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This paper presents an adjoint method for the optimum shape design of unsteady three-dimensional
viscous flows. The goal is to develop a set of discrete unsteady adjoint equations and the corresponding
boundary condition for the non-linear frequency domain method. First, this paper presents the complete
formulation of the time dependent optimal design problem. Second, we present the non-linear frequency
domain adjoint equations for three-dimensional viscous transonic flows. Third, we present results that
demonstrate the application of the theory to a three-dimensional wing.

I. Introduction

There are numerous important engineering applications in which the flow is inherently unsteady but
periodic. Helicopter rotors in forward flight, turbomachinery blades and cooling fans operate in unsteady
flow and are constantly subjected to unsteady loads. Optimization techniques for unsteady flows are clearly
needed to improve their performance, and to alleviate the unsteady effects that contribute to flutter, buffeting,
poor gust and acoustic response, and dynamic stall. As yet there have been few efforts in this direction.

One of the major reasons is the demanding computational cost associated with the calculation of unsteady
flows. As part of the Accelerated Strategic Computing Initiative (ASCI) project at Stanford, Davis2 presented
estimates for the computational cost of a multistage compressor and turbine calculation based on the parallel
execution of 750 processors operating 8 hours a day. He concluded that it would require 1300 days to compute
the flow through a 23 blade row compressor. The overwhelming majority of the computational time is spent
on time accurately resolving the decay of the initial transients. Although this example is an extreme case, it
illustrates the prohibitive cost of many unsteady calculations using time accurate solvers to find a periodic
steady state.

Nevertheless, the development of optimum shape design for two-dimensional unsteady flows using the
time accurate adjoint based design approach has been pursued by Nadarajah and Jameson.14,17 This work
is largely based on algorithms developed for Aerodynamic Shape Optimization (ASO) for a steady flow
environment.6,8, 15,18,19 Nadarajah derived and applied the time accurate adjoint equations (both the con-
tinuous and discrete) to the redesign of an oscillating airfoil in an inviscid transonic flow. The redesigned
shape achieved a reduction in the time-averaged drag while maintaining the time-averaged lift. The approach
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utilized a dual time stepping7 technique that implements a fully implicit second order backward difference
formula to discretize the time derivative. Typical runs required 15 periods with 24 discrete time steps
per period, and 15 multigrid cycles at each time step. Encouraging results were obtained at a substantial
computational expense.

The prohibitive cost of computing three dimensional unsteady flows using the time accurate approach
has motivated a new interest in using periodic methods. Linearized frequency domain and deterministic-
stress1 methods are examples of periodic methods. However, these methods generally do not account for
strong nonlinearities in the system. Pseudo spectral approaches in space and time have been implemented
for a multitude of non-linear problems throughout the numerical analysis literature. The Harmonic Balance
technique proposed by Hall et al.4,5 represents the first pseudo-spectral method in time for the unsteady
Euler equations. The Non-Linear Frequency Domain method (NLFD) proposed by McMullen et al.10,11 is
a similar approach that was later validated for the unsteady Navier-Stokes equations. These approaches
are spectral techniques which converge at an exponential rate to the exact solution, even in the presence
of aliasing affects.20 This can be compared to more classical finite difference schemes which contain error
proportional to some power of the grid spacing. An analysis presented in McMullen’s thesis12 demonstrates
the comparative advantage of spectral techniques for real world applications. Using an unsteady pitching
airfoil in a transonic flow, he calculated the error in the magnitude of the fundamental harmonic for the
coefficient of lift. The data showed that an NLFD calculation employing one time varying harmonic (which
can be represented with three discrete samples) produced an error level equivalent to that of a time accurate
calculation using 45 time steps per period. For this case, the NLFD calculation was roughly an order of
magnitude more efficient than time accurate codes operating at equivalent error levels.

Recently, there have been two investigations into the modeling of unsteady aerodynamic design sensitiv-
ities. Duta et. al.3 have presented a harmonic adjoint approach for unsteady turbomachinery design. The
aim of the work was to reduce blade vibrations due to flow unsteadiness. The research produced adjoint
methods that were based on a linearized analysis of periodic unsteady flows. Thomas et al.21 presented a
viscous discrete adjoint approach for computing unsteady aerodynamic design sensitivities. The adjoint code
was generated from the harmonic balance flow solver with the use of an automatic differentiation software
compiler.

The work presented in this paper is a viscous extension of an inviscid study presented at the 44th
Aerospace Sciences Meeting and Exhibit, January 9–12, 2006 in Reno, Nevada.16 The motivation of the
research has been fueled both by the success of our current capability for automatic shape optimization for
unsteady flows and the future potential of the NLFD method. The result of this effort is a NLFD adjoint
design code that is fully non-linear and the computational cost of the adjoint module is proportional to the
cost of the flow solver.

II. Governing Equations

The Cartesian coordinates and velocity components are denoted by x1, x2, x3, and u1, u2, and u3.
Einstein notation simplifies the presentation of the equations, where summation over k = 1 to 3 is implied
by a repeated index k. The three-dimensional Navier-Stokes equations then take the form,

∂w

∂t
+
∂fi

∂xi
=
∂fvi

∂xi
in D, (1)

where the state vector w, inviscid flux vector f and viscous flux vector fv are described respectively by

w =





ρ

ρu1

ρu2

ρu3

ρE





, fi =





ρ(ui − bi)
ρu1(ui − bi) + pδi1

ρu2(ui − bi) + pδi2

ρu3(ui − bi) + pδi3

ρE(ui − bi) + pui





, and fvi =





0
σijδj1

σijδj2

σijδj3

ujσij + k ∂T
∂xi





. (2)

In these definitions, ρ is the density, ui, bi are the Cartesian velocity components of the fluid and boundary
respectively, E is the total energy and δij is the Kronecker delta function. The pressure is determined by
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the equation of state

p = (γ − 1) ρ
{
E − 1

2
(uiui)

}
,

and the stagnation enthalpy is given by
H = E +

p

ρ
,

where γ is the ratio of the specific heats. The viscous stresses may be written as

σij = µ

(
∂ui

∂xj
+
∂uj

∂xi

)
+ λδij

∂uk

∂xk
, (3)

where µ and λ are the first and second coefficients of viscosity. The coefficient of thermal conductivity and
the temperature are computed as

k =
cpµ

Pr
, T =

p

Rρ
, (4)

where Pr is the Prandtl number, cp is the specific heat at constant pressure, and R is the gas constant.
For discussion of real applications using a discretization on a body conforming structured mesh, it is also

useful to consider a transformation to the computational coordinates (ξ1,ξ2,ξ3) defined by the metrics

Kij =
[
∂xi

∂ξj

]
, J = det (K) , K−1

ij =
[
∂ξi
∂xj

]
.

The simulations contained in this research are restricted to rigid mesh translation. As a result, we can write
equation (1) as the product of the cell volume and temporal derivative of the state vector w at the cell center.
In terms of cell volumes and the local residual R(w) (comprised of both convective and dissipative fluxes),
equation (1) can be written in semi-discrete form as

V
∂w

∂t
+R(w) = 0 in D, (5)

where, the residual R(w) can then be written in computational space as

R(w) =
∂ (Fi − Fvi)

∂ξi
, (6)

where the inviscid and viscous flux contributions are now defined with respect to the computational cell
faces by Fi = Sijfj and Fvi = Sijfvj , and the quantity Sij = JK−1

ij represents the projection of the ξi cell
face along the xj axis. In obtaining equation (6) we have made use of the property that

∂Sij

∂ξi
= 0, (7)

which represents the fact that the sum of the face areas over a closed volume is zero, as can be readily verified
by a direct examination of the metric terms.

When equation (6) is formulated for each computational cell, a system of first-order ordinary differential
equations is obtained. To eliminate odd-even decoupling of the solution and overshoots before and after
shock waves, the conservative and viscous fluxes are added to a diffusion flux. The artificial dissipation
scheme used in this research is a blended first and third order flux, first introduced by Jameson, Schmidt,
and Turkel.? The blended first and third order artificial dissipation term is discretized as

di+ 1
2 ,j,k = ν

(2)

i+ 1
2 ,j,k

Λi+ 1
2 ,j,k∆i+ 1

2 ,j,k − ν
(4)

i+ 1
2 ,j,k

Λi+ 1
2 ,j,k

[
∆i+ 3

2 ,j,k − 2∆i+ 1
2 ,j,k + ∆i− 1

2 ,j,k

]
.

where ∆i+ 1
2 ,j,k = wi+1,j,k−wi,j,k. The coefficients ν(2) and ν(4) are the products of the adjustable constants

and the normalized second difference of the pressure. Λi+ 1
2 ,j,k is the rescaled numerical spectral radius of

the flux Jacobian matrix and directionally scales the dissipative terms.
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III. Formulation of the Time-Dependent
Optimal Design Problem

Optimal control of time dependent trajectories is generally complicated by the need to solve the adjoint
equation in reverse time from a final boundary condition using data from the trajectory solution, which in
turn depends on the control derived from the adjoint solution.

Introduce the cost function

I =
∫ tf

0

L(w, f)dt+M(w(tf )),

where the function L depends on the flow solution w, and the shape function f and the function M depends
on the time dependent flow solution. Assume that the following equation defines the time-dependent flow
solution

V
∂w

∂t
+R(w, f) = 0,

where V is the cell volume and R represents a residue containing the convective and dissipative fluxes. A
change in f results in a change

δI =
∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt+

∂MT

∂w
δw(tf ),

in the cost function. The variation in the flow solution is

V
∂

∂t
δw +

∂R

∂w
δw +

∂R

∂f
δf = 0.

Next, introduce a Lagrange multiplier ψ to the time-dependent flow equation, integrate it over time and
subtract it from the variation of the cost function to arrive at the following equation.

δI =
∫ tf

0

(
∂LT

∂w
δw +

∂LT

∂f
δf

)
dt+

∂MT

∂w
δw(tf )

−
∫ tf

0

ψT

(
V
∂

∂t
δw +

∂R

∂w
δw +

∂R

∂f
δf

)
dt.

By integrating the term
∫ tf

0
ψTV ∂

∂tδwdt by parts, yields

δI =
∫ tf

0

(
∂LT

∂w
+ V

∂ψT

∂t
− ψT ∂R

∂w

)
δwdt

+
(
∂MT

∂w
− ψT (tf )

)
δw(tf )

+
∫ tf

0

(
∂LT

∂f
− ψT ∂R

∂f

)
δfdt.

Choose ψ to satisfy the adjoint equation

V
∂ψ

∂t
=

(
∂R

∂w

)T

ψ −
(
∂L
∂w

)

with the terminal boundary condition

ψ(tf ) =
∂M
∂w

.

Then
δI = GT δf,

where

GT =
∫ tf

0

(
∂LT

∂f
− ψT ∂R

∂f

)
dt.
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The sensitivity derivatives are determined by the solution of the adjoint equation in reverse time from
the terminal boundary condition and the time-dependent solution of the flow equation. These sensitivity
derivatives are then used to get a direction of improvement and steps are taken until convergence is achieved.

The computational costs of unsteady optimization problems are directly proportional to the desired
number of time steps. The unsteady flow calculation can be obtained either by the use of implicit time-
stepping schemes or a NLFD approach.

IV. Development of the Non-Linear Frequency Domain
Adjoint Equations

The derivation of the NLFD method starts with the semi-discrete form of the governing equations, and
assumes that the solution w and spatial operator R can be represented by separate Fourier series:

w =

N
2 −1∑

k=−N
2

ŵke
ikt

R =

N
2 −1∑

k=−N
2

R̂ke
ikt (8)

where,
i =

√−1. (9)

Here, however each coefficient R̂k of the transform of the residual depends on all the coefficients ŵk, because
R(w(t)) is a non-linear function of w(t). Thus equation (10) represents a non-linear set of equations which
must be iteratively solved. The solver attempts to find a solution, w, that drives this system of equations
to zero for all wavenumbers, but at any iteration in the solution process the unsteady residual, R∗, will be
finite:

R̂∗k = ikV ŵk + R̂k. (10)

The nonlinearity of the unsteady residual stems from the spatial operator. There are two approaches to
calculating the spatial operator expressed in the frequency domain. The first uses a complex series of
convolution sums to calculate R̂k directly from ŵk. This approach is discarded due to its massive complexity
(considering artificial dissipation schemes and turbulence modeling) and cost that scales quadratically with
the number of modes N . Instead, we implement a pseudo-spectral approach in time. This approach requires
several transformations between the physical and frequency domains which are performed by a Fast Fourier
Transform (FFT). The computational cost of this transform scales like N log(N), where N is a large number.
A diagram detailing the transformations used by the pseudo spectral approach is provided in figure (1).

W
k

W(t) R(t) R
k

R
k

+

ikVW
k

*

Figure 1. Simplified dataflow diagram of the time advancement scheme illustrating the pseudo spectral ap-
proach used in calculating the non-linear spatial operator R.

The pseudo-spectral approach begins by assuming that ŵk is known for all wavenumbers. Using an
inverse FFT, ŵk can be transformed back to the physical space resulting in a state vector w(t) sampled at
evenly distributed intervals over the time period. At each of these time instances the steady-state operator
R(w(t)) can be computed. A FFT is then used to transform the spatial operator to the frequency domain
where R̂k is known for all wavenumbers. The unsteady residual R̂∗k can then be calculated by adding R̂k

to the spectral representation of the temporal derivative ikV ŵk.
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Consistent with the time accurate approach, a pseudo-time derivative can be added, and a time-stepping
scheme can be employed to numerically integrate the resulting equations.

V
∂ŵk

∂τ
+ R̂∗k = 0. (11)

In the NLFD case, an unsteady residual exists for each wavenumber used in the solution and the pseudo-time
derivative acts as a gradient to drive the absolute value of all of these components to zero simultaneously.

The NLFD discrete adjoint equation can be developed using two separate approaches. In the first
approach, we first take a variation of the unsteady residual R̂∗k represented in equation (10) with respect to
the state vector ŵk and shape function f , to produce

δR̂∗k = ikV δŵk + δR̂k.

The next step, would be to expand δR̂k as a function of ŵk. As mentioned earlier, this approach would
require a series of convolution sums to express δR̂k as a function of δŵk. This method was not implemented
due to its computational cost and added complexity. Instead, the adjoint equations were solved using a
pseudo-spectral approach similar to the one applied to the flow equations.

In the latter approach, the NLFD adjoint equations are developed from the semi-discrete from of the
adjoint equation, which can be as expressed as

V
∂ψ

∂t
+R(ψ) = 0,

where R(ψ) is the sum of all the spatial operators, both convective and dissipative, used in the discretized
adjoint equations. Refer to Nadarajah17 for a detailed derivation of these spatial operators and boundary
conditions. Next, we assume that the adjoint variable and spatial operator can be expressed as a Fourier
series:

ψ =

N
2 −1∑

k=−N
2

ψ̂ke
ikt,

R(ψ) =

N
2 −1∑

k=−N
2

R̂(ψ)ke
ikt. (12)

The derivation of the NLFD adjoint then follows that of the NLFD flow equations. The NLFD adjoint
equations are expressed as

V
∂ψ̂k

∂τ
+ R̂(ψ)

∗
k = 0.

where R̂(ψ)
∗
k = ikV ψ̂k + R̂(ψ)k. The pseudo-spectral approach illustrated in figure (1) is employed in the

NLFD adjoint code to form the unsteady residual. This term in conjunction with a pseudo time derivative
provides an iterative solution process consistent with that documented for the flow equations.

V. Design Process

The design process used in this work will change the shape of the wing in order to minimize its time-
averaged coefficient of drag. Given the derivation provided in previous sections the adjoint boundary condi-
tion can easily be modified to admit other figures of merit. The shape of the wing is constrained such that
the maximum thickness to chord ratio remains constant between the initial and final designs. In addition,
the mean angle of attack is allowed to vary to ensure the time-averaged coefficient of lift remains constant
between designs.

The UFSYN107 developed by Nadarajah and Jameson, employs a non-linear frequency domain method
in the solution of the unsteady Navier-Stokes equations. The NLFD adjoint based design procedures require
the following steps:
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1. Periodic Flow Calculation at Constant Time Averaged Lift. A set of multigrid cycles is used
to drive the unsteady residual to a negligible value for all the modes used in the representation of the
solution. In the case of a design process that constrains the time averaged lift, the mean angle of attack
is perturbed every 10 multigrid cycles to maintain a constant time averaged coefficient of lift. This
allows the unsteady residual to reduce by an order to two in magnitude before the angle is modified
again.

2. Adjoint Calculation. The adjoint equation is solved by integrating in reverse time. With minor
modifications, the NLFD numerical scheme employed to solve the flow equations is used to solve the
adjoint equations in reverse time.

3. Gradient Evaluation. An integral over the last period of the adjoint solution is used to form the
gradient. This gradient is then smoothed using an implicit smoothing technique. This ensures that each
new shape in the optimization sequence remains smooth and acts as a preconditioner which allows the
use of much larger steps. The smoothing leads to a large reduction in the number of design iterations
needed for convergence. Refer to Nadarajah et al.14 for a more comprehensive overview of the gradient
smoothing technique. An assessment of alternative search methods for a model problem is given by
Jameson and Vassberg.9

4. Wing Shape Modification. The wing shape is then modified in the direction of improvement using
a steepest descent method.

Let F represent the design variable, and G the gradient. An improvement can then be made with a
shape change

δF = −λG.

5. Grid Modification. The internal grid is modified based on perturbations on the surface of the wing.
The method modifies, the grid points along each grid index line projecting from the surface. The arc
length between the surface point and the far-field point along the grid line is first computed, then the
grid point at each location along the grid line is attenuated proportional to the ratio of its arc length
distance from the surface point and the total arc length between the surface and the far-field.

6. Repeat the Design Process. The entire design process is repeated until the objective function
converges. The problems in this work typically required between nine to twenty five design cycles to
reach the optimum.

VI. Results

The following subsections presents results from simulations of a three-dimensional wing undergoing a
change in angle of attack as a function of time.

α(t) = αo + αm sin(ωt).

For the cases presented in this section, the mean angle of attack, αo is 0.59◦ for the validation case and 0◦

for the design test cases. For both cases, the deflection angle, αm is set to ±0.25◦. The reduced frequency,
ωc

2V∞
, is set to 0.102, with a far-field Mach number, M∞, of 0.822. The wing is pitched about the 61.2% of

the root chord. The flight conditions are based on Run 73 of the central transonic test case CT5 conducted
by R.J Zwaan at the NLR.22

The first part of the results section contains a code validation study. The study compares the convergence
of the flow and adjoint solvers for various time steps per period, as well as, compare the lift hysteresis and
drag and moment variation for various time steps per period. This is necessary to quantify the required
number of time steps per period to establish a periodic steady state flow. The pressure distribution is
compared to experimental data and prior inviscid results.16 In the second section, a redesign of the LANN
wing is demonstrated. Lastly, a gradient comparison between various number of temporal modes is presented
and the convergence of the objective function.
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A. Validation

The computational grid employed for the validation study is a structured grid as illustrated in Fig. 2. The
MPI13 domain topology is based on a Npi

= 4, Npj
= 1, Npk

= 3, where Np is the number of processors in
each direction. In this work, four processors are used in the i direction, one in the j direction, and three
in the k direction. Each processor contains a grid of size nx × nj × nk = 65 × 65 × 33. The total grid is
257× 65× 97. A cross-sectional view of the grid at the 20% and 65% span stations are shown in Fig. 3.

Figure 4 illustrates the convergence of the viscous NLFD flow solver. The convergence was obtained for
the LANN Wing test case for three, five, and seven time steps per period. The zeroth mode for all cases
converge at the same rate. The same is true for the first, second, and third modes. The flow solver residual
attains a reduction of four orders of magnitude over 2400 multigrid cycles. For the design cases, only 200
cycles were employed per design cycle. Figure 5 (use Fig. 4 legend) illustrates the convergence of the viscous
NLFD adjoint solver. Only 400 multigrid cycles were needed to converge the adjoint solver to the same level
of accuracy as the flow solver. The rate of convergence is higher for the adjoint solver. All modes converge
at similar rates.

The lift hysteresis is demonstrated in Fig. 6 for various number of time steps per period. Here, as
indicated in the legend, ’NLFD 1-Harmonic’ is synonymous to three time steps per period. As the wing
oscillates at a small angle of attack, the shock wave moves back and forth about a mean location and is
closely sinusoidal and lags the wing motion. This lag is evident in the lift hysteresis loop where the maximum
lift does not occur at the maximum angle of attack. The nonlinear behavior of unsteady viscous transonic
flows is primarily due to the movement of the shock and this is evident in Fig. 6. Figure 6 describes that
one harmonic is sufficient to produce an accurate lift hysteresis. However, Fig. 7 demonstrates that at least
two harmonics are needed to capture the variation of the drag coefficient versus angle of attack accurately.
Figure 8 illustrates the variation in pitching moment and Fig. 9 demonstrates the variation of lift versus
drag coefficient, further providing evidence that at least two harmonics are required to accurately capture
the flow field for the LANN Wing, Run 73.

In Fig. 10, a validation of the surface pressure coefficient is presented. The figure illustrates the pressure
distribution for two different angles of attacks at two separate span stations. In Fig. 10a results based on both
the inviscid and viscous NLFD methods are compared to experimental data at the span location, η = 20%
and angle of attack, α = 0.59◦. The inviscid NLFD results compare closely to the viscous solutions, however,
the location of the shock for the inviscid NLFD solution differs by 5% of the chord. This is an expected result,
since the location of the shock is generally dependent on viscous effects especially for unsteady flows. Apart
from the shock location, the viscous NLFD solution resolves the peak pressure accurately. Nevertheless both
solutions differ from the experimental work, and further research is necessary to investigate the discrepancy.
One possible reason for the difference could be due to the effect of the turbulence model on the unsteady
viscous flows. Figures 10b-d illustrate the comparison at the maximum angle of attack and at a different
span location. Similar trends are observed for these conditions. The difference in the shock location and
strength at the η = 65% span station is larger.

A second important outcome of Fig. 10 is the required number of time steps per period or modes to
accurately resolve the pressure distribution. At the 20% span station, the ’NLFD 3 Viscous’ case (indicating
three time steps per period), is able to accurately produce the unsteady flow solution. However, at the 65%
span location, a slight discrepancy is observed at the shock location. This is a further indication, that the
viscous NLFD solutions require at least five time steps per period to resolve the flow field compared to the
inviscid solution that only required three.

B. LANN wing: Redesign

This section documents the results of the redesign of the LANN Wing to reduce the time-averaged drag
coefficient for a fixed time-averaged lift coefficient and wing thickness ratio. The simulation was performed
at a Mach number, M∞ = 0.82, reduced frequency, ωr = 0.102, and deflection of ±0.25◦ about the zero
angle of attack. As established in the previous section, five time steps per period were needed to accurately
represent the variation of the drag coefficient versus angle of attack. Since the objective function is the
time-averaged drag coefficient, five time steps will be used for the redesign of the LANN Wing. This decision
will be further supported with a gradient accuracy study at the end of this section.

During the initial stage to compute the flow solution, the time-averaged lift and drag are computed and
used as the target lift and objective function. During the subsequent design cycles, the mean angle of attack
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is modified at every ten multigrid cycles, to maintain the time-averaged lift coefficient. Ten multigrid cycles
were chosen to allow the flow field to develop and to reduce the initial peak transient solutions admitted into
the solution due to the change in angle of attack. At each design cycle, 200 multigrid cycles were used.

Figures 11-14 illustrate the wing surface pressure contour and the initial and final pressure distributions
at three span locations at the 0◦, 72◦, 216◦, and 288◦ phases after 50 design cycles. In Fig. 11, the
pressure contour illustrates the severe weakening of the λ-shock system and this is further validated in the
three pressure coefficient plots at span stations 6.2%, 49.2%, and 92.3%. The initial pressure distribution is
illustrated as a dotted line, while the solid is at the final design. The plots, show a reduction of the shock
wave strength at the mid-section with a decrease in the sectional drag coefficient from 0.0027 to 0.0014. The
mean angle of attack was perturbed from the initial zero degrees to 0.344◦ to maintain the time-averaged lift
coefficient at 0.348. The time-averaged drag coefficient reduced by 5.65% from 0.0115 to 0.01085 within 50
design cycles. The design is halted once the change in the objective function or time-averaged drag coefficient
reaches a level of 1.E-6. The figure also demonstrates the initial and final, illustrated by a dotted and solid
line, cross-sectional airfoil profiles. A distinctive feature of the new airfoil is the reduction of the upper
surface curvature. The reduced curvature contributes to the weakening of the shock wave in the mid-section
region of the LANN Wing. At the 72◦, 216◦, and 288◦ phases, as illustrated in Figs. 12 through 14, a severe
weakening of the shock wave in the mid and tip sections of the LANN Wing are observed. At the 288◦ phase,
a complete elimination of the shock wave is demonstrated.

Figures 15 and 16 demonstrate the initial and final three-dimensional surface pressure contour at the 0◦

and 288◦ phases. The weakening of the λ-shock is demonstrated in Fig. 15b. A complete elimination of the
shock is observed at the 288◦ phase.

The Validation section illustrated the ability of the NLFD method to accurately model the flow with only
five time steps per period. However, for the case of optimum shape design, the accuracy of the gradient of the
objective function is of paramount importance. Figure 17 illustrate the gradients of the objective function at
four different span locations for various temporal modes. The gradients are plotted in a clock-wise direction
starting from the lower trailing edge to the leading edge and ending at the upper trailing edge point. The
figures illustrate that with just three time steps per period, the gradients can be accurately captured at the
6% and 20% span stations, however, an additional mode or five time steps per period are required at the
65% and 91% stations. The gradients over a vast majority of the points at these stations agree very well,
however, a large difference is observed between the 120 and 140 grid point. The points are adjacent to the
shock location and as seen in the pressure distribution comparisons in Figs. 10c and d, an additional mode
is required to resolve the gradient.

Lastly, Fig. 18 presents the convergence of the time-averaged drag coefficient from 115 drag counts
to 108.5. Figure 19 shows the convergence of ∆I, where I is the objective function (time-averaged drag
coefficient). ∆I reaches a level of 1.E-6 within 50 design cycles. During the first 35 design cycles, ∆I
converges linearly as expected. Linear convergence is characteristic of a steepest descent type method. As
the final wing profile is realized, the convergence increases rapidly. The code is automatically stopped as
soon as a change of 1E-6 is detected. This level of change corresponds to a change to the sixth decimal place
of the drag coefficient and this is sufficient for engineering accuracy.

VII. Conclusion

The NLFD method requires just five time steps per period to resolve the unsteady viscous transonic flow
field. A redesign of the LANN Wing has been demonstrated with a reduction of the time-averaged drag
coefficient by 5.65% while maintaning the time-averaged lift coefficient constant. The NLFD method with
five time steps per period also provides accurate gradients. These results further demonstrate the potential
of the method to provide significant improvements to more realistic problems such as helicopter rotors,
turbomachinery, and other unsteady devices operating in the transonic regime.
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(a) LANN Wing Mesh

(b) Close-up View

Figure 2. LANN Wing Grid Structure; MPI Domain Topology, Npi = 4, Npj = 1, Npk = 3; Grid Size nx×nj×nk =
257× 65× 97
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(a) Mesh Cross-Section at 20% span (b) Mesh Cross-Section at 65% span

Figure 3. LANN Wing Mesh; Grid Size nx × nj × nk = 257× 65× 97
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Figure 4. Viscous NLFD Flow Solver Convergence;
M∞ = 0.822, ωr = 0.102
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Figure 5. Viscous NLFD Adjoint Solver Conver-
gence; M∞ = 0.822, ωr = 0.102
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Figure 6. Comparison of Lift Hysteresis for Various
Modes, LANN Wing: Run 73, M∞ = 0.82, ωr = 0.102
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Figure 7. Comparison of Variation of Drag Coef-
ficient versus Angle of Attack for Various Modes,
LANN Wing: Run 73, M∞ = 0.82, ωr = 0.102
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Figure 8. Comparison of Variation of Pitching Mo-
ment Coefficient versus Angle of Attack for Various
Modes, LANN Wing: Run 73, M∞ = 0.82, ωr = 0.102
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Figure 9. Comparison of Lift versus Drag Coef-
ficient for Various Modes, LANN Wing: Run 73,
M∞ = 0.82, ωr = 0.102
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(a) η = 20%, α = αmean = 0.59◦
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(b) η = 20%, α = αmax = 0.84◦
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(c) η = 65%, α = αmean = 0.59◦
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(d) η = 65%, α = αmax = 0.84◦

Figure 10. Comparison of Pressure Distribution between Inviscid, Viscous, and Experimental Data for LANN
Wing, Run 73, M∞ = 0.82, ωr = 0.102
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NLR LANN WING                                                                   
Mach: 0.822    Alpha: 0.344    IT:   1                                          
CL:  0.332    CD: 0.01512    CM:-0.3034                                         
TIMEAVE CL:  0.348    TIMEAVE CD: 0.01085                                       
Design:  50    Residual:  0.1135E+01    Grid: 257X 65X 49                       

Cl:  0.288    Cd: 0.04358    Cm:-0.1108                                         
Root Section:   6.2% Semi-Span

Cp = -2.0

Cl:  0.367    Cd: 0.00143    Cm:-0.1368                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.285    Cd:-0.01131    Cm:-0.1608                                         
Tip Section:  92.3% Semi-Span

Cp = -2.0

Figure 11. Initial and Final Pressure Distribution for Various Span Locations at Phase = 0 deg
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NLR LANN WING                                                                   
Mach: 0.822    Alpha: 0.581    IT:   2                                          
CL:  0.367    CD: 0.01663    CM:-0.3328                                         
TIMEAVE CL:  0.348    TIMEAVE CD: 0.01085                                       
Design:  50    Residual:  0.1135E+01    Grid: 257X 65X 49                       

Cl:  0.319    Cd: 0.04627    Cm:-0.1225                                         
Root Section:   6.2% Semi-Span

Cp = -2.0

Cl:  0.405    Cd: 0.00308    Cm:-0.1457                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.317    Cd:-0.01182    Cm:-0.1663                                         
Tip Section:  92.3% Semi-Span

Cp = -2.0

Figure 12. Initial and Final Pressure Distribution for Various Span Locations at Phase = 72 deg
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NLR LANN WING                                                                   
Mach: 0.822    Alpha: 0.197    IT:   4                                          
CL:  0.319    CD: 0.01406    CM:-0.2912                                         
TIMEAVE CL:  0.348    TIMEAVE CD: 0.01085                                       
Design:  50    Residual:  0.1135E+01    Grid: 257X 65X 49                       

Cl:  0.279    Cd: 0.04242    Cm:-0.1062                                         
Root Section:   6.2% Semi-Span

Cp = -2.0

Cl:  0.353    Cd: 0.00008    Cm:-0.1316                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.271    Cd:-0.01125    Cm:-0.1581                                         
Tip Section:  92.3% Semi-Span

Cp = -2.0

Figure 13. Initial and Final Pressure Distribution for Various Span Locations at Phase = 216 deg
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NLR LANN WING                                                                   
Mach: 0.822    Alpha: 0.106    IT:   5                                          
CL:  0.302    CD: 0.01383    CM:-0.2774                                         
TIMEAVE CL:  0.348    TIMEAVE CD: 0.01085                                       
Design:  50    Residual:  0.1135E+01    Grid: 257X 65X 49                       

Cl:  0.263    Cd: 0.04143    Cm:-0.1009                                         
Root Section:   6.2% Semi-Span

Cp = -2.0

Cl:  0.335    Cd: 0.00005    Cm:-0.1285                                         
Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.255    Cd:-0.01088    Cm:-0.1554                                         
Tip Section:  92.3% Semi-Span

Cp = -2.0

Figure 14. Initial and Final Pressure Distribution for Various Span Locations at Phase = 288 deg
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(a) Initial Surface Pressure Contour

(b) Final Surface Pressure Contour

Figure 15. Initial and Final Surface Pressure Contours at 0◦ Phase for the LANN Wing, Run 73, M∞ = 0.82,
ωr = 0.102
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(a) Initial Surface Pressure Contour

(b) Final Surface Pressure Contour

Figure 16. Initial and Final Surface Pressure Contours at 288◦ Phase for the LANN Wing, Run 73, M∞ = 0.82,
ωr = 0.102
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(a) η = 6%
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(b) η = 20%
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(c) η = 65%
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(d) η = 91%

Figure 17. Comparison of Gradient for Various Modes for the LANN Wing, Run 73, M∞ = 0.82, ωr = 0.102
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Figure 18. Convergence of Time-Averaged Drag
Coefficient
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Figure 19. Convergence of the Change in the Ob-
jective Function, ∆I
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