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Abstract. This paper presents a numerical method for aerodynamic shape optimization problems in
compressible viscous flow. It is based on simultaneous pseudo-time stepping in which stationary states are
obtained by solving the pseudo-stationary system of equations representing the state, costate and design
equations. The main advantages of this method are that it blends in nicely with previously existing
pseudo-time stepping method for state and costate equations, that it requires no additional globalization
in the design space, and that a preconditioner can be used for convergence acceleration which stems from
the reduced SQP methods. For design examples of 2D problems, the overall cost of computation can be
reduced to less than 2 times the forward simulation runs.

I. Introduction

Automatic aerodynamic shape optimization using numerical methods is an established area of
scientific research. The numerical methods involve the complexity of the numerical algorithms for the
optimization problem as well as the complexity of the numerical methods for non-linear Partial Differential
Equations (PDEs). Parallel research has been going on to improve the efficiency and applicability of the
algorithms in both the areas. Recently, both the communities are working together to achieve best results
in applications to practical problems.

Aerodynamic shape optimization problems can mathematically be formulated as control problem
governed by system of PDEs. For these problems adjoint system of PDEs can be formulated and solved
using the same algorithm applicable to forward or state system. The gradient is computed using the
state and adjoint solutions much efficiently in comparison to finite-difference methods. Application of
this continuous adjoint method is carried out first in14-17 for transonic flow using Euler equations. These
methods act only in the design space and require very accurate flow (or state) and adjoint (or costate)
solutions. Despite using efficient computational fluid dynamics (CFD) techniques for the state and costate
solutions, the over all cost of computation is quite high in these methods. A. Jameson has proposed
gradient smoothing. Instead of using the gradient information from the adjoint solution, the gradient is
smoothed implicitly via second order (or fourth order) differential equations and the smoothed gradient
is used to find the search direction. It turns out that this approach is tolerant to use inexact gradient so
that neither flow solution nor the adjoint solution need to be fully converged. Extension of the continuous
adjoint method for shape optimization problems in viscous compressible flow is carried out in18-.20

In9 we proposed a new method for solving such optimization problems using simultaneous pseudo-
timestepping. In6-10 we have applied the method for solving aerodynamic shape optimization problems
without additional state constraint and in11-13 applied the method to problems with additional state
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constraints. The overall cost of computation in all the applications has been between 2-8 times as that of
the forward simulation runs. Further efficiency is achieved using ’optimization-based’ multigrid method
in.5

All the above mentioned applications of pseudo-timestepping method have been in Euler equa-
tions. In this paper we extend the method to viscous compressible flow modeled by Reynolds Averaged
Navier-Stokes equations together with algebraic turbulence model of Baldwin and Lomax. While inviscid
formulations are useful for the design in transonic cruise conditions, inclusion of viscous effects are essen-
tial for optimal design encompassing off-design conditions and high-lift configurations. The computational
complexity in viscous design is at least an order of magnitude greater than that in inviscid design since
the number of mesh points are to be increased by a factor of two or more to resolve the boundary layer.
The convergence of Navier-Stokes solver is much more slower than Euler solver due to discrete stiffness
and directional decoupling arising from the highly stretched boundary layer cells. Since we use inaccurate
state and costate solutions, and hence inaccurate gradients, in our one-shot pseudo-timestepping method,
therefore slow convergence of Navier-Stokes (forward and adjoint) solver may affect the convergence of
this method. We investigate that numerically in this paper.

The paper is organized as follows. In the next Section we discuss the abstract formulation of the
shape optimization problem and its reduction to the preconditioned pseudo-stationary system of PDEs.
Section 3 presents the state, costate and design equations. Numerical results are presented in Section 4.
We draw our conclusions in Section 5.

II. The optimization problem and pseudo-unsteady formulation of the

KKT conditions

The focus of the present work is on aerodynamic shape optimization problems which are large scale
PDE constrained optimization problems. These problems can be written in abstract form (see in9, 10) as

min I(w, q)

s. t. c(w, q) = 0.
(1)

Here, c(w, q) = 0 represents the steady-state flow equations (in our case Navier-Stokes equations) together
with boundary conditions, w is the vector of dependent variables and q is the vector of design variables.
The objective I(w, q) is the drag of an airfoil for the purposes of this paper.

The necessary optimality conditions (known as KKT conditions) are

c(w, q) = 0, (State equation) (2a)

∇wL(w, q, λ) = 0, (Costate equation) (2b)

∇qL(w, q, λ) = 0. (Design equation) (2c)

where

L(w, q, λ) = I(w, q) − λ∗c(w, q), (3)

is the Lagrangian functional and λ is the Lagrange multiplier or the adjoint variable. Adjoint based
gradient methods have been used in many practical applications for solving the above system of equations.
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In these methods the state and costate equations have to be solved quite accurately in each design update.
Computational results based on these methodologies have been presented, among others, in15, 16, 22, 23 on
structured grids. An application of this method on unstructured grids has been presented in.1

One can use, for example, RSQP methods to solve the above set of equations. A step of this method can
also be interpreted as an approximate Newton step for the necessary conditions of finding the extremum
of problem (1), since the updates of the variables are computed according to the linear system

⎛
⎜⎜⎜⎜⎝

0 0 A∗

0 B

(
∂c

∂q

)∗

A
∂c

∂q
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

Δw

Δq

Δλ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−∇wL

−∇qL

−c

⎞
⎟⎟⎠ . (4)

We used in7, 9, 10 a new method for solving the above problem (2) using simultaneous pseudo-time
stepping. In this method, to determine the solution of (2), we look for the steady state solutions of the
following pseudo-time embedded evolution equations

dw

dt
+ c(w, q) = 0,

dλ

dt
+ ∇wL(w, q, λ) = 0, (5)

dq

dt
+ ∇qL(w, q, λ) = 0.

This formulation is advantageous since the steady-state flow (and adjoint) solution is obtained by inte-
grating the pseudo-unsteady Euler (and adjoint Euler) equations in this problem class. Therefore, one
can use the same time-stepping scheme for the whole set of equations and preconditioners can be used
to accelerate the convergence. The preconditioner that we have used stems from RSQP methods as
discussed above and in detail in.9

The pseudo-time embedded system (5) usually results (after semi-discretization) a stiff system of
ODEs. Therefore explicit time-stepping schemes may converge very slowly or might even diverge. In order
to accelerate convergence, this system needs some preconditioning. We use the inverse of the matrix in
equation (4) as a preconditioner for the time-stepping process. The pseudo-time embedded system that
we consider is

⎛
⎜⎜⎝

ẇ

q̇

λ̇

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

0 0 A∗

0 B

(
∂c

∂q

)∗

A
∂c

∂q
0

⎤
⎥⎥⎥⎥⎦

−1 ⎛
⎜⎜⎝

−∇wL

−∇qL

−c

⎞
⎟⎟⎠ . (6)

This seems natural since equation (4) can be considered as an explicit Euler discretization for the cor-
responding time-stepping that we envision. Also, due to its block structure, it is computationally inex-
pensive. The preconditioner employed is similar to the preconditioners for KKT-systems discussed in2, 3

in the context of Krylov subspace methods and in4 in the context of Lagrange-Newton-Krylov-Schur
methods.
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Within the inexact RSQP-preconditioner, one has to look for an appropriate approximation of the
inverse of reduced Hessian. As shown in,6 the reduced Hessian update based on most recent reduced
gradient and parameter update informations is good enough, we use the same update strategy in this
paper. We define sk := (qk+1 − qk) and zk := (∇Ik+1 −∇Ik), where k represents the iteration number.
Then the reduced Hessian update is based on the sign of the product (zT

k sk). If the sign is positive, the
reduced Hessian is approximated by

Bk = β̄Γkδij , with Γk =
zT

k sk

zT
k zk

,

where β̄ is a constant. Otherwise, it is approximated by βδij , where β is another constant. Additionally,
we impose upper and lower limits on the factor so that

βmin < β̄
zT

k sk

zT
k zk

< βmax.

This prevents the optimizer from taking steps that are too small or too large. The constants can be
chosen, e.g., depending on the accuracy achieved in one time step by the forward and adjoint solver.

III. Detailed equations of the aerodynamic shape optimization problem

In this section we explain briefly the state, costate and design equations represented in equations
(2) for the shape optimization problem. The formulation of the adjoint and gradient equations for viscous
optimization follows the development in references18 and.19

State equations: Since we are interested in the steady flow, a proper approach for numerical modeling is
to integrate the unsteady Navier-Stokes equations in time until a steady state is reached. These equations
in Cartesian coordinates (x, y) for two-dimensional flow can be written in integral form for the region D
with boundaries B as

∂w

∂t
+

∂fi

∂xi
=

∂fvi

∂xi
in D, (7)

where

w :=

⎡
⎢⎢⎢⎢⎢⎣

ρ

ρu1

ρu2

ρE

⎤
⎥⎥⎥⎥⎥⎦

, fi :=

⎡
⎢⎢⎢⎢⎢⎣

ρui

ρuiu1 + pδi1

ρuiu2 + pδi2

ρuiH

⎤
⎥⎥⎥⎥⎥⎦

and fvi :=

⎡
⎢⎢⎢⎢⎢⎣

0

σijδj1

σijδj2

ujσij + k ∂T
∂xi

⎤
⎥⎥⎥⎥⎥⎦

.

For a perfect gas the pressure and total enthalpy is given by

p = (γ − 1)ρ
{

E − 1
2
(u2 + v2)

}
, H = E +

p

ρ
,

respectively. The viscous stresses may be written as

σij = μ

(
∂ui

∂xj
+

∂uj

∂xi

)
+ λδij

∂uk

∂xk
,
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where μ and λ are the first and second coefficients of viscosity. The coefficient of thermal conductivity
and the temperature are computed as

k =
cpμ

Pr
T =

p

Rρ
,

where Pr is the Prandtl number, cp is the specific heat at constant pressure and R is the universal gas
constant.

For discussion of real applications using a discretization on a body conforming structured mesh, it
is useful to consider a transformation to the computational coordinates (ξ1, ξ2) defined by the metrics

Kij =
[
∂xi

∂ξj

]
, J = det(K), K−1

ij =
[

∂ξi

∂xj

]
.

The Navier-Stokes equations can then be written in computational space as

∂(Jw)
∂t

+
∂(Fi − Fvi)

∂ξi
= 0 in D, (8)

where the inviscid and viscous flux contributions are now defined with respect to the computational cell
faces by Fi = Sijfj and Fvi = Sijfvj , and the quantity Sij = JK−1

ij represents the projection of the ξi

cell face along the xj axis. In obtaining equations (8) we have made use of the property that

∂Sij

∂ξi
= 0

which represents the fact that the sum of the face areas over a closed volume is zero, as can be readily
verified by a direct examination of the metric terms.

The boundary conditions used to solve these equations are the ’no slip’ condition on the solid wall,
and the farfield boundary is treated by considering the incoming and outgoing characteristics based on
the one dimensional Riemann invariants.

Costate equations: Aerodynamic optimization is based on the determination of the effect of
shape modifications on some performance measure which depends on the flow. For convenience, the
coordinates ξi describing the fixed computational domain are chosen so that each boundary conforms
to a constant value of one of these coordinates. Variations in the shape then result in corresponding
variations in the mapping derivatives defined by Kij .

Suppose that the performance is measured by a cost function

I =
∫
B
M (w, S) dBξ +

∫
D
P (w, S) dDξ, (9)

containing both boundary and field contributions where dBξ and dDξ are the surface and volume elements
in the computational domain. In general, M and P will depend on both the flow variables w and the
metrics S defining the computational space. The design problem is now treated as a control problem
where the boundary shape represents the control function, which is chosen to minimize I subject to the
constraints defined by the flow equations (8). A shape change produces a variation in the flow solution
δw and the metrics δS which in turn produce a variation in the cost function

δI =
∫
B

δM(w, S) dBξ +
∫
D

δP(w, S) dDξ. (10)
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This can be split as
δI = δII + δIII , (11)

with

δM = [Mw]I δw + δMII ,

δP = [Pw]I δw + δPII , (12)

where we continue to use the subscripts I and II to distinguish between the contributions associated with
the variation of the flow solution δw and those associated with the metric variations δS. Thus [Mw]I
and [Pw]I represent ∂M

∂w and ∂P
∂w with the metrics fixed, while δMII and δPII represent the contribution

of the metric variations δS to δM and δP .

In the steady state, the constraint equation (53) specifies the variation of the state vector δw by

δR =
∂

∂ξi
δ (Fi − Fvi) = 0. (13)

Here, also, δR, δFi and δFvi can be split into contributions associated with δw and δS using the notation

δR = δRI + δRII

δFi = [Fiw]I δw + δFiII

δFvi = [Fviw]I δw + δFviII . (14)

The inviscid contributions are easily evaluated as

[Fiw]I = Sij
∂fi

∂w
, δFviII = δSijfj .

The details of the viscous contributions are complicated by the additional level of derivatives in the stress
and heat flux terms.

Multiplying by a co-state vector ψ, which will play an analogous role to the Lagrange multiplier,
and integrating over the domain produces

∫
D

ψT ∂

∂ξi
δ (Fi − Fvi) dDξ = 0. (15)

Assuming that ψ is differentiable the terms with subscript I may be integrated by parts to give
∫
B

niψ
T δ (Fi − Fvi)I dBξ −

∫
D

∂ψT

∂ξi
δ (Fi − Fvi)I dDξ +

∫
D

ψT δRIIdDξ = 0. (16)

This equation results directly from taking the variation of the weak form of the flow equations, where ψ

is taken to be an arbitrary differentiable test function. Since the left hand expression equals zero, it may
be subtracted from the variation in the cost function (10) to give

δI = δIII −
∫
D

ψT δRIIdDξ −
∫
B

[
δMI − niψ

T δ (Fi − Fvi)I

]
dBξ

+
∫
D

[
δPI +

∂ψT

∂ξi
δ (Fi − Fvi)I

]
dDξ. (17)
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Now, since ψ is an arbitrary differentiable function, it may be chosen in such a way that δI no longer
depends explicitly on the variation of the state vector δw. The gradient of the cost function can then
be evaluated directly from the metric variations without having to recompute the variation δw resulting
from the perturbation of each design variable.

Comparing equations (12) and (14), the variation δw may be eliminated from (17) by equating all
field terms with subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I + [Pw]I = 0 in D. (18)

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary terms
in equation (17) to produce

niψ
T [Fiw − Fviw]I = [Mw]I on B. (19)

The remaining terms from equation (17) then yield a simplified expression for the variation of the cost
function which defines the gradient

δI = δIII +
∫
D

ψT δRIIdDξ, (20)

which consists purely of the terms containing variations in the metrics with the flow solution fixed. Hence
an explicit formula for the gradient can be derived once the relationship between mesh perturbations and
shape variations is defined.

Comparing equations (12) and (14), the variation δw may be eliminated from (17) by equating all
field terms with subscript “I” to produce a differential adjoint system governing ψ

∂ψT

∂ξi
[Fiw − Fviw]I + Pw = 0 in D. (21)

The corresponding adjoint boundary condition is produced by equating the subscript “I” boundary terms
in equation (17) to produce

niψ
T [Fiw − Fviw]I = Mw on B. (22)

The remaining terms from equation (17) then yield a simplified expression for the variation of the cost
function which defines the gradient

δI =
∫
B

{
δMII − niψ

T [δFi − δFvi] II

}
dBξ +

∫
D

{
δPII +

∂ψT

∂ξi
[δFi − δFvi] II

}
dDξ. (23)

The details of the formula for the gradient depend on the way in which the boundary shape is parame-
terized as a function of the design variables, and the way in which the mesh is deformed as the boundary
is modified. Using the relationship between the mesh deformation and the surface modification, the field
integral is reduced to a surface integral by integrating along the coordinate lines emanating from the
surface. Thus the expression for δI is finally reduced to the form

δI =
∫
B
Gδq dBξ

where q represents the design variables, and G is the gradient, which is a function defined over the
boundary surface.
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The boundary conditions satisfied by the flow equations restrict the form of the left hand side
of the adjoint boundary condition (22). Consequently, the boundary contribution to the cost function
M cannot be specified arbitrarily. Instead, it must be chosen from the class of functions which allow
cancellation of all terms containing δw in the boundary integral of equation (17). On the other hand,
there is no such restriction on the specification of the field contribution to the cost function P , since these
terms may always be absorbed into the adjoint field equation (21) as source terms.

It is convenient to develop the inviscid and viscous contributions to the adjoint equations separately.
Also, for simplicity, it will be assumed that the portion of the boundary that undergoes shape modifica-
tions is restricted to the coordinate surface ξ2 = 0. Then equations (17) and (19) may be simplified by
incorporating the conditions

n1 = 0, n2 = 1, dBξ = dξ1,

so that only the variations δF2 and δFv2 need to be considered at the wall boundary.

The inviscid and viscous contributions are to be derived separately to get the final form of the
adjoint equations. The inviscid contributions are derived in.15, 17 The viscous contributions are derived
in18, 19 and can be found in21 as well for 2D case. Determining the contributions from momentum and
energy equations, the viscous adjoint field operator will read as follows:

(
L̄ψ

)
1

= − p

ρ2

∂

∂ξl

(
Sljκ

∂θ

∂xj

)

(
L̄ψ

)
i+1

=
∂

∂ξl

{
Slj

[
μ

(
∂φi

∂xj
+

∂φj

∂xi

)
+ λδij

∂φk

∂xk

]}

+
∂

∂ξl

{
Slj

[
μ

(
ui

∂θ

∂xj
+ uj

∂θ

∂xi

)
+ λδijuk

∂θ

∂xk

]}
− σijSlj

∂θ

∂ξl
for i = 1, 2

(
L̄ψ

)
4

=
1
ρ

∂

∂ξl

(
Sljκ

∂θ

∂xj

)
.

The conservative viscous adjoint operator is obtained by the transformation

L = M−1T

L̄

where

M−1T
=

⎛
⎜⎜⎜⎜⎜⎝

1 −u1
ρ −u2

ρ
(γ−1)uiui

2

0 1
ρ 0 −(γ − 1)u1

0 0 1
ρ −(γ − 1)u2

0 0 0 (γ − 1)

⎞
⎟⎟⎟⎟⎟⎠

.

The cost function that we choose in the present optimization problem is drag reduction. Hence, the cost
function, which corresponds equation (9), reads as

I(w, q) := CD =
1

Cref

∫
B

Cp

(
∂y

∂ξ
cosα − ∂x

∂ξ
sin α

)
dξ1, (24)

where the surface pressure coefficient is defined by

Cp :=
2(p − p∞)
γM2∞p∞

. (25)
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The boundary conditions for the adjoint equations on the solid body, corresponding to equation (22), are
of Neumann-type and for the above mentioned cost function they are given by

nξ1ψ2 + nξ2ψ3 = − 2
γM2∞p∞Cref

(nξ1 cosα + nξ2 sin α), on B. (26)

Design equation: For the design equation (2c), we need an expression for the derivative of the La-
grangian with respect to the geometry of the airfoil. However, in the actual computation instead of
actual gradient (derivative of the Lagrangian) the reduced gradient (derivative of the cost function with
respect to the geometry of the airfoil) is used. Hence for the above mentioned cost function, the reduced
gradient is given by

δI =
1

Cref

∫
B

Cp

(
δ

(
∂y

∂ξ

)
cosα − δ

(
∂x

∂ξ

)
sin α

)
dξ1. (27)

Gradient Smoothing: The reduced gradient obtained using inaccurate state and costate solutions are
quite non-smooth, specially near the leading and trailing edges. In order to make sure that each new
shape in the optimization sequence remains smooth, it proves essential to smooth the gradient and to
replace G by its smoothed value Ḡ in the descent process. This also acts as a preconditioner which allows
the use of much larger steps. The gradient smoothing is equivalent to redefining the inner product in a
Sobolev space as described in,20 and the steps in the smoothed gradient direction still guarantee descent
towards the optimum. To apply second order smoothing in the ξ1 direction, for example, the smoothed
gradient Ḡ may be calculated from a discrete approximation to

Ḡ − ∂

∂ξ1
ε

∂

∂ξ1
Ḡ = G (28)

where ε is the smoothing parameter. For higher order smoothing, similar equation of higher order needs
to be solved.
Implementation of Navier-Stokes Design: In this paper we implement the one-shot approach of the
design for Navier-Stokes equations. The method is compared with the continuous adjoint method of A.
Jameson and termed as ’Original’ in what follows. His design procedure can be summarized as follows:

1. Solve the flow equations (for 10 iterations) for ρ, u1, u2, p.

2. Solve the adjoint equations (for 10 iterations) for ψ subject to appropriate boundary conditions.

3. Evaluate G .

4. Project G into an allowable subspace that satisfies any geometric constraints.

5. Smooth the gradient to get Ḡ.

6. Update the shape based on the direction of steepest descent.

7. Return to 1 until convergence is reached.

The design procedure of ’one-shot’ method can be summarized as follows:
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1. Solve the flow equations (for 2 to 4 iterations) for ρ, u1, u2, p.

2. Solve the adjoint equations (for 2 to 4 iterations) for ψ subject to appropriate boundary conditions.

3. Evaluate G .

4. Project G into an allowable subspace that satisfies any geometric constraints.

5. Smooth the gradient to get Ḡ.

6. Approximate the reduced Hessian B.

7. Integrate the preconditioned design equation.

8. Update the shape.

9. Return to 1 until convergence is reached.

IV. Numerical results and discussion

The numerical method is applied to 2D test cases for drag reduction with constant lift and constant
thickness. The computational domain is discretized using 512x64 C-grid. On this grid pseudo-unsteady
state, costate and design equations are solved. SYN103 code of A. Jameson is used for the computations.
The code is modified for one-shot optimization. The constraint of constant lift is maintained by changing
angle of incidence. All the points on the airfoil are used as design parameters which are 257 in numbers.
All the computations are carried out on a Linux machine with Intel(R) Xeon(TM) processor, CPU
3.00GHz and 8MB RAM.

Case 1: RAE 2822 airfoil
In this case the optimization method is applied to RAE 2822 airfoil at Mach number 0.75 and Reynolds
number 0.600E + 07. The constraint of constant lift coefficient is fixed at 0.65. The optimization is
started after 80 iterations of state and 40 iterations of costate solver. The design equation is integrated
after every 2 iterations of state and costate runs instead of after every iteration of state and costate run
as it should be in order to call it one-shot method. Since the grid is very fine, the residual is not reduced
to the minimum level required by the one-shot method. That is why we need 2 iterations of state and
costate solver in each optimization update. The optimization requires 32 iterations to converge. After
the convergence of the optimization another 80 iterations of state solver is carried out in order to get the
force coefficients which are comparable with results obtained by other methods.

For the ’Original’ method, the optimization is started after 80 iterations of state and costate
solver. The optimization requires 8 iterations to converge. Table 1 presents the comparison of number of
iterations, force coefficients and CPU time required in both the methods. As can be seen, optimized drag
coefficients are same in both the methods. The lift coefficients are also almost the same but the angle of
incidence obtained by one-shot method has smaller value. Also, one-shot method requires less CPU time
to converge. The convergence histories of both the optimization methods are presented in Figure 1. The
surface pressure distributions and Mach contours are presented in Figure 2. Both the optimized airfoils,
surface pressure distributions and Mach contours look quite similar.
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Geometry Opt. Itr State Itr Costate Itr CD CL AL CPU time

Baseline 300 0.0118 0.6500 1.93276 146.99 Sec

Original 8 230 150 0.0078 0.6498 2.16736 190.16 Sec

One-shot 32 222 102 0.0078 0.6501 2.12036 165.48 Sec
Table 1. Comparison of number of iterations and force coefficients for baseline and optimized RAE2822 airfoil using different

optimization iterations

Case 2: TAI airfoil
In this case the optimization method is applied to TAI airfoil at Mach number 0.65 and Reynolds number
0.600E + 07. The constraint of constant lift coefficient is fixed at 0.75. The optimization is started after
80 iterations of state and 40 iterations of costate solver. The design equation is integrated after every
4 iterations of state and costate runs. The optimization requires 38 iterations to converge. After the
convergence of the optimization another 100 iterations of state solver is carried out in order to get the
force coefficients which are comparable with results obtained with other methods.

For the ’Original’ method, the optimization is started after 80 iterations of state and costate
solver. The optimization requires 16 iterations to converge. Table 2 presents the comparison of number
of iterations, force coefficients and the CPU time required for the convergence of the methods. In this
case force coefficients are almost the same, angle of incidence obtained by one-shot method and the CPU
time required by this method is little less than that resulted by the original method. The convergence
history of the optimization method is presented in Figure 3. The surface pressure distribution and Mach
contour are presented in Figure 4. The optimized quantities obtained by both the methods are again
quite similar.

Geometry Opt. Itr State Itr Costate Itr CD CL AL CPU time

Baseline 500 0.0282 0.7504 2.28576 244.94 Sec

Original 16 310 230 0.0099 0.7508 2.40356 273.77 Sec

One-shot 38 328 188 0.0100 0.7506 2.38676 258.26 Sec
Table 2. Comparison of number of iterations and force coefficients for baseline and optimized TAI airfoil using different

optimization iterations

V. Conclusions

One-shot pseudo-timestepping method is applied successfully to shape optimization problems in
aerodynamics using viscous compressible flow. The method works efficiently as in case of applications
using inviscid compressible flow. In the convergence histories of the one-shot method, linear convergence
with respect to the objective function is observed. The iteration step in the design space is so small that
the process truly reflects a continuous behavior.

The optimized shapes from the two methods are very similar and have the same performance -in
this respect it is important to note that there is no reason to believe there is a unique optimum shape since
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any shock-free airfoil should have the same performance as long as the skin friction remains the same.
The two methods have roughly equal computational costs, depending on tuning data parameters such
as step size, smoothing parameters, no of iterations in the flow and adjoint solutions, etc. Perhaps this
is not so surprising because when the original method is run without fully converging the intermediate
flow and adjoint solutions it can properly be regarded as a variant of a one shot method. The over all
computational cost is less than 2 times the forward simulation runs.
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Verlag, pp. 1-18, 2001.
4Biros, G., Ghattas, O., Parallel Lagrange-Newton-krylov-schur methods for PDE-constrained optimization. Part

I: The Krylov-Schur solver, Tech. Rep., Laboratory for Mechanics, Algorithms and Computing, Carnegie Mellon University,

2000.
5Hazra, S. B., Multigrid one-shot method for aerodynamic shape optimization, (submitted), 2006.
6Hazra, S. B., Reduced Hessian updates in simultaneous pseudo-timestepping for aerodynamic shape optimization,

44th AIAA Aerospace Science Meeting and Exhibit, AIAA 2006-933, 9-12 January, Reno, Nevada, 2006.
7Hazra, S. B., An efficient method for aerodynamic shape optimization, 10th AIAA/ISSMO Multidisciplinary

Analysis and Optimization Conference, AIAA paper 2004-4628, Albany, New York, Aug.30-Sep.1, 2004.
8Hazra, S. B., Gauger, N., Simultaneous pseudo-timestepping for aerodynamic shape optimization, PAMM,

Vol.5(1), pp.743-744, 2005.
9Hazra, S. B., Schulz, V., Simultaneous pseudo-timestepping for PDE-model based optimization problems, Bit

Numerical Mathematics, 44(3): 457-472, 2004.
10Hazra, S. B., Schulz, V., Brezillon, J., Gauger, N. R., Aerodynamic shape optimization using simultaneous

pseudo-timestepping, J. Comp. Phys., 204: 46-64, 2005.
11Hazra, S. B., Schulz, V., Simultaneous pseudo-timestepping for aerodynamic shape optimization problems with

state constraints, SIAM J. Sci. Comput, Vol.28, No.3, pp. 1078-1099, 2006.
12Hazra, S. B., Schulz, V., Simultaneous pseudo-timestepping for state constrained optimization problems in

aerodynamics, (to appear) in ’Real-Time PDE-Constrained Optimization’ (Eds.: L. Biegler, O. Ghattas, M. Heinkenschloss,

D. Keyes and B. van Bloemen Waanders), SIAM, 2006.
13Hazra, S. B., Schulz, V., Brezillon, J.,Simultaneous pseudo-timestepping for 3D aerodynamic shape optimiza-

tion, Forschungsbericht Nr. 05-2, FB IV - Mathematik/Informatik, Universitaet Trier, 2005.
14Jameson, A., Aerodynamic design via control theory, J. Scientific Computing, Vol.3, pp.233-260, 1988.
15Jameson, A., Automatic design of transonic airfoils to reduce shock induced pressure drag, In Proceedings of the

31st Israel Annual Conference on Aviation and Aeronautics, pages 5-17, Tel Aviv, February, 1990.
16Jameson, A., Optimum aerodynamic design using CFD and control theory, AIAA 12th Computational Fluid

Dynamics Conference, AIAA 95-1729-CP, June, 1995.

12 of 17

American Institute of Aeronautics and Astronautics



17Jameson, A., Optimum aerodynamic design using control theory, Computational Fluid Dynamics Review, pages

495-528, 1995.
18Jameson, A., Pierce, N., Martinelli, L., Optimum aerodynamic design using the Navier-Stokes equations,

AIAA 97-0101, 35th Aerospace Science Meeting and Exhibit, Reno, Nevada, 1997.
19Jameson, A., Martinelli, L., Pierce, N., Optimum aerodynamic design using the Navier-Stokes equations,

Journal of Theoretical Computational Fluid Dynamics, 10: 213-237, 1998.
20Jameson, A., Efficient aerodynamic shape optimization, 10th AIAA/ISSMO Multidisciplinary Analysis and Op-

timization Conference, AIAA paper 2004-4369, Albany, New York, Aug.30-Sep.1, 2004.
21Nadarajah, S. and Jameson, A.,Studies of the continuous and discrete adjoint approaches to viscous automatic

aerodynamic shape optimization, 15th AIAA computational fluid dynamics conference, June 11-14, Anaheim, CA, 2001.
22Reuther, J., Jameson, A., Aerodynamic shape optimization of wing and wing-body configurations using control

theory, AIAA 95-0123, January, 1995.
23Reuther, J., Jameson, A., Farmer, J., Martinelli, L., and Saunders, D., Aerodynamic shape optimization

of complex aircraft configurations via an adjoint formulation, AIAA 96-0094, January, 1996.

13 of 17

American Institute of Aeronautics and Astronautics



Iteration

L
og

(R
es

)

50 100 150 200

10-1

100

101

102

103

Original(State)
One-shot(State)

Optimization

Iteration
Lo

g(
R

es
)

50 100 150

10-3

10-2

10-1

100

101

102

Original(Costate)
One-shot(Costate)

Iteration

C
D

50 100 150 200
0.007

0.008

0.009

0.01

0.011

0.012

Original
One-shot

O
pt

.e
nd

O
pt

.b
eg

in

Iteration

C
L

50 100 150 200

0.63

0.635

0.64

0.645

0.65

0.655
Original
One-shot

O
pt

.b
eg

in

O
pt

.e
nd

Iteration

A
L

50 100 150 200
1.95

2.025

2.1

2.175

2.25

2.325

Original
One-shot

O
pt

.b
eg

in

O
pt

.e
nd

Figure 1. Convergence history of the optimization iterations (Case 1: RAE2822 airfoil)
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RAE 2822 DRAG REDUCTION                                                         
MACH   0.750    ALPHA  2.167    RE 0.600E+07
CL  0.6499    CD  0.0078    CM -0.0885    CLV  0.0000    CDV  0.0055
GRID  512X64    NDES       8   RES0.336E-01   GMAX 0.195E-02
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(a) Original Optimization

RAE 2822 AIRFOIL                                                                
MACH   0.750    ALPHA  2.120    RE 0.600E+07
CL  0.6501    CD  0.0078    CM -0.0901    CLV  0.0000    CDV  0.0055
GRID  512X64    NDES      32   RES0.375E-01   GMAX 0.200E-02
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(b) One-shot optimization

Figure 2. Pressure distribution and Mach contours for the RAE2822 airfoil

15 of 17

American Institute of Aeronautics and Astronautics



Iteration

Lo
g(

R
es

)

100 200 300

10-1

100

101

102

103
Original(State)
One-shot(State)

Optimization

Iteration
Lo

g(
R

es
)

50 100 150 200

10-1

100

101

Original(Costate)
One-shot(Costate)

Iteration

C
D

100 200 300
0.005

0.01

0.015

0.02

0.025

0.03

0.035
Original
One-shot

Iteration

C
L

100 200 300

0.74

0.76

0.78

0.8
Original
One-shot

Iteration

A
L

100 200 300
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

Original
One-shot

Figure 3. Convergence history of the optimization iterations (Case 2: TAI airfoil)
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TAI DRAG REDUCTION                                                              
MACH   0.650    ALPHA  2.404    RE 0.600E+07
CL  0.7508    CD  0.0099    CM -0.0717    CLV  0.0000    CDV  0.0056
GRID  512X64    NDES      16   RES0.700E-01   GMAX 0.252E-02
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(a) Original Optimization

TAI DRAG REDUCTION                                                              
MACH   0.650    ALPHA  2.387    RE 0.600E+07
CL  0.7506    CD  0.0100    CM -0.0723    CLV  0.0000    CDV  0.0056
GRID  512X64    NDES      38   RES0.135E+00   GMAX 0.249E-02
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(b) One-shot optimization

Figure 4. Pressure distribution and Mach contours for the TAI airfoil
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