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This paper follows up on the authors’ recent paper.1 It is shown here that it is possible to
obtain reasonable improvement in the results utilizing Vorticity Confinement method. The
previous paper has shown that using the Time Spectral method can increase convergence
in forward flight calculations by up to two orders of magnitude compared to the traditional
Backward Difference Formula (BDF). With the addition of a new boundary condition for
the periodic planes, Euler and RANS forward flight calculations can now be done using
only one sector of the blade, and thus further improve convergence by a factor of N for an
N-bladed rotor,

I. Introduction

I
t has been shown that the Time Spectral method can significantly reduce the computational cost for peri-
odic problems such as pitching airfoils and wings (Gopinath & Jameson2), and rotorcraft flow simulation

(Butsuntorn & Jameson1). The latter paper has shown that the Time Spectral method can be up to two
orders of magnitude cheaper than the traditional Backward Difference Formula (Jameson, 19913) when used
for rotorcraft simulation in forward flight. Further, Butsuntorn & Jameson1 developed a new formulation for
Vorticity Confinement for transonic flow calculation, which showed promising results for three-dimensional
transonic Euler calculations on an untapered, untwisted NACA 0012 wing.

The current work utilizes a new formulation for the periodic boundaries first proposed by Ekici et al.4

Using this boundary condition, only one sector of a rotor is needed for forward flight calculation. This makes
the calculation cheaper by a factor of N where N is the number of blades in a given rotor. Additionally,
with the application of Vorticity Confinement method using a new formulation, it is shown that the vortical
structure stemmed from the blades in both hover and forward flight can be prevented from diffusing too
quickly in the coarse mesh regions.

II. Governing Equations and Discretization

L
et p, ρ, E and H denote the pressure, density, total energy and total enthalpy of the fluid. The Cartesian
coordinates and velocity components are denoted by x1, x2, x3 and u1, u2, u3 respectively. Einstein

notation is used to simplify the presentation of the equations where the summation is implied with the
repeated index.

Consider the flow equations without the body force in integral form:

∂

∂t

∫

Ω

w dV +

∮

∂Ω

fj · n dS = 0 (1)
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where w is the state vector with the following components:

w =




ρ

ρu1

ρu2

ρu3

ρE



.

The flux fj can be split into the convective and viscous components:

fj = fj,c − fj,v (2)

where fj,c is the convective flux and fj,v is the viscous flux. Consider the control volume boundary that

moves with the velocity bj =
∂xj

∂t , the flux terms can now be written as

fj,c =




ρ (uj − bj)

ρu1 (uj − bj) + p δ1j

ρu2 (uj − bj) + p δ2j

ρu3 (uj − bj) + p δ3j

ρE (uj − bj) + p uj




and fj,v =




0

τ1j

τ2j

τ3j

umτmj − qj




(3)

where δmj is the Kronecker delta, qj is the heat flux in the j direction and τmj is the stress tensor. Its
components are given by

τmj = µ

(
∂uj
∂xm

+
∂um
∂xj

)
+ δmjλ

∂ul
∂xl

where µ is the dynamic viscosity of the fluid and λ is the second coefficient of viscosity, which is equal to
− 2

3µ. The dynamic viscosity can be modeled using Sutherland’s law where µ is a function of temperature:

µ =

(
1.458× 10−6

)
T

3

2

T + 110.4
, T =

p

(γ − 1)ρ
.

With the aid of Fourier’s law of heat conduction, the heat flux qj is defined as

qj = −k
∂T

∂xj
,

where k is the thermal conductivity of the fluid, which is defined as

k =
γµ

Pr
.

The values of the ratio of specific heats, γ, and Prandtl number are held constant at 1.4 and 0.725 respectively.
The equation of state provides the closure for the governing equations. For an ideal gas

E =
p

(γ − 1)ρ)
+

1

2
(ujuj) , H = E +

p

ρ
.

For Euler calculation, the term fj,v in Eq. (2) is set to zero.
Using central differencing with an artificial dissipation scheme for spatial discretization, the flow equations

in Eq. (1), can be written in semi-discrete form:

V
dw

dt
+ R(w) = 0. (4)
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III. Time Spectral Method

T
aking advantage of the periodic nature of the periodic unsteady problem, a Fourier representation in
time can make it possible to achieve spectral accuracy. However, typical nonlinear frequency domain

solvers require forward and backward Fourier transforms between the time and frequency domain for every
time step. The Time Spectral method addresses this problem by utilizing the Fourier collocation matrix. As
a result, the governing equations are now solved strictly in the time domain only.

Recall that for a real, periodic function, f(x), defined on N equally spaced grid points, xj = j∆x where
j = 0, 1, 2, . . . , N − 1. The discrete Fourier transform of f is

f̂k =
1

N

N−1∑

j=0

fje
−ikxj , (5)

and its inverse transform is

fj =

N
2
−1∑

k=− N
2

f̂ke
ikxj . (6)

Then, the Fourier transform of the derivative approximation is computed by multiplying the Fourier trans-
form of f by ik

D̂fk = ikf̂k.

Therefore the spectral derivative of f at point j is

df

dx

∣∣∣∣
j

=

N
2
−1∑

k=−N
2

+1

D̂fke
ikxj .

Note that in the above representation, the period in space is 2π, and the Fourier coefficient of the derivative
corresponding to the wave number −N/2 is set to zero to avoid complex derivatives.

If one wishes to have a compact representation of the spectral Fourier derivative operator in the physical
space and not in the wave space, a physical (time) space operator for numerical differentiation can be derived
for the governing equations as follows.

Using the definition from Eqs. (5) and (6), the discrete Fourier transform of the flow variables w for a
time period T is

ŵk =
1

N

N−1∑

n=0

wne−ik 2π
T
n∆t,

and its inverse transform is

wn =

N
2
−1∑

k=− N
2

ŵke
ik 2π

T
n∆t (7)

where n∆t is the n-th time instance in the period T . The spectral derivative of Eq. (7) with respect to time
at the n-th time stance is given by

Dwn =
2π

T

N
2
−1∑

k=−N
2

+1

ik ŵke
ik 2π

T
n∆t.

This summation involves the Fourier transform of w but it can be written as a matrix multiplication in the
time domain as

Dwn =

N−1∑

j=0

djnw
j

where

djn =

{
2π
T

1
2 (−1)n−j cot

{
π(n−j)
N

}
: n 6= j

0 : n = j
.
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This representation of the time derivative expresses the multiplication of a matrix (Canuto et al., 2007)5

with elements dnj and the vector wj .
Let n− j = −m, one can rewrite the time derivative as

Dwn =

N
2
−1∑

m=−N
2

+1

dmw(n+m), (8)

where dm is now given by

dm =

{
2π
T

1
2 (−1)m+1 cot

{
πm
N

}
: m 6= 0

0 : m = 0
.

Substituting the spectral derivative of the flow variables in Eq. (8) into Eq. (4), the flow equations in
semi-discrete form for the n-th time instance is

VDwn + R(wn) = 0. (9)

These comprise a four dimensional coupled space–time set of nonlinear equations, which need to be solved
simultaneously. For this purpose, we introduce a pseudo time derivative term to Eq. (9). The equations can
now be marched towards a periodic steady state using well known convergence acceleration techniques

V
dwn

dτ
+ VDwn + R(wn) = 0. (10)

In order to solve Eq. (10) to the steady state as quickly as possible, the flow solver incorporated a number
of convergence acceleration techniques; local time stepping, modified five stage Runge–Kutta time stepping
scheme6 and multigrid.7, 8 Two different artificial dissipation schemes were used; Jameson–Schmidt–Turkel9

(JST) and convective upwind and split pressure10 (CUSP).
For the RANS calculations of the forward flight, Message Passing Interface (MPI) were used between

blocks. All the meshes used in this work were generated internally by the flow solvers. In the case of forward
flight calculations, domain decomposition was done automatically.

IV. Vorticity Confinement for Compressible Flow

S
teinhoff;11 Steinhoff & Underhill12 introduced the concept of Vorticity Confinement in 1994 and have
been refining the model over the past decade. The basic idea of this method is to add a forcing term to

the incompressible momentum equations, resulting in

∂u

∂t
+ (u · ∇)u = −

1

ρ
∇p+ µ∇2u− ǫs (11)

where the simplest form of s is
s = n̂ × ω,

and

n̂ =
∇η

|∇η|
.

The vorticity vector ω given by
ω = ∇× u.

The variable η is defined as
η = |ω| .

The idea behind this formulation is that vorticity is convected in the direction determined by the gradients
of the vorticity. The unit vector n̂ points towards the core of the vortical region and the confinement term
s convects the vorticity towards the centroid.
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The authors combine the previous works of Hu et al.;13 Hu & Grossman,14 Fedkiw et al.;15 Löhner &
Yang;16 Löhner et al.17 and Robinson,18 to obtain an alternative formula which can be written as follows:1

s = |u · ω|

[
1 + log10

(
1 +

V

Vaveraged

)1/3
]




0

ρ
(
n̂× ω

|ω|

)
· i

ρ
(
n̂× ω

|ω|

)
· j

ρ
(
n̂ × ω

|ω|

)
· k

ρ
(
n̂× ω

|ω|

)
· u




. (12)

V. Forward Flight Simulations

I
n forward flight regime, a component of free stream velocity U0 adds or subtracts from the rotational
velocity at each part of the blade. So the tip velocity Utip now becomes

Utip = ΩR+ U0 sinψ

where ψ is the azimuthal angle of the blade. ψ is defined as zero in the downstream direction of the rotor.
This angle is measured from downstream to the blade span axis.

Although the rotor blade is normally twisted along its length (linear twist), the blades in the current work
are rigid and do not account for aeroelastic effects. Results are compared to the wind tunnel experiment of
a model helicopter rotor in forward flight by Caradonna et al.19 The blades were 7 feet in diameter and 6
inches in chord with an untapered, untwisted NACA 0012 profile.

V.A. Mesh

The mesh for nonlifting forward flight calculations is an O–H type mesh that is internally generated via
conformal mapping. Fig. 1 shows the mesh used in the calculations.

(a) Isometric view (b) Top view

Figure 1. 128 × 48 × 32 computational mesh cells per blade modeling an untwisted, untapered, two-bladed NACA 0012

rotor with an aspect ratio of 7 for the Euler calculation of a rotor in nonlifting forward flight
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V.B. Boundary Conditions

At the rotor hub, a solid body boundary (flow tangency for Euler calculation and no slip for RANS calcula-
tion) condition was used. Reimann invariants boundary condition was also tested but the overall result was
insensitive to the boundary condition at this boundary.

At the far-field, the boundary condition was constructed using one-dimensional Reimann invariants for
both the upper and lower boundaries. The halo cells at the side boundaries containing both the values of the
flow variables, mesh geometry and mesh velocities were exchanged between the blades at every time step.

V.C. Nonlifting Rotor in Forward Flight

The aspect ratio of the blades was 7. The tip Mach number was 0.8 with the reference Reynolds number of
2.89 × 106. The advance ratio was µ = 0.2, which corresponded to a Mach number in the unperturbed flow
of M0 = 0.16.

For the Euler calculations, the number of cells per blade was 128×48×32 with 16 cells distributed along
the blade while 192× 64× 48 cells were used for the RANS calculations with 32 cells distributed along each
blade. All the calculations were performed with 12 time instances (N = 12), or five harmonics.

Fig. 2 shows the variation of the local coefficient of pressure at the span location r/R = 0.893 for six
different azimuthal angles. The results were from the Euler calculations with the JST and CUSP dissipation
schemes. The agreement between the computed results and the experimental data was very good. The shock
captured using the CUSP dissipation scheme was sharper and stronger, and is most obvious at the azimuthal
angle ψ = 120◦. The shock location calculated with both artificial dissipation schemes was almost the same,
and this occurred earlier than the shock location recorded in the experiment. The Euler calculations took 300
multigrid cycles, by which time, the averaged residual was reduced by more than four orders of magnitude.

Fig. 3 shows the result of the RANS calculations with the JST and CUSP dissipation schemes. Similarly,
the calculations show excellent agreement with the experimental data. The result from the CUSP scheme
showed slightly weaker shock in this calculation than in the corresponding Euler calculations. This was
expected because of the viscous effects. The RANS computations with 12 time instances were run on four
dual-core processors with the clock speed of 3.0 GHz. The total simulation time including mesh generation,
which was built into the flow solver, was five hours for 500 multigrid cycles with three orders of magnitude
reduction in the averaged residual.

V.D. Accuracy Tests

As an accuracy test of the Time Spectral method, the forward flight case was simulated with only four time
instances (N = 4). Results from Euler calculations at the azimuthal angles ψ = 90◦ and ψ = 180◦ are shown
in Fig. 4. One can observe that even with a small number of time instances, as few as only four, the results
still show excellent agreement with the experimental data. This shows that the Time Spectral method is
indeed, a highly accurate scheme while avoids being computationally expensive.

V.E. Cost Comparison

As a comparison to the traditional backward difference formula,3 a RANS calculation of a rotor in forward
flight for the same case would require the following operations at the minimum:

• 180 time steps per revolution (more likely 360 time steps, if not more).

• 40 multigrid cycles per time step.

• 6 complete cycles to establish periodicity of the flow field.

This means at least 43,200 cycles would be required to solve the same problem, whereas the calculation with
the Time Spectral method used only 500 multigrid cycles. Therefore the Time Spectral method is at least
two orders of magnitude faster than the backward difference formula. Even when one considers that 12 time
instances are used for one calculation, the computational resource required is still approximately 10 times
less than calculations with BDF.
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(f) Cp distribution at ψ = 180◦

Figure 2. Coefficient of pressure distribution on a blade section at r/R = 0.893 on a nonlifting rotor in forward flight

from Euler calculations, Mtip = 0.8, θc = 0◦, µ = 0.2, N = 12: � denotes the experimental values of Cp, — denotes the

result using the JST dissipation scheme, and – – denotes the result using the CUSP dissipation scheme.
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(f) Cp distribution at ψ = 180◦

Figure 3. Coefficient of pressure distribution on a blade section at r/R = 0.893 on a nonlifting rotor in forward flight

from RANS calculations, Mtip = 0.8, θc = 0◦, µ = 0.2, N = 12: � denotes the experimental values of Cp, — denotes the

result using the JST dissipation scheme, and – – denotes the result using the CUSP dissipation scheme.
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(a) Cp distribution at ψ = 90◦
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Figure 4. Coefficient of pressure distribution on a blade section at r/R = 0.893 on a nonlifting rotor in forward flight

from Euler calculations, N = 4, Mtip = 0.8, θc = 0◦, µ = 0.2: � denotes the experimental values of Cp, — denotes the

result using the JST dissipation scheme, and – – denotes the result using the CUSP dissipation scheme.

V.F. Lifting Rotor in Forward Flight

In this section, calculation results for a lifting rotor in forward flight is compared to the numerical simulation
of Professor Chris Allen of the University of Bristol. The geometry for this test case is the same as the lifting
hover case.20 The aspect ratio is six with an NACA 0012 blade section, and the collective pitch is 8 degrees.
The tip Mach number is set at 0.7 and the advance ratio, µ, is 0.2857. This corresponds to a forward flight
Mach number of 0.2.

This test case has been chosen for a number of reasons. The primary reason is that there is no blade
motion, i.e. the blades are completely rigid with no allowance for aeroelasticity effects and the rotor hub
is not articulated. Additionally, simulations by Allen21 used 4 million mesh points with 60 time steps per
revolution, and 70 four-level V-cycle multigrid inner iterations for each time step. The time integration for
this work was the widely used BDF.3 Thus Allen’s results seem accurate enough for comparison purposes.
His past work has been thorough and he has consistently obtained good agreement between his numerical
results and the experimental data. Lastly, the number of mesh cells used in the current work is approximately
200,000 per blade sector for the smallest case. While this relatively small number of mesh cells may not be
able to fully resolve all details of the correct flow field, the results indicate that the prediction of aerodynamic
quantities such as the coefficient of pressure, is remarkably accurate for the mesh size.

The quantity compared here is the load variation on each blade around the azimuth. Allen defined the
force coefficient for each blade as

CL =
Fy

1
2ρ (ΩR)

2
cR

(13)

where c is the chord at the tip (the chord is constant along the radius in this case), Fy is the force in the y
direction, Ω is the angular velocity and the term cR represents the surface area of the blade. The subscript
L indicates the lifting load. It is different from the coefficient of thrust in that this quantity is only for one
blade, not for the complete rotor as one would associate with the thrust. Figures 5 and 6 show the comparison
of the load variation computed by the Time Spectral method with the JST and CUSP dissipation schemes,
and the data that has been supplied by Professor Allen.

Only one sector of a rotor is used in this calculation using the time-lagged periodic boundary condition
from (??). Four cases for each scheme are compared with different combinations of the number of mesh
cells and time instances. The cases are summarized in table 1. The number of time instances used in the
calculations are 12 for cases 1–3 and 18 for case 4 as indicated in the table. This corresponds to azimuthal
angles of 0, 30, 60, . . . , 330, 360 degrees for the first case, and 0, 20, 40, . . ., 340 and 360 degrees for the
second case. Periodicity was not established in Allen’s result until the second revolution. The computed
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result is thus shifted by 360◦. Additionally, 90◦ is added because of the difference in the rotor orientation.
Therefore the comparison starts at ψ = 450◦ onwards.

The comparison of the first three cases can be thought of as a mesh refinement study, although this
should be done by doubling the number of mesh points in all directions, rather than increasing the number
of points by small numbers as it is shown here. All three cases over-predict the lift coefficient except around
the azimuthal angle greater than 90◦ and less than 225◦ approximately. This is not unexpected since the
blade geometry from the Caradonna–Tung experiment was not fully specified such as where the root of the
blade actually starts (only the diameter of the rotor and the aspect ratio are given). Different researchers
presumably use slightly different geometries in this regard. The calculation with 18 time instances shows
better agreement of the lift coefficient on the retreating side for both dissipation schemes, but the over-
prediction of the lift coefficient between azimuthal angles of 0◦ and 30◦ is greater than the calculations with
12 time instances.

Allen explained that there was a dip in the coefficient of lift, CL, around an azimuth angle approximately
between 0◦ and 30◦ because the blade was running into the vortex generated from the previous blade. In the
present work, it is not very visible that there is a dip in the lift coefficient in this area with the result from
the JST scheme. This phenomenon is more visible with the CUSP dissipation scheme. It can be observed
that as the number of mesh size increases, this feature starts to look more prominent.

Case
Number of Cells Number of Time Instances

x y z N

1 128 48 32 12

2 160 48 48 12

3 192 64 48 12

4 160 48 48 18

Table 1. Lifting forward flight test conditions.

Figures 7 and 8 show the distribution of the coefficient of pressure at r/R = 0.90 at 12 azimuthal angles
from calculations with the JST and CUSP dissipation schemes. This corresponds to case 3 in the table.
The calculations used 192 × 64 × 48 mesh cells. The span r/R = 0.90 is chosen for comparison because
discontinuity is certain to appear in the advancing side near the tip. A good agreement with the data
provided by Allen is observed except at three azimuthal angles, 150◦, 180◦ and 330◦. Personal consultation
with Professor Allen suggested that the number of mesh points is not enough to capture shock at the first
two locations. The coefficient of pressure distribution at 330◦ over-predicts the result of Allen’s by some
margin. However, this location is on the retreating side and there is no physical reason why the coefficient
of pressure should significantly drop only to rise up again at 360◦.

VI. Computed Results with Vorticity Confinement

T
he test case was a fully compressible Euler computation of wing tip vortex of a NACA 0012 wing with
an aspect ratio of 3. The free stream Mach number was 0.8 and the angle of attack was 5 degrees.

At z = 0, a symmetry plane boundary condition was used. Riemann invariants boundary condition was
applied at the far-field and a flow tangency boundary condition was used on the wing. The formulation of
the Vorticity Confinement method was taken from Eq. (12). Calculations were performed with four different
values of the confinement parameter ǫ.

The mesh was generated internally by the flow solver and was a typical C-mesh type with 160× 32× 48
mesh cells with 32 cells on the wing. The reference chord length was unity and the trailing edge was located
at x = 1. The coefficient ǫ was fixed at 0, 0.025, 0.05, and 0.075. The results from the calculations are
shown in Fig. 9. There are four cut-planes normal to the x direction located at x = 2, 4, 6, and 8, where the
vorticity magnitude was plotted. One can observe that the vortex structure was still quite well maintained
even after eight chord lengths away with the confinement term. The effectiveness of this depended on the
strength of the confinement parameter. For the case of no confinement ǫ = 0, the vorticity dissipated very
quickly.

Fig. 10 shows the distribution of the coefficient of pressure on the wing at three different span stations.
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(a) 128 × 48 × 32 with 12 time instances
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(b) 160 × 48 × 48 with 12 times instances
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(c) 192 × 64 × 48 with 12 time instances
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(d) 160 × 48 × 48 with 18 time instances

Figure 5. Comparison of the coefficient of lift per blade vs. the azimuth of a lifting rotor in forward flight from Euler

calculation with the CUSP dissipation scheme, Mt = 0.7, µ = 0.2857, θc = 8◦: • computed result from the current work

using the JST dissipation scheme, — simulation result provided by Allen.

z = 0.891 z = 1.828 z = 2.766

ǫ cl cd cl cd cl cd

0 0.7098 0.0792 0.6123 0.0651 0.3869 0.0394

0.025 0.7091 0.0791 0.6114 0.0650 0.3851 0.0393

0.050 0.7083 0.0790 0.6103 0.0649 0.3833 0.0391

0.075 0.7074 0.0788 0.6093 0.0647 0.3817 0.0389

Table 2. Coefficients of lift and drag from Euler calculation of a NACA 0012 wing for different values of ǫ at three

different span stations: M∞ = 0.8, α = 5, aspect ratio = 3.

The effect of adding the confinement term was negligible and the distribution of the coefficient of pressure
for each value of ǫ collapsed into one line. The coefficients of lift and drag at three different span stations
are listed in Table 2 and are plotted separately in Fig. 11. The coefficients of lift and drag decreased by
approximately 0.3% and 0.5% respectively as the confinement parameter ǫ increased from zero to 0.075 at
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(c) 192 × 64 × 48 with 12 times instances
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(d) 160 × 48 × 48 with 18 time instances

Figure 6. Comparison of the coefficient of lift per blade vs. the azimuth of a lifting rotor in forward flight from Euler

calculation with the CUSP dissipation scheme, Mt = 0.7, µ = 0.2857, θc = 8◦: • computed result from the current work

using the CUSP dissipation scheme, — simulation result provided by Allen.

z = 0.891, and up to 1.3% for both coefficients at z = 2.766. The location z = 2.766 was very close to
the tip of the wing (ztip = 3), and this was where the tip vortex was generated. Therefore the difference
in both cl and cd for different values of the confinement parameter was expected to be the largest at this
location. The results from this test case indicate that the new formulation works well for transonic flow
calculation and that the inclusion of the confinement term does not diminish the ability of the flow solver
to capture discontinuity. The implementation of the new formulation of Vorticity Confinement is currently
under investigation for rotorcraft flow.

VII. Vorticity Confinement in Rotorcraft Flow

This section discusses the application of Vorticity Confinement to rotorcraft simulation. A comparison
is made with the data for a lifting rotor in forward flight supplied by Professor Allen. The geometry for
this case is from20 with a collective pitch of 8 degrees. The tip Mach number is 0.7 and the advance ratio is
µ = 0.2857. The computation used 12 time instances for Euler calculation with 160×48×48 mesh cells. The
formulation of Vorticity Confinement is from (12). Fig. 12 shows a significant improvement over the results
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(j) ψ = 300◦
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(k) ψ = 330◦
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Figure 7. Coefficient of pressure at r/R = 0.90 using the JST dissipation scheme with 192× 64 × 48 mesh cells, Mt = 0.7,
µ = 0.2857, θc = 8◦, N = 12: — computed result, × result provided by Allen.

previously shown in figure 5. The over-prediction of the lift coefficient has decreased markedly, especially on
the advancing side. As ǫ increases, one can easily observe the effects of the blade–vortex interaction at the
beginning of the advancing side. Recall that the results from the JST scheme hardly exhibit the dip in the
coefficient of lift, even at the largest mesh size of 192 × 64 × 48. The results shown here used fewer mesh
cells but the effect of the blade–vortex interaction can be seen clearly when the confinement parameter ǫ is
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Figure 8. Coefficient of pressure at r/R = 0.90 using the CUSP dissipation scheme with 192×64×48 mesh cells, Mt = 0.7,
µ = 0.2857, θc = 8◦, N = 12: — computed result, × result provided by Allen.

sufficiently large.
The required value of the confinement parameter for this case is one order of magnitude larger than the

fixed-wing case. This is because the skewed geometry of the helicopter mesh. Additionally, because the
mesh cells are extremely small near the hub, confinement is only added in the outer half of the blade. The
smallest mesh size for this case is of the order O(10−8) while the largest mesh cell is of the order of O(10−1).
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(a) ǫ = 0 (b) ǫ = 0.025

(c) ǫ = 0.05 (d) ǫ = 0.075

Figure 9. Vorticity magnitude on NACA 0012 wing for different values of ǫ: M∞ = 0.8, α = 5, aspect ratio = 3.

Fig. 13 shows the vorticity magnitude at the first time instance where ψ = 90◦ at 2 cut-planes normal
to the x direction where x = 2 and x = 5. The leading edge and the trailing edge are located at x = 0
and x = 1 respectively. It can be observed from the plots that the vortical structure could be maintained
better with Vorticity Confinement compared to the result from the original calculation. However, the vortex
structure still diffuses much faster compared to the results of the fixed-wing because the mesh distribution
in the vortical regions is more sparse than the traditional C-mesh distribution. It is safe to assume that
changing the current O–H mesh topology to an H–H mesh, or an unstructured mesh distribution should
improve this matter significantly. The severity of the mesh stretching can be seen Fig. 14.

VIII. Summary & Conclusion

I
t has been shown that the Time Spectral method is capable of accurately predicting the helicopter aero-
dynamics. If one considers the number of multigrid cycles required to march to convergence, the Time

Spectral method is at least two orders of magnitude cheaper than the traditional implicit dual time stepping
scheme. Additionally, the method is simpler to implement compared to the nonlinear frequency domain
technique.

The new formulation of the Vorticity Confinement method needs further investigation and validation
before becoming robust enough for rotorcraft flow computation but the new formulation looks promising as
it has no effect on the surface pressure distribution and only up to 1.3% error in the values of the coefficients
of lift and drag. The parameter ǫ is now a true dimensionless parameter and the calculation of a helicity
reflects the direction of the vortical structures of the rotorcraft flow field.

However, one issue that arises with Vorticity Confinement is that the confinement term is independent of
the numerical schemes used in calculations. Since it is used to counteract the effect of numerical diffusion,
the best value of the confinement parameter may vary when different numerical schemes are used, and is
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Figure 10. Coefficient of pressure distribution at three span stations on NACA 0012 wing for four different values of

ǫ: — ◦ — denotes ǫ = 0, · · · denotes ǫ = 0.025, – · – denotes ǫ = 0.05, – – denotes ǫ = 0.075, M∞ = 0.8, α = 5, aspect ratio

= 3.

one of the major problems in correctly identifying the confinement parameter ǫ. Naturally, when one uses a
high order scheme (higher than second order), numerical diffusion is considerably less in comparison to first
or second order accurate schemes. As a result, there is a need to systematically formulate the confinement
term based on numerical diffusion and discretization errors. The values used in this work for both fixed-wing
and rotary-wing calculations have come from trial and error.
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Figure 12. Coefficient of lift per blade vs. the azimuth of a lifting rotor in forward flight using Euler calculation with the

JST dissipation scheme combined with Vorticity Confinement: Mt = 0.7, µ = 0.2857, θc = 8◦, N = 12, • computed result

from the current work using the JST dissipation scheme with Vorticity Confinement, — simulation result provided

Allen.
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(a) ǫ = 0 (b) ǫ = 0.2

Figure 13. Vorticity magnitude of a lifting rotor in forward flight at the cut-planes x = 2 and x = 5 with 160 × 48 × 48
mesh cells: Mt = 0.7, µ = 0.2857, θc = 8◦, N = 12, ψ = 90◦.

Figure 14. Mesh cross section at the tip of of the blade
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