the potential for order-of-magnitude speedups when
large systems of partial differential equations
must be solved. For example, the size of Jacobian
matrices for scramjet flows can be over 20 by 20 in
three dimensions if 15 species equations are added.
It seems that slow convergence of the [.U-SSOR
implicit scheme in Ref. 2 is due to the method of
Tocal time stepping that was used in Ref. 2.

The next case was for viscous laminar flow past
the NACA 0012 airfoil at Mach 0.5, Reynolds number
5000, and zero angle of attack. The adjabatic wall
boundary condition was used at the body surface.
Calculations were performed on a stretched 192 by
48 C-mesh. A convergence acceleration tachnique
such as enthalpy damping was not used for the
viscous flow calculations., Figure 4 shows the Mach
number contours while Fig. 5 shows velocity vectors.
Convergence history with a two-level multigrid is
shown in Fig. 6. Theoretically, improved conver-
gence rates might be obtained by using more levels
of multigrid.

The last case was for viscous turbulent flow
past the RAL 2822 airfoil at Mach 0.73, Reynolds
number 6.5 million, and 2.79 angle of attack,
Reynolds-averaged Navier-Stokes equations were
solved using a Baldwin-Lomax turbulence model.}2
Transition was fixed at 3 percent chord. Mach
number contours are shown in F¥g. 7 (the dashed line
denotes the sonic line). Convergence histories on a
192 by 48 mesh with two-level multigrid are shown:
Fig. 8 shows the residual history and Fig. 9 shows
the Tift and drag history. The convergence based on
the average residual is continuous although it is
slowed after dropping about three orders of magni-
tude. It seems possible to improve the accuracy
and the convergence rate further by using a better
distribution of grid points.

The

Conclusion

A new relaxation scheme derived for approxi-
mate Newton iteration is applied to both Euler and
Navier-Stokes equations. The LU-SSOR scheme is not
only stable in three dimensions but also fully vec—
torizable. Transonic airfoil calculations confirm
that the scheme is robust and efficient. Moreover,
the LU-SS0R scheme is promising for high-speed
reacting flow calculations.
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[1 + gat(DgA + DyBY]6H + at R = © (8)

where 1 is the

residual

is the identity matrix and R

R = D,F(WM) + D,G(W™)

If a constant 8 = 1/2, the scheme remains second-
order accurate in time; for other values of g, the
time accuracy drops to first order.

The unfactored implicit scheme (Eg. (8))
produces a large plock banded matrix that can be
inverted oniy by performing a great many computa-

tions. In addition, a large amount of storage is
required. If g = 1 the scheme reduces to a Newion
jteration in the 1imit 4t » =

{DyA + DyB)sW * R = D {9)

A diagonally dominant form of Eq. (9)

(DA + Oia” + D;B+ + D;B“)aw +R=0 (10)

can be written as

+
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+ R™ _ B~ +R.. =
Bi,j+1awi,j+1 Bijswij R1J 0 {11
By simulating it with backward and forward
relaxation sweeps, we obtain the symmetric
successive overrelaxation (SSOR) method, which can

be written in two steps as
+ - * - + + - *
- + - B.. .
(Rij = A7gIoHig Ay a5+ (Byy - Byl oWy
+BT &M L tR,.=0 (12}
i, Ny T
followed by
+ - + —_ *
(Aig - ATghoWig = Ay g5, 5" Aen, 3™, 5

+ _ +
R LA PR R R !

- *
*B gt e TRy =0 (03

where D; and D; are backward difference

+ .
aperators and D: and Dy are forward difference

operators. Here, two-point operators are used for
steady flow calculations. A%, A-, 8%, and B~ are
constructed so that the eigenvalues of "+" matrices
are nonnegative and those of “-" matrices are
ronpositive:

(14)
+
B =%B+r§)
- 1
B = ﬁ(B - T‘BI)
where
r, > max (|1Ar)
{15)
Yg 2 max (|ABO
Here, ap and g represent eigenvalues of
Jacobian matrices.
Subtract Eg. (12) from Eq. {13) to get
+ - + + -
(Ajg = ATy = Ay Wi g g * (Byy - By )k
B+ W A+ A... * . + -
"B gai e = ey — Aqglo v By - By ety

This may be written as

(D;A" + D;B+ O T A T N T L S o P

{17}
where
* - -
= (D + 0T v AT e gD R (18)
If we take "+" and "-" matrices as given in
Eq. (14},
AT oA ryl
B _ B
- =Y‘BI
Thus, Eq. (17) becomes the LU~SSOR scheme for
approximate Newton iteration
- + -+ - - + . + _
(DXA + DyB - A -B }(DXA + DyB
AT+ B )ou + +
W o= - (r'A rB)(DXF DyG} (19)
which can be inverted in two steps.
For the Navier-Stokes equaticns, F and &
are replaced by F - Fy, and & - G, in Eq. {19}.

That is,

s
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