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Abstract 
A vertex-based finite volume method for solving the 
three-dimensional compressible Reynolds-averaged 
Navier-Stokes equations is presented for calculat- 
ing turbomachinery cascade flows. A discretization 
scheme for the viscous terms is proposed. This 
discretization scheme avoids a potential problem 
on kinked meshes. The Baldwin-Lomax algebraic 
turbulence model is used. The scheme is verified 
against laminar and turbulent flows over a flat plate. 
Perfect agreement is obtained with the Blasius so- 
lution for the laminar flow. Agreement with em- 
pirical solutions is also obtained for turbulent flows. 
Both two- and three-dimensional computations were 
carried out for a low pressure turbine cascade. Re- 
sults are compared with inviscid solutions and exper- 
imental data. Predicted pressure distributions agree 
with experiments at both design and off-design con- 
ditions. Surface skin-friction distribution and veloc- 
ity vectors in the flow field are also presented. d 

1 Introduction 
With the advent of computer technology and nu- 
merical methods, flow field computations of turbo- 
machinery cascades become feasible as a routine de- 
sign procedure. In many cases a good prediction 
of blade pressure distributions can be achieved by 
using an inviscid method, eg. Denton[l], Smith 
and Caughey[2], Holmes and Tong[3], and Liu and 
Jameson[4, 5) .  However, since such a method ig- 
nores viscous effects it may fail badly in predicting 
off-design conditions. Under such conditions, vis- 
cous effects such as boundary layer separation may 
have drastic effects on the pressure distribution on 
the cascade blades. 

In an earlier paper[5] the authors presented results 
of cascade flow calculations with a three-dimensional 
Euler method. It was found that the pressure dis- 
tribution on the cascade blade surface agreed well 
with the experimental data obtained by Hodson and 
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Dominylll, 12,131 for a low pressure turbine cascade 
at its design condition. When proper inlet boundary 
conditions were given the Euler equations were also 
found to be capable of capturing the major features 
of secondary flow vortices caused by the convection 
of the inlet endwall boundary layers. However, small 
discrepancies existed where small separation bubbles 
were found in experiment at the design condition. 
At an  off-design condition there were large differ- 
ences between the predicted pressure distributions 
and the experimental data due to the existence of 
large separation in the flow field. For such flows it is 
essential to include viscous effects in the simulation. 
Solution of the Navier-Stokes equations is particu- 
larly needed for flows with strong blade and endwall 
interactions. Hah developed an implicit relaxation 
method for the Navier-Stokes equations[6]. Chima 
used an explicit multigrid algorithm for quasi-three- 
dimensional flows[7]. Some other contributions in- 
clude Davis, Ni and Carter[8], Choi and Knight[S], 
and Dawes[lO]. 

In this paper a finite volume scheme for solving 
the Reynolds-averaged Xavier-Stokes equations in 
three dimensions is presented. A vertex scheme is 
used in this work instead of the cell-centered scheme 
used in (51 for the Euler equations. It is believed that 
a cell-vertex scheme may have better accuracy than 
a cell-centered scheme on irregular meshes. In this 
paper an alternative discretization is used for the 
viscous terms as modified from one of the schemes 
used by Martinelli[lG] in his two-dimensional Navier- 
Stokes code. This new discretization avoids a poten- 
tial difficulty in calculating the viscous terms when 
the computational mesh has  kinks. A multigrid 
method is used to accelerate convergence. The nu- 
merical method with the Baldwin-Lomax algebraic 
turbulence model is used to  calculate the flow in 
the same low pressure turbine cascadelll, 12, 131 for 
which solutions of the Euler equations were obtained 
by the authors in [SI. The usefulness and limitations 
of the Navier-Stokes calculations will be demon- 
strated through comparison of the results with those 
of the Enler calculations and the experiment. 



2 Numerical Method 
2.1 The Reynolds-averaged Navier- 

Stokes equations 
After proper non-dimensionalization, the Reynolds- 
averaged Navier-Stokes equations can be written in 
an integral form as 

1 
Re 

$ W d t +  T .  rids = - h#.  iidS (1) 

for a fixed region R, where 

0 

( i =  1,2,3)  F = IF,} = { F l , j }  = 

and c =  { u 1 , u 2 , u 3 }  = { u , u , w }  is the velocity vec- 
tor. 

W is a formal vector of 5 scalar components: W I .  

where I = 1 , 2 , .  . , , 5  indicates the equationturnher 
in the Navier-Stokes system of equations; f and 
are formal vectors of 5 Cartesian vector components: 

and Fi; The hold face here is used to  denote that 
W, f ,  and f are pseudo vectors in-I. The arrowed 
overscores, however. indicate that  f and @ are gen- 
uine Cartesian vectors in  space. Re is the Reynolds 
number based on the reference values in the non- 
dimensionalization. 

where 
P,VCQI, Re, = 

Pm 
The eddy viscosity concept due to  Boussinesq is 

used for turbulent flow. The total stress is related 
to the the mean shear stress by a total viscosity co- 
efficient: p + p~ 

2 8% k 

3 aZ k 
u i j  = 2(P + P 1 ) S i j  - - ( p  + p l ) - & j  (7)  

where S i j  is the rate of strain tensor, p is the molec- 
ular viscosity, and fiC is the turbulent eddy viscosity. 

Similarly, the total heat flux is related to the tem- 
perature gradient as in the Fourier law by a total 
heat conductivity: k + kt 

Figure 1: A Three-dimensional Super-cell for the 
Vertex Scheme 

where k is the molecular heat conductivity and k, is 
the turbulent heat conductivity. 

2.2 Finite Volume Scheme and Time 
Stepping 

The basic numerical method is described in more 
detail in [15]. The computational domain is divided 
into hexahedral cells. In a vertex scheme the  flow 
variables are defined a t  the cell-vertices of hexahe- 
dral cells. A system of ordinary differential equa- 
tions can be obtained by applying equation (1) to a 

a vertex point as shown in Fig. 1. 
super-cell formed by the union of 8 cells surrounding W 

d 
- ( R i j k W i j t )  + Q q i j k  - Q v . ; j k  = 0 (9) dt  

where Q ; j k  is the volume of the super-cell, Q c , ; j k ,  

Q v , ; j ) i  are the net convective and diffusive fluxes out 
of the super-cell, respectively. The convective flux 
balance over the m-th elementary cell around the 
vertex ( i , j , k )  can be approximated by 

8 

( Q c , i j k ) m = z ? k . d . ! ? k  f o r m =  1,2,...,8 (10) 
k = l  

where the summ_ation is over the six faces of the hex- 
ahedral cell. d S k  = 5 .  d s k  is the face area vector, 
which has the face area as its m_agnitnde and the 
outer normal ii for its direction. f k  are the average 
flux vectors on each face. The convective 0ux bal- 
ance over one super-cell can be obtained by summing 
the flux balances over the 8 constituent cells. 

8 

Q c , i j k  = C ( Q c . i j k ) m  (11) 
m=1 

Since flow variables are defined at cell-vertices, 
the velocity and temperature derivatives at each cell L 
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Figure 2: Martinelli’s Auxiliary Cell to Calculate 
Derivatives for the Cell-centered Scheme 

Figure 3: Problem with a Kinked Mesh 

center can be found by applying Gauss’s formula to 
each individual cell. Suppose is to be found at  
the center of a cell. By Gauss’s formula, 

+ 
where dS, is the z component of dS. 

To calculate the viscous fluxes Q y , i j k  a n  auxil- 
iary control volume around the vertex point ( i , j , k )  
is formed. For simplicity, consider in Fig. 2 a ver- 
tex point in a two-dimensional mesh. Martinelli[lG] 
in one of his two-dimensional schemes formed the 
auxiliary control volume by directly connecting the 
cell-centers A, B, C, and D(Fig. 2). Since the deriva- 
tives of vejocity and temperature are found at all cell 
centers, Ft on each face of the above formed-control 
volume can be evaluated as the average of F at the 
end points. Q+l;  can then be obtained by 

6 

Q v , i j k  = E*& ’ d 3 k  (12) 
k = l  

A difficulty may arise, however, in the above 
method when the mesh exhibits a kink as shown 

Figure 4: Auxiliary Cell used in This Work to  Calcu- 
late the Diffusive Balance for the Cell-vertex Scheme 

in Fig. 3. In that case, the vertex point where the 
diffusive flux balance is to be found falls outside the 
auxiliary cell and the local accuracy may drop. To 
rectify this, an alternative scheme is proposed. An 
auxiliary cell connecting A, B, C, D, and the mid- 
points(mid-lines in three-dimensions) a, b, c, and d 
of the cell faces is formed as shown in Fig. 4. 

The surface integral on face Aa can be evaluated 
as PA times (d$ ) )Ao ,  where $)A is @ a t  A and (d$)A,  
is surface area vector for Aa. The surface integrals 
over other face segments of the control volume in 
Fig. 4 can be formed in the same manner. Although 
the surface integral on each face segment is one- 
sided, the above scheme is equivalent to Martinelli’s 
scheme for regular meshes but is expected to give 
better local accuracy on grids with sharp kinks. 

With the above formulation, we have associated 
with each vertex, on which flow variables are defined, 
a control volume(the super-cell) to which the inte- 
gral equation (1) is applied, thus producing equal 
numbers of equations and unknowns. It appears, 
however, that two different control volumes have 
been used for the convective and diffusive terms in 
the above approach. This can be reconciled by scal- 
ing the magnitude of Q c . i , k  so that it corresponds to 
that for the control volume used to calculate Q u , i j k  

or vice versa. The schemes thus constructed for 
the convective and diffusive terms are both sepa- 
rately globally conservative, with the consequence 
that global conservation of mass, momentum and 
energy is assured. 

The above scheme reduces to a central difference 
scheme on Cartesian meshes, and is second order 
accurate if the mesh is sufficiently smooth. How- 
ever a central difference scheme will permit modes 
with odd and even decoupling. To prevent this and 
to capture shocks without pre-shock oscillations, an 
additional dissipation term is added to  the semi- 
discrete equation (9) so that we solve 

d 
- ( % j & W i j k )  + Q i j k  - D i j k  = 0 dt  (13) 



The dissipation fluxes di++, j ,k  are defined as a 
blending of first and third differences 

d i + + , j , k  = € ~ + , ~ , ~ ( R ( ) i + ~ , j , k A ( w i , J , k  

( 4 )  + 6;-  4 , j , k  (R<)i++ , j , k A i W i - I , j , k  

where A( is the forward difference operator defined 
by 

Acwijk = w i + l , j , k  - W i j k  . 
In the current method for the Reynolds-averaged 
equations, redistributed directionally variable dissi- 
pation scales are used following Martinelli's work in 
two-dimensions. In this approach 

( R t ) i + f , j , k  = ' E Q  

where 

w is a parameter usually chosen to be 0.66. A t .  A, 
and A< are the spectral radii of the Jacobian matrices 
of ?.  $e, f .  9, and f .  S,, respectively, where g,,  3, 
and 9, are the cell surface area vectors along each 
grid line direction. Exactly similar terms can be 
constructed for D,W,,k and D ( w i , k .  

Equation (13) can then be written as 

where R ; j k  is the residual 

Eqn. (14) can be integrated in time by a n  explicit 
multistage scheme. Let W" be the value of W i j k  

after n time steps. Dropping the subscripts i, j ,  k 
a general m stage hybrid scheme to advance a time 
step At  can be written as 

w(0) = W" 

W(m-1)  = ~ ( 0 )  - a,-l A ~ R ( , - ~ )  

W"+l = W ( d  

W(') - - W(0) - (11 AtR(O) 
... 

W ( m )  = ~ ( 0 )  - AtR(m-1) 

In this implementation a 5 stage scheme is used 
with evaluations of the dissipation and the viscous 

terms only a t  the first, third and fifth stages. The 
coefficients are chosen to be 

ai = 114, (12 = l / G ,  (13 1318, a 4  = 112 . 
The allowable Courant number for the 5 stage 
scheme is 4.0. This number is increased by smooth- 
ing the residuals at each stage. 

L/ 

(1 - €(6;)(1 - €&,)(I - q6;) R i , k  = R i j k  (15) 

are the smoothing parameters Where c r ,  cv and 
in each direction and are given by, eg., 

Notice in the above equation that the CFL number 
is scaled by the wave speed in each direction to ac- 
count for the differences in the maximum allowable 
time step in that direction. This was not used in the 
Euler method presented in 151 and is introduced here 
on consideration of the large disparity in grid sizes 
in a mesh for solving the Navier-Stokes equations. 

2.3 Multigrid Method 
In order to further increase the rate of convergence, 
locally varying time steps are used. A multigrid 
method based on [17] is implemented. Coarse grids 
are introduced by eliminating every other grid point 
on the fine grids. In a vertex scheme values of the 
flow variables on a coarser grid are taken directly 
from those on the fine grid at  the same grid points. 
A forcing term is then defined as 

U 

P z h  = Q ; h R h ( W h )  - R z h ( W ; " , ' )  

where the subscripts h and 2h indicate the fine and 
coarse grids. Qkh is a collection operator which 
forms a weighted average of the residuals on the fine 
grid in the neighborhood of each mesh point of the 
coarse grid. To update the solution on a coarse grid 
the multistage scheme is reformulated as 

W(')  = Wri - alAt(@i 4 P z ~ )  

(16) 
... 

w('+') = w$) - QqAt(@i + P Z h )  
... 

where R(q) is the residual of the q-th stage. In the 
first stage of the scheme, the addition of P 2 h  cancels 
R2h(W(O)) and replaces it by Q t h R h ( W h ) ,  with the 
result that  the evolution on the coarse grid is driven 
by the residual on the fine grid. This process is 
repeated on successively coarser grids. Finally the 
correction calculated on each grid is passed back to  
the next finer grid by linear interpolation along each 
grid line. In the present work a W-cycle strategy is 
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and 
d-Y y+ = 

P W  

Figure 5: Approximate Normal Distances from Wall 

used in each time step. In order to save computa- 
tional time, the molecular and turbulent viscosity 
coefficients are evaluated only on the fine grid and 
frozen on the coarse grids. 

In the solution of the Reynolds-averaged Navier- 
Stokes equations, the robustness of the multigrid 
method is enhanced by smoothing the corrections 
from the coarse grids before they are added to the 
solution on the fine grids. The same factorized 
smoothing operator as shown in Eqn.(l5) is again 

J used with a constant smoothing parameter. 

2.4 The Baldwin-Lomax Algebraic 
Turbulence Model 

The Baldwin-Lomau model[l4] is used to determine 
the eddy viscosity in Eqn.(7). I n  this model, the tur- 
bulent heat conductivity kt in Eqn.(8) is replaced by 
cpp t /P r t ,  where P r t  is the turbulent Prantdl num- 
ber and is fixed as a constant. The eddy viscosity 
pt is given by a two-layer model. 

W 

(17) 
( ~ t ) , " " ~ ?  if y 5 Y ~ ~ ~ . ~ ~ ~ ~ ~  

w = (  (pt)outer if y > y ~ p o ~ ~ o ~ e ~  

where y is the normal distance from the wall 
and yCPOBdoVeP is the smallest value of y at which 
(fit),nner = (pt)outer. Since a general nonorthogo- 
nal grid is used in our calculations, the wall distance 
of a point A on a grid line 7 shown in Fig. 5 is taken 
to be its distance to the wall point B projected along 
the normal to the wall at B .  Thus it is only an ap- 
proximate normal distance in our implementation. 

In the inner layer 

(Pdanner = P@Jl (18) 

(19) 
where 

w is the vorticity 

1 = ky[l - exp(-y+/A+)] 

h'otice that the maximum laminar shear stress qmor 
is used in the above equation instead of the wall 
shear stress T~ in the original Baldwin-Lomax for- 
mulation. This is to prevent vanishingly small in 
the neighborhood of flow separation where the wall 
stress rw is zero. 

In the outer region 

( ~ t ) o u t e r  = KCcpPFuohcF~~eb(~) (22) 

where 

Fwoke = min{ym,.Frn.,,C,~y,,,Ud2,,~/Fm,,J 

Ymaz and F,,, are determined from the function 

F(Y) = Ylwl[l - ex~(-y+/A+)I (23) 

where F,,, is the maximum value of F(y) that oc- 
curs in a profile and y,,, is the y at which it occurs. 
F ~ l ~ b  is the Klebanoff intermittency factor; 

Ud>lf = (dU2 + U z  + W Z ) m e z - ( & ~ ) m i n  

where (du2  + v2 + w2 IS the velocity magni- 
tude at ymot and ( + u2 + u2 + w ),in is the mini- 
mum velocity magnitude in the profile, which is zero 
on the wall. 

In wakes only the outer formulation is used and 
the exponential term in Eqn(24) is dropped. 

The determination of transition to  turbulence is 
a troublesome matter. In our implementation, tran- 
sition is either set at a given location or by using 
a cut-off value for the turbulent eddy viscosity as 
suggested by Baldwin and Lomax, ie. 

PI = 0 if ( ~ t ) , ~ =  < P ~ C M U T M  (24) 

The various empirical constants in the above model 
are listed below. 

A+ = 26 
C,, = 1.6 

CKleb = .3 
CUL = 1.0 

k = 0.4 
K = 0.168 

CMUTM = 14 
Prt = 0.9 

The implementation of the Baldwin-Lomax model 
is straight forward in two-dimensions. In three- 
dimensions ambiguities arise in the corner regions 
of the cascade blade and end-walls. Fig. 6 shows a 
cross section of a cascade passage. In the four cor- 
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Figure 6: A Cross Section of a Cascade Passage 

C D p  CD/ I x * / c  
0.0227 0.0327 1 0.81 
0.0226 0.0329 1 0.82 

ners, there are two length scales due to the blade sur- 
face and the end-wall. Two turbulent viscosity coef- 
ficients pC,blo& and pt,wuaii can be determined based 
on the two length scales and the above procedure. 
In principle, one ought to determine a unique length 
scale first and then obtain a plausible turbulent vis- 
cosity based on the one length scale and the local 
velocity or time scale of the flow. However, in our 
applications, because of the difficulty in determin- 
ing a unique length scale a simple approach is used, 
in which the two turbulent viscosity coefficients are 
blended by a weighted averaging according to  the 
distances from the two walls. Thus for the point P 

dumrl PC,blade f dblade Pt ,wal l  

dwol l  f dblode 
111 = 

where d,.ll and dbladr are the normal distances of P 
from the blade and the end-wall respectively. 

3 Results and Discussions 
In order to verify the proposed numerical method, 
laminar flow over an NACA0012 airfoil, and laminar 
and turbulent flows over a flat plate are calculated by 
a two-dimensional version of the the scheme to verify 
the numerical method. Two and three dimensional 
calculations for a turbine cascade at design and off- 
design conditions are then obtained. 

3.1 Laminar Flow over the Airfoil 
NACA 0012 

The flow has a freestream Mach number M ,  = 0.5, 
angle of attack a = O", and the Reynolds number 
based on chord length Re, = 5000. A 256 x 64 
mesh is used. Fig. 7 shows the skin friction coeffi- 
cient on the airfoil surface. Complete symmetry is 
achieved with the skin friction curve crossing zero at 
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initially gcncratcd by an elliptic method and thcn 
stretched in the blade to  blade direction to provide 
grid point clustering near the blade surfaces. The 
first grid point is taken t o  be 1.5 x lV4 axial chord 
length awdy from the  blade surface. In the three- 
dimcusional calculations, only half of the blade span 
is used since the blade passage tias a symmetric di- 
vergence of 6 degrees on the sidewalls. A 2 0 9 ~ 6 5 x 3 3  
mesh is generated by stacking the two-dimensional 
mesh in the spanwise direction. The z coordimte 
of the grid points arc stretchcd along spanwisc grid 
lines to  make the mesh conform to  the endwall and 
provide clustering near the wall. Since this cascade 
has a large aspect ratio(l.818 at thc exit) and a 
pitch-chord ratio of 0.564, the spanwise resolution 
provided by the 33 grid points in half span is in fact 
rather poor compared to the blade to blade passage. 
Thc smallest grid size near the endwall used in this 
work is only 2.8 x 

In all the calculations, the Baldwin-Lomax alge- 
braic modcl dcscribcd in the previous scction is used. 
Transitions arc set at specific locations on the blade 
surfaces. On the sidc walls, cxpcrimcntal data  in 
Hodson and Dominy 112) suggest that  the flow is tur- 
bulent at the entrance and transitional at the exit. 
In the calculations, the flow is assumed to be fully 
turbulent on all of the endwalls. The endwall vcloc- 
ity profile at thc entrance is specified by cxpcrimcn- 
tal data providcd in [12]. 

3.3.1 Flow at the Design Condition 

At its design condition this cas~carle has an exit isen- 
tropic Mach number of 0.7, an incidcncc angle of 
38.8 degrees, and an isentropic exit Reyiiold~ num- 
ber Re = 2.9 x lo5. Fig. 15 reproduccs from [5] tlic 
iscntropic Mach number distribution at mid-span 
obtained with a three-dimensional Euler method. It 
was cxplaincd in 15) that  the slight discrcpancy bc- 
tween calculation and experiment on the aft portion 
of the upper surface was due to  a small scparation 
bubblc, which was observed in Hodson and Dominy’s 
experirnent(lZ]. 

In view of the large amount of computcr mcniory 
and CPU time needed by a full three-dimensional 
Navicr-Stokcs calculation, some computations were 
first carried out with a two-dimensional version of 
the current method. Fig. 16 is the isentropic Mach 
number distribution at mid-span calculatcd by the 
two-dimensional code. Compared to Fig. 15, the 
two-dimensional result underpredicts the iscntropic 
Mach number by quitc a margin due to  thc fact that  
i t  does not account for the divergence of tllc end- 
walls. However, thc small hump in the aft portion 
of the suction surface pressure distribution that was 
obscrvcd in the cxpcrimcnt but missed by thc invis- 
cid calculation is now captured by the viscous code. 

The separation bubblc on tllc back of tlie cas- 

v 

axial chord length. 

LJ 
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cadc blade is confirmed by the skin friction distri- 
bution shown in Fig. 17. This separation starts at 
about 80% axial chord and ends at about 90% axial 
chord, which agrees with the experimental location 
obtained by oil flow in(l1, 4. It is due to  this sep 
aration bubblc that the iscntropic Mach number in 
that region exhibits higher values than tlrc inviscid 
solution. A small leading edgc separation bubblc 
which wity observed in experiment on the suction 
surface[l2], however, is not found in this calcula- 
tion, although the skin friction docs show a spiked 
low wlue near the lcading edge. This is most likely 
due to the inability of the mcsh to resolve thc thin 
boundary layer near thc leading cdgc. On thc prcs- 
sure surface incipient separation exists from about. 
15% axial chord to  about 20% axial chord. Hod- 
son and Do~niriy[ll] estimated that this was from 
12% to  20% blade surface distance bascd on oil flow 
visualization. 

Transition in this calculation is set at 0.88 axial 
chord on the suction surfacc and 0.2 axial chord on 
the pressure surface in view of the approximate tran- 
sition locations obscrvcd in cxpcrimcnt. Some ad- 
justments of thcsc locations wcrc pcrformcd so that  
the pressure distribution agrecd better with the ex- 
pcrimcntal data. The original transition critcrion by 
Baldwin and Lomax did not give good results. Such 
manual adjustmcnt on transition and thc turbulence 
modcl itself prcscnt tlic major uncertaintics in the 
calculation. 

The two-dimensional calculations captures most 
of the viscous features of tlie flow at mid-span, de- 
spite the inaccuracy caused by assuming no endwall 
divergence. Fig. 18 shows the iscntropic Mach num- 
ber at mid-span with the three-dimensional version 
of thc code. Clearly this problcm is rectified. Fig. 
19 shows the skin friction distribution a t  mid span. 
Compared to  the two-dimensional solution in Fig. 
17, the thrce-dimensional solution docs not prcdict a 
true separation bubblc on the suction surface, rather 
it predicts a small region of near separation How. 
Nonetheless, tlic small hump in tlie isentropic Mach 
number distribution sliown in Fig. 18 is still closely 
rcprodnccd. 

Tlic three-dimensiond viscous calculat.ion with 
the rather fine 209 x 65 x 33 mcsh needs about 300 
Megabytes of memory in double precision and takes 
about 12 hours of CPU time on a single proces- 
sor on a Convcx C220 to march 200 timc steps. In 
comparison, the two-dimensional code needs only 10 
Mcgabytcs of mcmory and less than 20 minutes of 
CPU timc for the same number of time steps but 
with better convergence. Fig. 20 shows the  conver- 
gence history for the two and thrcc-dimcnsional cal- 
culations. The parameters in the numerical scheme 
have not been optiniizcd for the threc-dimensional 
calculations due to constraints in computcr timc. 

The effect of the side wall boundary layer is closely 



related to  secondary flow development, in tlie cas- 
cade passage. It was shown in [5] tliat giveii tlie 
entrance side-wall boundary layer profiles, tlie Eulcr 
model was capable of predicting tlie qualitative fea- 
tures of tlie secondary flow vortices due to inviscid 
convection. Fig. 21 cont,ains a reproduct,ioii of blie 
spanwise variation of pitchwise mixed-out flow an- 
gle at  140% axial chord along with those obtained by 
experiment[l2] and the current Navier-Stokes code. 
There is a large overturning near the wall. This over- 
turning is then followed by an underturning some 
distance into tlie flow field. This is due to the in- 
duced velocity by the passage vortex. In t.he inviscid 
solution the underturning of tlie flow was predicted 
with the right magnitude but, a displaced location. 
The discrepancy was attributed to tlie fact that th? 
Euler model does not account for the boundary layer 
growth in tlie cascade passage due to the diffusive ef- 
fects of viscosity. The Navier-Stokes solution slrowu 
in Fig. 21 seems to confirm this diffusive effrrt. 
However, the predicted magnitude of the underturn- 
iiig is not as large as that  of the inviscid solution. 

Notice also tlie difference between tlie inviscid and 
viscous solutions near the endwall in Fig. 21. Tlie 
overturning is reduced in the viscous solution as 
compared to the steady increase in the iiiviscid solu- 
tion. The blade to blade pressure gradient forces tlir 
low energy flow in tlie boundary layer to turu morc 
than the inviscid core flow, thus forming the passage 
vortex. But very near tlie wall viscous effects rc tark 
this overturning mechanism. Tlie experimental re- 
sults from Hodson did not provide data  very near 
tlie wall, but tlie existence of reduced overturning 
was pointed out. 

If tlie endwall is regarded as a flat plate with lain- 
inar flow, a grid size of 2.8 x axial chord lciigtli 
would correspond to an q = &y/& of 1.5 i n  tlie 
Blasius velocity profile at  tlie end of the plate with 
Reynolds iiuniher 2.9 x lo5. IVit,li grid strctrliing, 
tlie 4th grid point. would give q > 6, wliicli is out.side 
tlie boundary layer. It must be remembered that the 
flow over the endwall is turbulent, wliicli will iieed 
an even smaller grid size to have at  least one grid 
point in tlie laminar sublayer region. On this coil- 
sideration, it is doubtful whether we have adequate 
resolutioii for tlie endwall boundary layers witli tlie 
current grid. Nevertheless, tlie predicted spanwise 
variation of pitchwise mixed-out flow angle shown in 
Fig. 21  seem t o  agree with the experimeiital data. 
More detailed examination of tlie endwall boundary 
layer, its interaction with the blade surface and the 
development of secondary flows must he pursued. 

3.3.2 

Fig. 22 sliows tlie inviscid pressure distribution ob- 
tained in [5] a t  -20.3" incidence relative t.o the dc- 
sign condition. In this case tliere is a large srpara- 

Flow at  an Off-Design Condition 

tioii bubble 011 the pressure surface. Because of this 
separation the inviscid solution shows a large suc- 
tion peak and then a steep diffusion as compared to 
tlie smaller suction followed by a long flat curve mea- 
sured in experiment. Fig. 23 is tlic solutioli obtained 
with the two-dimensional Navier-St,okes code. The 
flat region of pressure distribution due to separa- 
tion is reproduced with surprisingly good accuracy, 
considering the uncertainties involved in the calcu- 
lation. Transition to turbulence in this calculation 
is set at 0.84 axial chord on tlie suction surface and 
0 axial chord on the pressure surface. Fig. 24 shows 
tlie skin friction on tlie blade. Tlie pressure sur- 
face separation bubble can be clearly seen. The flow 
separates at about 3% axial chord and then expe- 
riences transition and reattaches at about 58% ax- 
ial chord. Hodson and Dominy(l31, however, found 
that the separation is of a smaller lengtli from 5% 
to  45% axial chord. This may explain why the cal- 
culated isentropic Mach number teiids to  curve up- 
wards compared to tlie experimental data. compar- 
ism with results by otlier turbulence models would 
be desirable. Fig. 25 shows t.lie velocity vectors be- 
low tlie pressure surface. The large recirculation is 
evident. 

On tlie suction surface, tliere is a sniall separa- 
tion bubble on tlie back of tlie blade. This is con- 
firmed by the skin friction plot aud by the small 
hnmp in isentropic h4acli number distribution shown 
in Fig. 23. Fig. 26 displays tlie velocity vectors in 

Although a steady state solution was achieved for 
this case with the two-dimensional code, it was not 
obtaiiied with the three-dimensional program on the 
209 x 65 x 33 mesh. Calculatioiis show quite fast, con- 
vergence on a coarse mesh with 105 x 33 x 17 grid 
points. When the solution on tlie coarse grid is in- 
terpolated oiito the fine grid, the fine grid solution 
conserges to a cert,ain point and tlien starts to os- 
cillate with tlie maximum residuals occurring in the 
lower wall separation region. This may be related to 
tlie nature of the flow separation awl tlie properties 
of turbulence modeling. Fig. 27 slioms tlie isentropic 
Mach number at mid-span obtaiiied by the three- 
dimensional code at one instant. Fig. 28 is the skin 
friction a t  mid-span, wliicli reveals that the flow on 
the pressure surface separates, reattaches and then 
separates again. Tlie same trend seems to be also 
preseiit in the converged two-dimensional solution. 
It should be pointed out that  Hodson and Dominy 
did not provide detailed skin friction measurement 
for this cascade, nor do t.lie authors have knowledge 
of aiiy computational results by other methods. It 
would be very desirable to compare results by otlier 
nietliods and with other turbulence models. 

W 

that  region. An incipient separation can be seen. U 
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4 Concluding remarks ’. 
A vertex-based finite volume method with a tnulti- 
stage time stepping scheme for the Reyuolds- 
averaged Navier-Stokes equations is preseiited for 

V calculating three-dimensional cascade flows. The 
program has been validated by calculating laminar 
floiv ovcr a NACA0012 airfoil, and laminar and tur- 
bulent flows over a flat plate. 

The method has been applied to a three- 
dimensional low pressure turbine cascade which was 
studied by an  Euler method. Clear improvements 
were achieved over tlie Euler solutions for flows with 
separation at both design and off-design conditions. 
A 209 x 65 mesh in the blade to  blade section with 
a mitiumum grid size of 1.5 x lo-“ axial chord is ad- 
equate to resolve tlie boundary layer over the blade 
surfaces. Skin friction plots show the separation 
bubbles which were observed in experiment. How- 
ever, the locations of transition and turbulence mod- 
eling pose uucertainties to the calculatious. 

Althougli the smallest grid size used in tlie calcu- 
lation over the endwall does not seem to bc small 
enough to adequately resolve the turbuleut eiidmall 
boundary layer, the predicted variation of pitchwise 
mixed-out exit flow augle compare reasonably well 
with experimental dat,a in both strength aid loca- 
tiou. More detailed studies 011 the interaction be- 
tweeii the blade and tlie endwall bouiidary layers 
and the development of secondary flows are needed. 

Despite the uncert,aiiibies involvcd i n  Reytiolds- 
aseraged Navier-St,okes calculations with turhulciice 
modeling, the proposed method provides a viable 
tool for flow analysis and engineering design of tur- 
boinachincry cascades. 

W 
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Figure 10: Laminar Skin Friction Coefficient over a flate 
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Figure 1 3  Turbulent Boundary Layer Velocity Profile 
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Fig. 14: H-mesh of 208 x 64 ceUs for a Low Pressure Turbine Cascade 
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%L., Fig. 15: Isentropic Mach Number at Mid-span, 3D 
Euler Solution 
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Fig. 1 6  Isentropic Mach Number at hkd-span, 
2D Navier-Stokes Solution 
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Fig. 17: Skin Friction Distribution at Mid-span, 
2D Navier-Stokes Solution Navier-Stokes Solution 

Fig. 18: Isentropic Mach Number at Mid-spa, 3 D  
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Fig. 19: Skin Kction Distribution at Mid-span, 
3D Navier-Stokes Solution Calculations 

Fig. 2 0  Convergence History of Navier-Stokes 
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Fig. 21: Spanwise Variation of Pitchwise Mixed- 
out Flow Angle at 140% Axial Chord 
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Fig. 23: Isentropic Mach Number at Mid-span at 
Off Design Condition, 2D Navier-Stokes Solution .d 

Fig. 22: Isentropic Mach Number at Mid-span at 
Off Design Condition, Euler Solution 

Fig. 24: Skin Friction Distribution at Mid-span at 
Off-design condition, 2D Navier-Stokes Solution 
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Fig. 25: Velocity Vector Field on the Lower Surface of the Cascade Blade 

Fig. 2 6  Velocity Vector Field on the Upper Surface of the Cascade Blade 
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Fig. 27: Isentropic Mach Number at Mid-span at Off Design Condition, 3D Navicr-Stokes Solution 

-8- Suction Side 

+ Pressure Side 

Fig. 28: Skin Friction Distribution at  Mid-span at  Off-design condition, 3D Xavier-Stokes Solution 
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