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Abstract

A vertex-based finite volume method for solving the
three-dimensional compressible Reynolds-averaged
Navier-Stokes equations is presented for calculat-
ing turbomachinery cascade flows. A discretization
scheme for the viscous terms is proposed. This
discretization scheme avoids a potential problem
on kinked meshes. The Baldwin-Lomax algebraic
turbulence model is used. The scheme is verified
against laminar and turbulent flows over a fiat plate.
Perfect agreement is obtained with the Blasius so-
lution for the laminar flow. Agreement with em-
pirical solutions is also obtained for turbulent flows.
Both two- and three-dimensional computations were
carried out for a low pressure turbine cascade. Re-
sults are compared with inviscid solutions and exper-
imental data. Predicted pressure distributions agree
with experiments at both design and off-design con-
ditions. Surface skin-friction distribution and veloc-
ity vectors in the flow field are also presented.

1 Introduction

With the advent of computer technology and nu-
merical methods, flow field computations of turbo-
machinery cascades become feasible as a routine de-
sign procedure. In many cases a good prediction
of blade pressure distributions can be achieved by
using an inviscid method, eg. Denton[l], Smith
and Caughey{2], Holmes and Tong{3}, and Liu and
Jameson(4, 5). However, since such a method ig-
nores viscous effects it may fail badly in predicting
off-design conditions. Under such conditions, vis-
cous effects such as boundary layer separation may
have drastic effects on the pressure distribution on
the cascade blades.

In an earlier paper(5] the anthors presented results
of cascade flow calculations with a three-dimensional
Euler method. It was found that the pressure dis-
tribution on the cascade blade surface agreed well
with the experimental data obtained by Hodson and
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Dominy|11, 12, 13] for a low pressure turbine cascade
at its design condition. When proper inlet boundary
conditions were given the Euler equations were also
found to be capable of capturing the major features
of secondary flow vortices caused by the convection
of the inlet endwall boundary layers. However, small
discrepancies existed where small separation bubbles
were found in experiment at the design condition.
At an off-design condition there were large differ-
ences between the predicted pressure distributions
and the experimental data due to the existence of
large separation in the flow field. For such flows it is
essential to include viscous effects in the simulation.
Solution of the Navier-Stokes equations is particu-
larly needed for fows with strong blade and endwall
interactions. Hah developed an implicit relaxation
method for the Navier-Stokes equations[f]. Chima
used an explicit multigrid algorithm for quasi-three-
dimensional flows[7). Some other contributions in-
clude Davis, Ni and Carter[8)], Choi and Knight{9),
and Dawes|10}].

In this paper a finite volume scheme for solving
the Reynolds-averaged Navier-Stokes equations in
three dimensions is presented. A vertex scheme is
used in this work instead of the cell-centered scheme
used in (5] for the Euler equations. It is believed that
a cell-vertex scheme may have better accuracy than
a cell-centered scheme on irregular meshes. In this
paper an alternative discretization is used for the
viscous terms as modified from one of the schemes
used by Martinelli[16] in his two-dimensional Navier-
Stokes code. This new discretization avoids a poten-
tial difficulty in calculating the viscous terms when
the computational mesh has kinks. A multigrid
method is used to accelerate convergence. The nu-
merical method with the Baldwin-Lomax algebraic
turbulence model is used to calculate the flow in
the same low pressure turbine cascade|l11, 12, 13] for
which solutions of the Euler equations were obtained
by the authors in [5). The usefulness and limitations
of the Navier-Stokes calculations will be demon-
strated through comparison of the results with those
of the Euler calculations and the experiment.



2 Numerical Method

2.1 The Reynolds-averaged Navier-
Stokes equations

After proper non-dimensionalization, the Reynolds-
averaged Navier-Stokes equations can be written in
an integral form as
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tor. .

W is a formal vector of § scalar components: wy,
where 7 = 1,2,...,5 indicates the equation number
in the Navier-Stokes system of equations; f and F
are formal vectors of 5 cartesian vector components:
f-; and F); The bold face here is used to denote that
W, f, and F are pseudo vectors in [. The arrowed
overscores, however, indicate that f and F are gen-
uine cartesian vectors in space. Re is the Reynolds
number based on the reference values in the non-
dimensionalization.
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The eddy viscosity concept due to Boussinesq is
used for turbulent flow. The total stress is related
to the the mean shear stress by a total viscosity co-
efficient: p + pq

2 Jug
oij = 2{p + 1 }Si5 ~ 5(# + #:)"a-aéij (7

where §;; is the rate of strain tensor, x is the molec-
ular viscosity, and y is the turbulent eddy viscosity.

Similarly, the total heat flux is related to the tem-
perature gradient as in the Fourier law by a total
heat conductivity: k + k,

g; = —{(k+k)VT (8)

Figure 1: A Three-dimensional Super-cell for the
Vertex Scheme

where £ is the molecular heat conductivity and %, is
the turbulent heat conductivity.

2.2 Finite Volume Scheme and Time
Stepping

The basic numerical method is described in more
detail in [15]. The computational domain is divided
into hexahedral cells. In a vertex scheme the fow
variables are defined at the cell-vertices of hexahe-
dral cells. A system of ordinary differential equa-
tions can be obtained by applying equation (1) to a
super-cell formed by the union of 8 cells surrounding
a vertex point as shown in Fig. 1.

d
E(ijkwije) + Qeijk = Quije =0 (9)

where {3;;, is the volume of the super-cell, Q. jk,
Q. iji are the net convective and diffusive fluxes out
of the super-cell, respectively. The convective flux
balance over the m-th elementary cell around the
vertex (i, j, k) can be approximated by

6
(Qeijk)m = Z ﬂ .dS;  form = 1,2,---,8 (10)
k=

1

where the sumnlation is over the six faces of the hex-
ahedral cell. dSi = 7 - dSj is the face area vector,
which has the face area as its magnitude and the
outer normal # for its direction. fi are the average
flux vectors on each face. The convective flux bal-
ance over one super-cell can be obtained by summing
the flux balances aver the 8 constituent cells.

8

Qeijk = z (Qc.ijk)m (11)

m=]

Since flow variables are defined at cell-vertices,
the velocity and temperature derivatives at each cell



Figure 2: Martinelli’s Auxiliary Cell to Calculate
Derivatives for the Cell-centered Scheme

Figure 3: Problem with a Kinked Mesh

center can be found by applying Gauss’s formula to
each individual cell. Suppose % is to be found at

the center of a cell. By Gauss’s formula,
/ ?—t—L— = / udS,
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thus,

where dS; is the x component of ds.

To calculate the viscous fluxes Q, ;% an auxil-
iary control volume around the vertex point (3, j, k)
is formed. For simplicity, consider in Fig. 2 a ver-
tex point in a two-dimensional mesh, Martinelli[16]
in one of his two-dimensional schemes formed the
auxiliary control volume by directly connecting the
cell-centers A, B, C, and D(Fig. 2}. Since the deriva-
tives of velocity and temperature are found at all cell
centers, f,, on each face of the above formed control
volume can be evaluated as the average of ¥ at the
end points. @, i;x can then be obtained by

8
Quije = 9 _ Fi - d5; (12)
k=1

A difficulty may arise, however, in the above
method when the mesh exhibits a kink as shown

Vs

Figure 4: Auxiliary Cell used in This Work to Calcu-
late the Diffusive Balance for the Cell-vertex Scheme

in Fig. 3. In that case, the vertex point where the
diffusive flux balance is to be found falls outside the
auxiliary cell and the local accuracy may drop. To
rectify this, an alternative scheme is proposed. An
auxiliary cell connecting A, B, C, D, and the mid-
points(mid-lines in three-dimensions) a, b, ¢, and d
of the cell faces is formed as shown in Fig. 4.

The surface integral on face Aa can be evaluated
as F 4 times (dg)Aa, where F 4 is F at A and (dnga
is surface area vector for Aa. The surface integrals
over other face segments of the control volume in
Fig. 4 can be formed in the same manner. Although
the surface integral on each face segment is one-
sided, the above scheme is equivalent to Martinelli’s
scheme for regular meshes but is expected to give
better local accuracy on grids with sharp kinks.

With the above formulation, we have associated
with each vertex, on which flow variables are defined,
a control volume(the super-cell) to which the inte-
gral equation (1) is applied, thus producing equal
numbers of equations and unknowns. It appears,
however, that two different control volumes have
been used for the convective and diffusive terms in
the above approach. This can be reconciled by scal-
ing the magnitude of Q. ;;x so that it corresponds to
that for the control volume used to calculate Q, ;j&
or vice versa. The schemes thus constructed for
the convective and diffusive terms are both sepa-
rately globally conservative, with the consequence
that global conservation of mass, momentum and
energy is assured.

The above scheme reduces to a central difference
scheme on Cartesian meshes, and is second order
accurate if the mesh is sufficiently smooth. How-
ever a central difference scheme will permit modes
with odd and even decoupling. To prevent this and
to capture shocks without pre-shock oscillations, an
additional dissipation term is added to the semi-
discrete equation {9) so that we solve

d
‘&Z(Qijkwijk) +Qijk = Dije =0 (13)



where
Qijx = Qeijk + Quiiji
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The dissipation fluxes d;; 3 ;, are defined as a
blending of first and third differences
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where Ag is the forward difference operator defined
by

AW = Wigr ik — Wik
In the current method for the Reynolds-averaged
equations, redistributed directionally variable dissi-
pation scales are used following Martinelli’s work in
two-dimensions. In this approach

(Re)igy gk = Ac®

o=temn{(32) - (5) )
= m — e
Ag Ag
w is a parameter usually chosen to be 8.66. A¢. Ay
and X; are the spectral radii of the Jacobian matrices

—

of f. S.E’ f- §,7 and f - §¢, respectively, where S-',E, Sy
and §; are the cell surface area vectors along each
grid line direction. Exactly similar terms can be
constructed for D, W ;i and D¢ W ji.

Equation (13) can then be written as

where

dW;jx
dt

where Rj;jk is the residual

+Rij(W)=0, (14)

1
Rij (W)= E;(Qijk ~ Dijk)

Eqn. (14) can be integrated in time by an explicit
multistage scheme. Let W be the value of W
after n time steps. Dropping the subscripts 4, 7, &
a general m stage hybrid scheme to advance a time
step At can be written as

w = Wn

w) = WO _ o AR®
WD = WO~ apy AR
wim = wW® _ AR (m-1)
Wt = Wim

In this implementation a 5 stage scheme is used
with evaluations of the dissipation and the viscous

terms only at the first, third and fifth stages, The
coefficients are chosen to be

a = 1/4, az=1/6, a3 =3/8, as=1/2

The allowable Courant number for the 5 stage
scheme is 4.0. This number is increased by smooth-
ing the residuals ai each stage.

(1 - €cb2)(1 ~ €,62)(1 — €c8%) Rije = Rije  (15)

Where €., ¢, and ¢; are the smoothing parameters
in each direction and are given by, eg.,

¢ = max OI(CFL Ae 2_1
¢ "4 \CFL* M + Ap + X

Notice in the above equation that the CF L number
is scaled by the wave speed in each direction to ac-
count for the differences in the maximum allowable
time step in that direction. This was not used in the
Euler method presented in [5] and is introduced here
on consideration of the large disparity in grid sizes
in a mesh for solving the Navier-Stokes equations.

2.3 Multigrid Method

In order to further increase the rate of convergence,
locally varying time steps are used. A multigrid
method based on [17] is implemented. Coarse grids
are introduced by eliminating every other grid point
on the fine grids. In a vertex scheme values of the
flow variables on a coarser grid are taken directly
from those on the fine grid at the same grid points.
A forcing term is then defined as

Pai = QU Ra(Wi) - Ron (W)

where the subscripts & and 2h indicate the fine and
coarse grids. @}, is a collection operator which
forms a weighted average of the residuals on the fine
grid in the neighborhood of each mesh point of the
coarse grid. To update the solution on a coarse grid
the multistage scheme is reformulated as

W“) = Wg(;t) - alAt( (2‘) + Pgh)
16
wietl) - W(zl.)h) - ant(R.(z? + Pay) ( )

where R(9 is the residual of the g-th stage. In the
first stage of the scheme, the addition of Py cancels
Roa(W®) and replaces it by @5, Rn(W4), with the
result that the evolution on the coarse grid is driven
by the residual on the fine grid. This process is
repeated on successively coarser grids. Finally the
correction calculated on each grid is passed back to
the next finer grid by linear interpolation along each
grid line. In the present work a W-cycle strategy is



Figure 5: Approximate Normal Distances from Wall

used in each time step. In order to save computa-
tional time, the molecular and turbulent viscosity
coefficients are evaluated only on the fine grid and
frozen on the coarse grids.

In the solution of the Reynolds-averaged Navier-
Stokes equations, the robustness of the multigrid
method is enhanced by smoothing the corrections
from the coarse grids before they are added to the
solution on the fine grids. The same factorized
smoothing operator as shown in Eqn.(13) is again
used with a constant smoothing parameter.

2.4 The Baldwin-Lomax Algebraic
Turbulence Model

The Baldwin-Lomax model[14] is used to determine
the eddy viscosity in Eqn.(7). In this model, the tur-
bulent heat conductivity &, in Eqn.(8} is replaced by
cpite/ Pry, where Pry is the turbulent Prantd} num-
ber and is fixed as a constant. The eddy viscosity
p is given by a two-layer model.

(Ft):’ﬂner if ¥ & Yeroasover -
= . 1
He { (ﬂ't)outer if ¥ > Ycrossover ( ‘)

where y is the normal distance from the wall
and Yerossover 15 the smallest value of y at which
(#)inner = (Ht}outer. Since a general nonorthogo-
nal grid is used In our calculations, the wall distance
of a point A on a grid line n shown in Fig. 5 is taken
to be its distance to the wall point B projected along
the normal to the wall at B. Thus it is only an ap-
proximate normal distance in our implementation.
In the inner layer

(ﬂt)a‘nner = PFI“’I (18)

where
1= kylt — exp(-y*/A*)] (19)

w is the vorticity

Bv dw dw
|1-‘f + G-+ (G - goF
(20)

and

],l+ _ VOwTimaz ¥ (21)
Hw
Notice that the maximum laminar shear stress 71 maq
is used in the above equation instead of the wall
shear stress 7, in the original Baldwin-Lomax for-
mulation. This is to prevent vanishingly small g, in
the neighborhood of flow separation where the wall
stress T, is zero.
In the cuter region

() outer = KCoppFuake Fxies{y) (22)
where
Fuake = min{ymaz Fimaz, kaymuzvii_fj/Fmaz}
Yoz and Frq, are determined from the function
F(y) = ylwl[1 - exp(

where Fp,q. is the maximum value of F(y) that oc-
curs in a profile and ypmq4; i3 the y at which it occours.
Fiepep is the Klebanoff intermittency factor;

—y*/A%)) (23)

Usgiss = (Vu? + 0% 4 0)maz— (Va2 + 02 + 0¥ )nin

where {Vu? +9? + w?)ma: 15 the velocity magni-
tude at Yz and (Vu? +v? + w?)p, is the mini-
mum velocity magnitude in the profile, which is zero
on the wall.

In wakes only the outer formulation is used and
the exponential term in Eqn(24) is dropped.

The determination of transition to turbulence is
a troublesome matter. In our implementation, tran-
sition is either set at a given location or by using
a cut-off value for the turbulent eddy viscosity as
suggested by Baldwin and Lomax, ie.

=10 if (.u!)maz' < ﬂoOCMUTM (24)

The various empirical constants in the above model
are listed below.

At = 28

Cep = 16
Ckiee = 3

Cor = 10

k = 04

K = 0.168

Cumurye = 14

Pr;, = 09

The implementation of the Baldwin-Lomax model
is straight forward in two-dimensions. In three-
dimensions ambiguities arise in the corner regions
of the cascade blade and end-walls. Fig. 6 shows a
cross section of a cascade passage. In the four cor-
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Figure 6: A Cross Section of a Cascade Passage

ners, there are two length scales due to the blade sur-
face and the end-wall. Two turbulent viscosity coef-
ficients ji piade 304 fi1,waii can be determined based
on the two length scales and the above procedure.
In principle, one ought to determine a unique length
scale first and then obtain a plausible turbulent vis-
cosity based on the one length scale and the local
velocity or time scale of the flow. However, in our
applications, because of the difficulty in determin-
ing a unique length scale a simple approach is used,
in which the two turbulent viscosity coefficients are
blended by a weighted averaging according to the
distances from the two walls. Thus for the point P

y = dwall 1 plade T Bbtade Pt wall
.=
Awaii + datade

where d,,oy and dyigqe are the normal distances of P
from the blade and the end-wall respectively.

3 TResults and Discussions

In order to verify the proposed numerical method,
laminar flow over an NACA0012 airfoil, and laminar
and turbulent flows over a flat plate are calculated by
a two-dimensional version of the the scheme to verify
the numerical method. Two and three dimensional
calculations for a turbine cascade at design and off-
design conditions are then obtained.

3.1 Laminar Flow over the Airfoil
NACA 0012

The flow has a freestream Mach number A, = (.5,
angle of attack o = 0°, and the Reynolds number
based on chord length Re,, = 5000. A 256 x 64
mesh is used. Fig. 7 shows the skin friction coeffi-
cient on the airfoil surface. Complete symmetry is
achieved with the skin friction curve crossing zero at

0.82 chord point. This marks the start of flow sep-
aration from the airfoil surface. The Pressure drag
and skin friction drag compare well with results ob-
tained by Radespiel{18] with a different discretiza-
tion scheme as shown in the following table.

Cpp Cpr | X./c
{18] 0.0227 | 0.0327 | 0.81
Present Method | 0.0226 | (¢.0329 | 0.82

Fig. 8 shows some particle traces around the air-
foil. The recirculating vortices are seen near the
trailing edge. Fig. 9 is the convergence history for
this case. Monotonic convergence is achieved and
the scheme gives an engineering acceptable solution
within only 50 cycles.

3.2 Laminar and Turbulent Flow over
a Flat Plate

In these calculations, the free stream Mach num-
ber is set to 0.3 to approximate incompressible flow.
Laminar flow at Reynolds number Re = 35000 is
obtained. Fig. 10 shows the calculated surface skin
friction and that by Blasius in logarithmic scales.

A pgood check is the similarity profile offered by
the Blasius solution. Fig. 11 shows the calculated
velocity profile as scaled by the Blasius similarity
law at about 10%, 20%,...,and 90% chord length
downstream of the leading edge. Al of the data
points collapse into a single curve on the Blasius
velocity profile. Similarity is also obtained with the
vertical velocities.

Turbulent flow over the same flat plate at Re =
6% 108 is calculated. Fig. 12 is the calculated surface
skin friction plotted in logarithmic scale compared
with the 1/5 law of Prandtl. The skin friction jumps
up at transition and then follows the 1/5 law closely
towards the end of the plate.

Fig. 13 shows the turbulent similarity velocity pro-
file at different streamwise locations. Regions of
laminar sublayer, the logarithmic law of the wall and
the wake are distintly captured.

3.3 Flow Through a Turbine Cascade

Notwithstanding the success of the algebraic model
for the flat plate, the same model should not be
expected to be equally applicable to other turbu-
lent flows. The above results confirm, however,
the proper implementation of the Baldwin-Lomax
model. In this section the importance and lim-
itations of solving the Navier-Stokes equations is
demonstrated in calculations of the flow through a
low pressure turbine cascade{l2] at its design and
off-design conditions.

Fig. 14 is the two-dimensional mesh with 209 x 65
grid points used in the calculations., The mesh is
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initially generated by an clliptic method and then
stretched in the blade to blade dircetion to provide
grid point clustering near the blade surfaces. The
first grid point is taken to be 1.5 x 107* axial chord
length away from the blade surface. In the three-
dimensional calculations, only half of the blade span
is used since the blade passage has a symmetric di-
vergence of 6 degrees on the sidewalls, A 209x65x33
mesh is generated by stacking the two-dimensional
mesh in the spanwise direction. The z coordinate
of the grid points are stretched along spanwise grid
lines to make the mesh conform to the endwall and
provide clustering ncar the wall. Since this cascade
has a large aspect ratio{1.818 at the exit) and a
pitch-chord ratio of 0.564, the spanwise resolution
provided by the 33 grid points in half span is in fact
rather poor compared to the blade to blade passage.
The smallest grid size near the endwall usced in this
work is only 2.8 x 10™3 axial chord length.

In all the calculations, the Baldwin-Lomax alge-
braic modcl deseribed in the previous section is used.
Traasitions are set at specific locations on the blade
surfaces. On the side walls, cxperimental data in
Hodson and Dominy [12] suggest that the flow is tur-
bulent at the entrance and transitional at the exit.
In the calculations, the flow is assumed to be fully
turbulent on all of the endwalls. The endwall veloc-
ity profile at the entrance is specified by cxperimen-
tal data provided in [12].

3.3.1 Flow at the Design Condition

At its design condition this cascade has an exit isen-
tropic Mach number of 0.7, an incidence angle of
38.8 degrees, and an isentropic exit Reynolds num-
ber Re = 2.9 x 10°. Fig. 15 reproduces from [5] the
isentropic Mach number distribution at mid-span
obtained with a three-dimensional Euler method. It
was cxplained in 5] that the slight discrepancy be-
tween caleulation and experiment on the aft portion
of the upper surface was duce to a small separation
bubble, which was observed in Hodson and Dominy’s
experiment{12].

In view of the large amount of computer memory
and CPU time needed by a full three-dimensional
Navier-Stokes calculation, some computations were
first carried out with a two-dimensional version of
the current method. Fig. 16 is the isentropic Mach
number distribution at mid-span calculated by the
two-dimensional code. Compared to Fig. 15, the
two-dimensional result underpredicts the iscntropie
Mach number by quite a margin duc to the fact that
it dves not account for the divergence of the end-
walls, However, the small hump in the aft portion
of the suction surface pressure distribution that was
observed in the experiment but missed by the invis-
cid calculation is now captured by the viscous code.

The separation bubble on the back of the cas-

cade blade is confirmed by the skin friction distri-
bution shown in Fig. 17. This scparation starts at
about 80% axial chord and ends at about 90% axial
chord, which agrees with the experimental location
obtained by il flow in[11, 12]. It is due to this sep-
aration bubble that the isentropic Mach numbet in
that region exhibits higher values than the inviscid
solution. A small leading edge scparation bubble
which was observed in experiment on the suction
surface]12], however, is not found in this calcula-
tion, although the skin friction does show a spiked
low value near the leading edge. This is most likely
duc to the inability of the mesh to resolve the thin
boundary layer near the leading edge. On the pres-
sure surface incipient separation exists from about
15% axial chord to about 20% axial chord. Hod-
son and Dominy[l1] estimated that this was from
12% to 20% blade surface distance bascd on oil flow
visualization.

Transition in this calculation is set at 0.88 axial
chord on the suction surfacce and 0.2 axial chord on
the pressure surface in view of the approximate tran-
sition locations observed in experiment. Some ad-
justments of these locations were performed so that
the pressure distribution agreed better with the ex-
perimental data. The original transition criterion by
Baldwin and Lomax did not give good results. Such
manual adjustment on transition and the turbulence
model itself present the major uncertainties in the
calculation,

The two-dimensional calculations captures most
of the viscous features of the flow at mid-span, de-
spite the inaccuracy causcd by assuming no cndwall
divergence. Fig. 18 shows the isentropic Mach num-
ber at mid-span with the three-dimensional version
of the code. Clearly this problem is rectified. Fig.
19 shows the skin friction distribution at mid span.
Compared to the two-dimensional solution in Fig.
17, the three-dimensional solution doces not predict a
true separation bubble on the suction surface, rather
it predicts a stnall region of near scparation flow.
Nouetheless, the small hump in the isentropic Mach
number distribution shown in Fig. 18 is still closely
reproduced.

The three-dimensional viscous caleulation with
the rather fine 209 x 65 x 33 mesh needs about 300
Megabytes of memory in double precision and takes
about 12 hours of CPU time on a single proces-
sor on a Convex C220 to march 200 time steps. In
comparison, the two-dimensional code needs only 10
Megabytes of memory and less than 20 minutes of
CPU time for the same number of time steps but
with better convergence. Fig. 20 shows the conver-
gence history for the two and three-dimensional cal-
culations. The parameters in the numerical scheme
have not been optimized for the three-dimensional
calculations due to constraints in computer time,

The effect of the side wall boundary layer is closely



related to secondary flow development in the cas-
cade passage. It was shown in [5] that given the
entrance side-wall boundary layer profiles, the Euler
model was capable of predicting the qualitative fea-
tures of the secondary flow vortices due to inviscid
convection. Fig. 21 contains a reproduction of the
spanwise variation of pitchwise mixed-out flow an-
gle at 140% axial chord along with those obtained by
experiment{12] and the current Navier-Stokes code.
There is a large overturning near the wall, This over-
turning is then followed by an underturning some
distance into the flow field, This is due to the in-
duced velocity by the passage vortex. In the inviscid
solution the underturning of the flow was predicted
with the right magnitude but a displaced location.
The discrepancy was attributed to the fact that the
Euler model does not account for the boundary layer
growth in the cascade passage due to the diffusive ef-
fects of viscosity. The Navier-Stokes solution shown
in Fig. 21 seems to confirm this diffusive effect.
However, the predicted magnitude of the underturn-
ing is not as large as that of the inviscid sclution.

Notice also the difference between the inviscid and
viscous solutions near the endwall in Fig. 21. The
overturning is reduced in the viscous solution as
compared to the steady increase in the inviscid solu-
tion. The blade to blade pressure gradient forces the
low energy flow in the boundary layer to turn more
than the inviscid core flow, thus forming the passage
vortex. But very near the wall viscous effects retarts
this overturning mechanism. The experimental re-
sults from Hodson did not provide data very near
the wall, but the existence of reduced overturning
was pointed out.

If the endwall is regarded as a flat plate with lam-
inar flow, a grid size of 2.8 x 102 axial chord length
would cotrespond to an 5 = VRe y//T of 1.5 in the
Blasius velocity profile at the end of the plate with
Reynolds number 2.9 x 10°%. With grid stretching,
the 4th grid point would give i > 6, which is outside
the boundary layer. It must be remembered that the
flow over the endwall is turbulent, which will need
an even smaller grid size to have at least one grid
point in the laminar sublayer region. On this con-
sideration, it is doubtful whether we have adequate
resolution for the endwall boundary layers with the
current grid. Nevertheless, the predicted spanwise
variation of pitchwise mixed-out flow angle shown in
Fig. 21 seem to agree with the experimental data.
More detailed examination of the endwall boundary
layer, its interaction with the blade surface and the
development of secondary flows must be pursued.

3.3.2 Flow at an Off-Design Condition

Fig. 22 shows the inviscid pressure distribution ob-
tained in [5] at —20.3° incidence relative to the de-
sign condition. In this case there is a large separa-

tion bubble on the pressure surface. Because of this
separation the inviscid solution shows a large suc-
tion peak and then a steep diffusion as compared to
the smaller suction followed by a long flat curve mea-
sured in experiment. Fig. 23 is the solution obtained
with the two-dimensional Navier-Stokes code. The
flat region of pressure distribution due to separa-
tion is reproduced with surprisingly good accuracy,
considering the uncertainties involved in the calcu-
lation. Transition to turbulence in this caleulation
is set at 0.84 axial chord on the suction surface and
0 axial chord on the pressure surface. Fig. 24 shows
the skin friction on the blade. The pressure sur-
face separation bubble can be clearly seen. The flow
separates at about 3% axial chord and then expe-
riences transition and reattaches at about 58% ax-
ial chord. Hodson and Dominy{13], however, found
that the separation is of a smaller length from 5%
to 45% axial chord. This may explain why the cal-
culated isentropic Mach number tends to curve up-
wards compared to the experimental data. compar-
ison with results by other turbulence models would
be desirable. Fig. 25 shows the velocity vectors be-
low the pressure surface. The large recirculation is
evident,.

On the suction surface, there is a smali separa-
tion bubble on the back of the blade. This is con-
firmed by the skin friction plot and by the small
hump in isentropic Mach number distribution shown
in Fig. 23. Fig. 26 displays the velocity vectors in
that region. An incipient separation can be seen.

Although a steady state solution was achieved for
this case with the two-dimensional code, it was not
obtained with the three-dimensional program on the
209 x 65 x 33 mesh. Calculations show quite fast con-
vergence on a coarse mesh with 105 x 33 x 17 grid
points. When the solution on the coarse grid is in-
terpolated onto the fine grid, the fine grid solution
converges to a certain point and then starts to os-
cillate with the maximum residuals occurring in the
lower wall separation region. This may be related to
the nature of the flow separation and the properties
of turbulence modeling. Fig. 27 shows the isentropic
Mach number at mid-span obtained by the three-
dimensionai code at one instant. Fig. 28 is the skin
frictzon at mid-span, which reveals that the flow on
the pressure surface separates, reattaches and then
separates again. The same trend seems to he also
present in the converged two-dimensional solution.
It should be pointed out that Hodson and Dominy
did not provide detailed skin friction measurement
for this cascade, nor do the authors have knowledge
of any computational results by other methods. It
would be very desirable to compare results by other
methods and with other turbulence models.



4 Concluding remarks

A vertex-based finite volume method with a multi-
stage time stepping scheme for the Reynolds-
averaged Navier-Stokes equations is presented for
calculating three-dimensional cascade flows. The
program has been validated by calculating laminar
flow over a NACAD012 airfoil, and laminar and {ur-
bulent flows over a flat plate.

The method has been applied to a three-
dimensional low pressure turbine cascade which was
studied by an Euler method. Clear improvements
were achieved over the Euler solutions for flows with
separation at both design and off-design conditions.
A 209 % 65 mesh in the blade to blade section with
a minumum grid size of 1.5 x 10~* axial chord is ad-
equate to resolve the boundary layer over the blade
surfaces. Skin friction plots show the separation
bubbles which were observed in experiment. How-
ever, the locations of transition and turbulence mod-
eling pose uncertainties to the calculations.

Although the smallest grid size used in the calcu-
lation over the endwall does not seem to be small
enough to adequately resolve the turbulent endwall
boundary layer, the predicted variation of pitchwise
mixed-out exit flow angle compare reasonably well
with experimental data in both strength and loca-
tion. More detailed studies on the interaction be-

tween the blade and the endwall boundary layers

and the development of secondary flows arc needed.

Despite the uncertainties involved in Reynolds-
averaged Navier-Stokes calculations with turbulence
modeling, the proposed method provides a viable
tool for flow analysis and engineering design of tur-
bomachinery cascades.
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