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Higher order discretizations have not been widely successful in industrial applications
to compressible flow simulation. Among several reasons for this, one may identify the lack
of tailor-suited, best-practice relaxation techniques that compare favorably to highly tuned
lower order methods, such as finite-volume schemes. In this paper we investigate efficient
Spectral Difference discretization methods for the Euler and Navier-Stokes equations, and
present solution algorithms using such techniques as h/p-Multigrid. We present a novel hy-
brid multilevel relaxation method that combines matrix-free implicit relaxation techniques
with explicit time-stepping using geometric multigrid.

I. Introduction

Many have anticipated the arrival of high-order discretization methods for compressible fluid flow in
complex domains as the CFD method of choice. However, for industrial applications in external aerodynamics
lower order methods, such as finite-volume schemes, are still by far more popular. The reasons for this are
several. Firstly, shock capturing poses a much bigger challenge for higher order discretization methods,
compared to high-resolution finite volume schemes. Often one encounters severe convergence degradation
when heavy use of limiters is required. Such limiters typically alter the frequency spectrum with very
heavy damping of higher order modes, and careful limiting of lower order modes, which is a much more
intrusive procedure if the local spectrum is richer to begin with. Secondly, for established CFD methodologies
tailor-suited convergence acceleration techniques have emerged over the past decades. High-order solvers
thus compete with very mature technology, and novel discretization techniques have to be augmented with
extremely efficient solutions algorithms.

Numerical schemes of third or higher spatial order are not yet efficient enough for many problems of prac-
tical engineering interest, in particular high-speed viscous flow. For steady problems a fast solution technique
is necessary to solve the arising systems of nonlinear equations. This is the focus of the present paper. We
investigate efficient solution techniques, such as h/p-multigrid methods and (matrix-free) implicit relaxation
schemes for steady compressible flow. Trade-offs between computational cost, memory requirements, and
also ease of implementation are considered.

Spatial discretization is implemented using the Spectral Difference scheme, which has been proposed as
a collocation-based method with the aim to achieve efficiency by avoiding volume and surface quadratures,
while maintaining conservation.1–3 The Spectral Difference approach extends tensor-product-based colloca-
tion approaches that had previously been formulated for quadrilateral meshes4 to more general unstructured-
grid elements. The scheme may also be viewed as a particularly efficient nodal Discontinuous Galerkin
scheme.5 In the present paper we consider the Spectral Difference scheme for two-dimensional compressible
fluid flow on triangular unstructured grids.

Focus is also on efficient implementation of solution algorithms. For nonlinear equations it is not always
a priori clear which elements of the solution methodology, comprised of spatial discretization and relaxation
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algorithms works best for a given problem. Thus one desires a flexible implementation that lets the user
combine different building blocks, such as numerical flux functions, approximations to Jacobian matrices,
and pre-conditioning, without extensive re-derivation or re-implementation of code. We use such tools as
efficient numerical libraries and automatic differentiation (AD) to obtain a flexible platform designed to aid in
the investigation into efficient solution methods for high-order discretizations of the Euler and Navier-Stokes
equations.

II. Governing Equations

For inviscid compressible flow we solve the Euler equations in conservation form:

∂w

∂t
+

d∑
j=1

∂fj
∂xj

= 0 . (1)

We consider the two-dimensional equations, i.e. d = 2. The vector of conservative variables w and the flux
vectors fj are given by

w =


ρ

ρu1

ρu2

E

 , fj =


ρuj

ρuju1 + pδj1

ρuju2 + pδj2

ρujH

 , j = 1, 2 . (2)

Here ρ is the density, p is the pressure, E is the energy, and H = (E + p)/ρ is the enthalpy. The velocity
vector is given by u = (u1, u2)T . We shall assume a thermally and calorically perfect gas, and hence close
the equations by the equation of state

p = (γ − 1)
(
E − 1

2
ρ||u||2

)
, (3)

where γ = 1.4 is the ratio of specific heats for air.
In the case of viscous flow the compressible Navier-Stokes equations in conservation form are solved:

∂w

∂t
+

d∑
j=1

∂(fj − f (v)
j )

∂xj
= 0 , (4)

where for two-dimensional flow the viscous flux vectors are given by

f
(v)
j =


0
τ1j

τ2j

τj1u1 + τj2u2 − qj

 , j = 1, 2 . (5)

The stress tensor τ and heat flux vector q are written for a Newtonian Fluid under the Stokes hypothesis,
and using the Fourier law of heat conduction

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

+ δij∇ · u
)
, (6)

qj = − µ

Pr

γ

γ − 1
∂(p/ρ)
∂xj

, (7)

where µ is the dynamic viscosity. The Prandtl number Pr = cpµ/κ, can be assumed constant, with Pr ≈ 0.72
for air. The specific heat at constant pressure, which is assumed to be constant, is denoted by cp, while κ is
the heat conduction coefficient. For the viscosity we use Sutherland’s law

µ

µ0
=
(
T

T0

) 3
2 T0 +A

T +A
, (8)

where the constant A is taken as A = 100.3K, and T0 is a reference temperature corresponding to the
viscosity µ0.
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III. Discretization

III.A. Discretization for inviscid Flow

For moderate levels of accuracy, higher order numerical schemes are advantageous only if a particular dis-
cretization method supports efficient implementation. Local numerical integration required by standard
Discontinuous Galerkin (DG) methods can be considered a drawback in this regard. For nonlinear conser-
vation laws, where integration necessitates explicit evaluation of analytical and numerical flux functions at
quadrature points, numerical quadratures are quite irksome, since a generic optimal node placement for a
given accuracy is not known for general mesh elements, in particular simplex elements. In this context the
Spectral Difference scheme has been proposed as a quadrature-free scheme based on local interpolation of
the strong form of the governing equations.1–3,6, 7 Alternatively the scheme may be viewed as a particular
nodal DG scheme based on the weak form of the equations that avoids both volume and surface quadratures
by a suitable projection of flux functions and choice of local basis functions.5

Consider the conservation law (1) for d = 2 on some domain Ω ⊂ R2, subject to suitable initial and
boundary conditions. Consider a triangulation Th = {Ti}, such that Ωh =

⋃
Ti. Assume that there exist

mappings Φi : T̂ → Ti with nonsingular Jacobian Ji = ∂x/∂ξ, such that each element in the triangulation
can be mapped to a reference domain T̂ . For simplicity we consider straight-sided triangular elements in
this section, although such a restriction is not necessary. (The implementation used in our solver allows for
elements with curved edges.) Consider the finite-dimensional space Vmh =

{
v ∈ L2(Ωh) : v|Ti

◦ Φi ∈ Pm(T̂ )
}

,

where Pm(T̂ ) = span
{
ξα : ξ ∈ T̂ , αi ≥ 0 , |α| ≤ m

}
, and α ∈ N2 is a multiindex. The dimension of the space

Pm is given by

Nd=2
m =

(m+ 1)(m+ 2)
2

. (9)

As a particular basis for Pm(T̂ ) consider the fundamental polynomials Lj of multivariate Lagrangian inter-
polation, corresponding to a nodal set Sm = {ξj , j = 1, . . . , Nd

m}, i.e.

wh|Ti :=
Nm∑
j=1

wi,jLj(ξ) , (10)

where wj = w(ξj), and the representation (10) is understood to hold componentwise. This leads to the DG
discretization

Nm∑
j=1

ẇj

∫
T̂

LjLk dξ −
∫
T̂

∇ξLk · (J−1f(wh)) dξ +
∫
∂T̂

h̃ Lk ds = 0 , k = 1, . . . , Nm , (11)

where the numerical flux function h̃, consistent at any ξ ∈ ∂T̂ with the normal flux (J−1f) · nξ = f · n, has
been introduced (nξ and n are the outward pointing normals on ∂T̂ and ∂T , respectively).

In the multidimensional case the quadrature-free DG approximation necessitates a projection of both the
flux function and the numerical flux onto a finite-dimensional space using polynomials of maximum total
degree m+ 1. Here we use multivariate interpolation on a nodal set Qm+1 = {ξ̂j , j = 1, . . . , Nm+1} with L̂j
the corresponding fundamental polynomials. This leads to

f̃h :=
Nm+1∑
j=1

f̃jL̂j(ξ) , (12)

where the degrees of freedom are computed as

f̃k =

{
J−1f(ui,k) , ξ̂k ∈ T̂
f̃num , ξ̂k ∈ ∂T̂

. (13)

The coefficients f̃num are chosen such that f̃num · nξ = h̃. Introduce the following assumption

Assumption III.1 The restriction of the 2-dimensional nodal set Qm+1 to each face e ∈ ∂T̂ supports a
unique one-dimensional interpolation of order m+1 with corresponding Lagrangian fundamental polynomials
lk(ζ), where ζ ∈ ∂T̂ ⊂ R. We assume that a subset of exactly N1

m+1 = m+1 points is located on each e ∈ ∂T̂ .
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Examples of nodes satisfy Assumption III.1 are abundant for the triangle.8–11 It can be shown that under
this assumption, if the numerical flux function h is interpolated using the restriction of the nodal set Qm+1,
and using (13) for the collocation of f , the surface integral in eq. (11) vanishes.5 Furthermore, well known
identities for the Lagrangian basis functions,5,12 lead to a scheme for each cell

dui,j
dt

+
Nm+1∑
k=1

(∇ξL̂k)
∣∣∣
ξj

· f̃k = 0 . (14)

This scheme is known as the Spectral Difference Scheme. In our implementation the numerical flux function
h is given by Jameson’s CUSP flux.13

III.B. Spectral Difference Discretization of Advection-Diffusion Systems

For brevity we consider the one-dimensional case, while the multidimensional formulation follows along the
lines presented in section III.A. Consider the one-dimensional equation

∂u

∂t
+
∂f(u)
∂x

= ν
∂2u

∂x2
. (15)

One way of solving Eq. (15) is to rewrite it as a system:

∂u

∂t
+
∂f(u)
∂x

= ν
∂σ

∂x
(16)

∂u

∂x
− σ = 0 , (17)

where formally σ = ∂xu. (Note that we restrict this discussion to ν = const.. For the extension to ν 6= const.
we refer to Cockburn and Shu.14) This general approach has been taken by many researchers for viscous
discretization in a Discontinuous Galerkin context,14–16 and has since been formalized in a fairly generic
way for elliptic equations.17 For advection-diffusion systems and the Navier-Stokes equations we extend the
inviscid Spectral Difference discretization to include a nodal form of these classical discretization methods
for elliptic equations.17 As in the purely hyperbolic case, one may integrate against smooth test functions
w, v, to obtain the weak formulation,

(ut, v)− (f − νσ, v′)+ < f − νσ, v > = 0 , (18)
(σ,w) + (u,w′)− < u,w > = 0 , (19)

where for brevity we use (·, ·) and < ·, · > to denote volume integral and surface terms, respectively. Consider
a partition of the real line into intervals Ii = (xi− 1

2
, xi+ 1

2
) with ∆xi = xi+ 1

2
− xi− 1

2
, and define a transfor-

mation to a reference domain via linear mapping Φi : [−1, 1] → Ii. Consider the finite-dimensional space
Vmh of bounded functions v for which v|Ii

∈ Pm, where Pm is the space of polynomials of degree at most m.
Consider nodal sets Sm = {ξk; k = 0, . . . ,m} and Qm+1 = {ξ̂k; k = 0, . . . ,m + 1}, where for the latter we
impose the restriction that the end points |ξ| = 1 be included in the set, and we may suppose that ξ̂0 = −1,
and ξ̂m = 1. The corresponding Lagrangian fundamental polynomials lj(ξk) = δjk, and lj(ξ̂k) = δjk form
bases for Vmh , and Vm+1

h , respectively. The Discontinuous Galerkin approximation reads for each element i:
find uh ∈ Vmh and σh ∈ Vm+1

h such that∫ 1

−1

(∂tuh) lj dξ −
2

∆xi

{∫ 1

−1

ghl
′
j dξ + ĝi+ 1

2
lj(1)δj,m+1 − ĝi− 1

2
lj(−1)δj0

}
= 0 , j = 0, . . .m , (20)∫ 1

−1

σh lj dξ +
2

∆xi

{∫ 1

−1

uh l
′
j dξ − (ûi+ 1

2
lj(1)δi,m+1 − ûi− 1

2
lj(−1)δi,0)

}
= 0 , j = 0, . . .m+ 1 ,(21)

where g = f − νσ has been defined. There appear three different numerical fluxes, f̂ , σ̂, and û. In line with
the quadrature-free approach used in the purely hyperbolic case, define suitable projections for the terms in
the volume integrals. The approximation for the flux is written:

fh|Ii =
m+1∑
j=0

lj f̃j , f̃j =


f̂i− 1

2
, j = 0 ,

f̂i+ 1
2

, j = m+ 1 ,

f(uh(xj)) , otherwise .

(22)
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Although the remaining terms in the volume integrals in (20) and(21), i.e. uh and σh are linear in the basis
functions, and hence support a quadrature-free formulation without modification, we replace uh and σh with
a projection that also uses the numerical fluxes at the cell boundaries:

σ̃h|Ii
=
m+1∑
j=0

lj q̃j , σ̃j =


σ̂i− 1

2
, j = 0 ,

σ̂i+ 1
2

, j = m+ 1 ,

σh(xj) , otherwise ,

(23)

ũh|Ii =
m+1∑
j=0

lj ũj , ũj =


ûi− 1

2
, j = 0 ,

ûi+ 1
2

, j = m+ 1 ,

uh(xj) , otherwise ,

(24)

It is convenient to define local vectors for the degrees of freedom in each cell:

ui = (ui0, . . . , ui,m)T , (25)
ũi = (ũi0, . . . , ũi,m+1)T , (26)

and similarly for the other local quantities f̃ , σ, and σ̃. This leads to a scheme for each cell i:

u̇i +D(f̃i − σ̃i) = 0 , (27)
σi −Dσũi = 0 , (28)

where D ∈ Rm×m+1 is a differentiation matrix with entries djk = (2/∆x)l
′
k(ξj), and Dσ ∈ Rm+1×m+1 is

defined as dσjk = (2/∆x)l
′
k(ξ̂j). This formulation is quite generic in the sense that different numerical fluxes

for the ”elliptic” portion of the discretization may be employed, leading to nodal versions of such different
schemes as the Local Discontinuous Galerkin method14 or the simpler Bassi/Rebay discretization.15 The
extension to systems is quite simple. We refer to Cockburn and Shu14 where such an extension is considered
for the local DG scheme.

As an example for Navier-stokes equations, consider laminar steady flow around a cylinder. We have
used the CUSP flux for the convective terms, and the simple Bassi/Rebay discretization15 for the viscous
discretization. Streamlines for this test case are shown in Fig. 1(a) for a Reynolds number Re=20. We have

(a) Streamlines for Re=20. (b) Computational and experimental results from various
sources

Figure 1. Laminar Flow around a Cylinder.

computed the flow for various Reynolds numbers, see Tab. 1, and recorded the drag coefficient. The flow was
computed at comparatively high free-stream Mach number M∞ = 0.2, due to the compressible formulation
of the field equations. Nevertheless, the drag coefficient agrees well with other results. For comparison,
see Fig. 1(b), where results using the kinetic BGKgg finite volume scheme,6 numerical computations by
Henderson18 and experimental values19,20 are plotted.
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Re cd

20 2.07
30 1.77
40 1.58

Table 1. Drag Coefficient for laminar flow around a cylinder at M∞ = 0.2 for various Reynolds numbers. Computations
are performed with 4th order Spectral Difference scheme.

III.B.1. Filtering

Aliasing is a well known issue with nodal high-order schemes.21–23 The most popular countermeasure is
filtering of the high frequency spectrum. The polynomial basis functions used with the Spectral difference
scheme are not hierarchical, which necessitates an appropriate projection in order to access the high-frequency
modes. A suitable change of basis is a simple matrix-vector operation. Consider the discrete solution

uh =
Nm∑
j=1

ujLj =
Nm∑
j=1

ûjψ̃ , (29)

where Lj are the Lagrange basis functions used in the Spectral Difference scheme, while the second sum is
a representation in a suitably chosen modal basis ψ̃. Evaluating eq. (29) at the solution interpolation nodes
leads to

u = Vû , Vij = ψj(ξi) , (30)

where V is the generalized Vandermonde matrix corresponding to the basis ψ. Here we choose the Dubiner
basis, a well-known modal orthogonal basis for the triangle.24 Filtering may be applied by altering the
coefficients of the modal basis as

F(uh) =
Nm∑
j=1

σj ûjψ̃ . (31)

Here we apply the same filtering to coefficients of same total polynomial degree, of which there are Np−Np−1

for each p ≤ m (where we set N−1 = 0). Unfortunately this introduces some ad-hoc decisions into the
methodology. The level of filtering one applies depends on the order of the scheme and the problem under
consideration. Usually we apply filtering by attenuating the high frequency spectrum by a small amount
(usually 5%) in the spirit of exponential filters. As an example consider Figure 2, where the Mach number
contours for inviscid flow around the NACA0012 profile are shown. The figure shows a snapshot of the
flow on the suction side of the airfoil. It can be seen that the filtering procedure removes artifacts that
occasionally tend to manifest due to aliasing in underresolved regions.

IV. Relaxation Techniques

We focus here on the solution of the steady problem. By suitable spatial discretization the steady field
equations are converted to a set of coupled algebraic equations

R(wh) = 0 . (32)

The core of the solution methodology pursued here is a relaxation in (pseudo-) time, marching the field
equations to a steady state, considering the system of nonlinear ODE

dw

dt∗
+R(w) = 0 . (33)

The superscript ∗ is used as a reminder that no time accuracy is required to iterate toward the steady state,
allowing such convergence acceleration techniques as local time stepping and multigrid methods.
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(a) No Filtering (b) Filtering of p=2 modes: σj = 0.95 , j = 4, 5, 6, σj = 1
otherwise.

Figure 2. p2 Spectral Difference Scheme. Inviscid Flow around the NACA0012 profile at free-stream Mach number
M∞ = 0.3 and angle of attack α = 0o. Mach number contours on the suction side, approximately 25% to 75% chordlength.

IV.A. Explicit Relaxation Methods with Multigrid

Explicit temporal discretization techniques of the Runge-Kutta type may be used for the ODE (33), which
may be written

w(0) = wn

w(k) =
k−1∑
l=0

{
αklw

(l) −∆tβklR(l)
}
, k = 1, . . . ,m (34)

wn+1 = w(m) .

Here we have used Shu’s three-stage scheme,25 which has been designed to preserve TVD properties of the
spatial operator. Such TVD properties have been shown for the Spectral Difference Scheme with explicit
time stepping in6 using standard limiting methods. The three-stage scheme scheme has coefficients arranged
in matrix form

α =

 1
3
4

1
4

1
3 0 2

3

 , β =

 1
0 1

4

0 0 2
3

 . (35)

Following Jameson,26 geometric multigrid techniques may be combined with explicit Runge-Kutta meth-
ods, under the paradigm of the general FAS methodology.27 Assume that the equations have been iterated
n steps on a given mesh of characteristic length h, the ”fine” mesh, and the residual Rh(unh) has been com-
puted. After restricting solution as u0

2h = I2h
h unh, and likewise the residual, to a coarser mesh, advancing the

solution on a coarse grid by one step can be accomplished by using the modified multistage scheme

u
(k)
2h =

k−1∑
l=0

αklu
(l)
2h + ∆tβk

(
R

(k−1)
2h + S2h

)
, k = 1, . . . ,m , (36)

(37)

where
S2h = I2h

h Rh −R(0)
2h . (38)
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This is formally identical to the original equation, except for an additional source term involving the residuals
on the coarse and fine mesh. After relaxing on the coarse mesh form iterations, the current solution u+

2h = um2h
is used to compute the corrected solution on the fine grid

u+
h = unh + I2h

h (u+
2h − u

0
2h) , (39)

where I2h
h is an interpolation operator. The extension to recursive application is obvious.

The extension of this methodology to discretizations of locally higher order, however, is not necessarily
straight forward. For nonlinear hyperbolic equations, multigrid aids primarily through two mechanisms:
Firstly the elimination of high-frequency error modes on successively coarser meshes, i.e. the same mechanism
that has been demonstrated and analyzed extensively for elliptic equations. Secondly, the propagation of
error modes, and expulsion from the computational domain is critically important. Here multigrid may be
viewed simply as an increase of the effective wavespeed propagating these modes. This mechanism is absent
in elliptic equations, but experience indicates that it is of critical importance for convection-dominated
problems.

For higher order discretizations, one may let relaxation schemes of lower order approximation drive the
solution on the highest level in the same way as described here for geometric multigrid. This is sometimes
called p−multigrid. However, it is difficult to see, how the critical convective convergence mode is accelerated
by this without still using coarser meshes as well. This leads us to believe that a successful method must nec-
essarily include both components. Furthermore, the workload decreases only marginally for p−coarsening,
which contributes to our view that p−multigrid is not necessarily very efficient. We instead opt for im-
plicit methods for higher levels of polynomial approximation driven by geometric multigrid, as outlined in
section IV.C.

IV.A.1. Stability and Robustness of Explicit Methods

While explicit relaxation methods are attractive due to ease of implementation and parallelization, stabil-
ity restrictions are a concern. Linear and nonlinear stability properties of the Spectral Difference scheme
with explicit methods have been analyzed in.6,7 The spectrum of the discrete differentiation operator is
proportional to m2, where m is the polynomial order of approximation,12 which suggests that stability for
explicit methods necessitates CFL ∼ m−2. This has been confirmed for the one-dimensional linear advection
equation, and permissible CFL numbers have been explicitly computed.6 For convenience Tab. 2 reprints
from6 the unpublished permissible CFL numbers determined for the Spectral Difference Scheme. Here the
Gauss-Legendre quadrature nodes corresponding to polynomials of degree m were used for flux interpola-
tion, augmented with the two interval endpoints, yielding m + 2 points. This allows flux interpolation of
degree m+ 1, which leads to solution polynomial of degree ma. The Shu RK3 scheme, and Jameson’s four-
stage scheme26 yield stable time integration. Results are compared with the standard DG method based on
Legendre polynomials.

(a) SD / Jameson RK4

Order cfl cfl · DOF

1 0.696 1.392

2 0.363 1.089

3 0.226 0.904

4 0.156 0.780

5 0.115 0.690

6 0.089 0.623

(b) SD / Shu-RK3

Order cfl cfl · DOF

1 0.595 1.190

2 0.322 0.966

3 0.201 0.804

4 0.139 0.695

5 0.103 0.618

6 0.0799 0.559

(c) DG / Shu-RK3

Order cfl cfl · DOF

1 0.409 0.818

2 0.209 0.627

3 0.130 0.520

4 0.089 0.445

5 0.066 0.396

6 0.051 0.357

Table 2. Linear Stability Limits for Spectral Difference (SD) and Discontinuous Galerkin (DG) Schemes with Runge-
Kutta Time Stepping. The right-most column displays the CFL number multiplied with the local degrees of freedom
(DOF), which is appropriate when making comparison with standard finite difference schemes using the same number
of total degrees of freedom.

It has to be stressed that very many combinations of explicit time integration methods with higher
order schemes, such as the Spectral Difference scheme, or standard Discontinuous Galerkin schemes are not
unconditionally stable at all. For example, for the 1D scheme, the popular Chebyshev-Lobatto nodes are not
unconditionally stable6,7 (and by extension tensor-products thereof). Linear instability has also been shown

aNote that in6 these nodes had been erroneously labelled Legendre-Lobatto nodes
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for the Spectral Difference scheme using different nodal sets for multivariate interpolation on triangular
meshes.7

With these thoughts in mind, and anticipating very stiff problems for compressible viscous flow simulation
at high Reynolds number, one ought to consider implicit relaxation methods as well.

IV.B. Implicit Relaxation

A backward Euler temporal discretization of (33) may be written

(I + ∆t∗DwR(w)|wn) ∆wn = −∆t∗R(wn) , (40)

where ∆wn = wn+1 − wn. For ∆t∗ → ∞ one obtains a Newton iteration. Finite time steps may be
interpreted as damped Newton iterations. We usually set ∆t ∼ (ρ(DwR))−1, where ρ(A) is the spectral
radius of the matrix A. The constant of proportionality is the implicit CFL number λ. We have not used
very sophisticated time step control in the present work. A simple ramping method is introduced to avoid
start-up problems:

λ =

{
z2 (3− 2z)λmax , z < 1 ,
λmax , otherwise ,

(41)

with z = Ncyc

Nstart
, where Ncyc is the nonlinear iteration counter, and Nstart is a fixed parameter, usually

Nstart = 10.
The key parameters are the implementation of the Jacobian matrix A = DwR, and the solution methodol-

ogy for the linear equations arising at each nonlinear iteration step n. (We defer the issue of pre-conditioning
to section IV.B.4.) Here we have used the GMRES method.28 The reason for this choice, besides favorable
convergence properties, is the fact that one needs the Jacobian matrix only in action on the Krylov vectors,
i.e. the matrix-vector products to generate the next Krylov vector v(j+1) = Av(j). This facilitates the
implementation of matrix-free methods considerably. Three different approaches are considered:

IV.B.1. Explicit assembly and storage of the exact Jacobian Matrix

The discrete field equations are a system of nonlinear algebraic equations. One may obtain the Jacobian
by exact differentiation with respect to the solution vector w = (w1, . . . , wNdof

)T , where Ndof is the total
number of degrees of freedom, given by Ndof = NwNmNelem. Here Nw is the number of equations (Nw = 4
in this case), Nm is the number of local degrees of freedom, see eq. (9), and Nelem is the number of mesh
elements.

Computationally this is quite efficient. The overhead of assembling the matrix is mitigated by firstly the
efficiency of the sparse matrix-vector product using the stored matrix elements, and secondly the possibility
of freezing the Jacobian for a number of Newton iterations. We refer to this approach as ”matrix-explicit”.

There is a huge memory penalty on this approach. There are (NwNm)2 · Nelem entries for the block-
diagonal of the Jacobian alone. In two dimensions the storage requirement thus increases as m4 (cf. eq. (9)),
whereas in three dimensions we have Nm ∝ m3, and thus the required memory grows as m6. For example,
for m = 6 the size of the block diagonal is (420× 420) ·Nelem for tetrahedral meshes (Note that Nw = 5 for
three-dimensional flow) . If one supposes 8 bytes of storage for each entry this leads to 6.73 MB memory
per mesh element, while for m = 10 one needs 78 MB for the diagonal block per element. When including
off-diagonal elements and pre-conditioning the required memory increases by several factors. One can easily
foresee situations where the memory requirement becomes prohibitive, or at least necessitates the use of
massively parallel computations just to distribute memory, when the problem could be handled with more
moderate computational resources in terms of floating point operations. It is thus advisable to consider
matrix-free methods as well.

IV.B.2. Explicit assembly of the exact Krylov Vectors Av

The exact entries of the Jacobian matrices can be computed using efficient edge-based data structures.
Instead of distributing the contributions of each degree of freedom to the proper memory location, one can
instead sum the rows of the Jacobian with elements of the Krylov vector as a weight, i.e. v(k+1)

j =
∑
aijv

(k)
j ,

each time the matrix-vector product is needed. This is numerically equivalent to the matrix-explicit method
of section IV.B.1 (not considering pre-conditioning for the moment), while necessitating only storage for
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the Krylov vectors. However, the routines assembling the Jacobian need to be executed each time a new
Krylov vector is generated during the GMRES iteration, which is computationally much more expensive
than applying the sparse matrix vector product using the stored matrix elements. We have not considered
this approach here.

IV.B.3. Numerical approximation of Krylov vectors

The matrix-vector product Rwv is a projection of the total derivative of the residual onto the Krylov vector
v. Hence one may generate a numerical approximation by

Av ≈ R(w + εv)−R(w)
ε

, (42)

where ε is a small parameter. Here the cost of applying the matrix-vector product is the same as one
residual evaluation, which is also typically more expensive compared with the matrix-explicit approach
in section IV.B.1, but much cheaper than the approach in section IV.B.2. However, there is additional
uncertainty in the choice of ε. Several methods have been proposed in the literature to estimate the step
size.29,30 Here we adopt a rather simple method,30 which may be written, supposing normalized Krylov
vectors:

ε =
√

1 + ||w||εrel , (43)

where the parameter εrel = 10−6 was used in our implementation. We shall see below that this simple choice
yields good results.

IV.B.4. Pre-conditioning

The primary obstruction against fully matrix-free implicit methods is the need to pre-condition the arising lin-
ear systems. Fully matrix-explicit methods using GMRES to solve the linear systems may be pre-conditioned
using incomplete LU factorization,31 denoted ILU(n) where n stands for the level of additional fill allowed in
the incomplete factorization. Generally low levels of fill are most efficient in terms of run time, compared to
more complete factorizations that allow more effective pre-conditioning, but are significantly more expensive.
We have used ILU(n) pre-conditioning for all matrix-explicit methods.

For the matrix-free approach, the ”flexible GMRES” formulation,32 allows iterative solvers to be used
as pre-conditioning methods. Recalling that the pre-conditioning matrix approximates A−1, one generates
a pre-conditioned Krylov vector by applying a few iteration steps with the same linear solver used in the
Newton iteration. In particular, this may be done using the same matrix-free approximation. This method,
which we denote ”squared pre-conditioning”, due to the recursive application of the linear solver, is used
here for all matrix-free computations.

IV.C. Hybrid Multilevel Schemes

It is certainly possible to use multgrid with different relaxation schemes on different mesh levels and with
different levels of approximation. In particular one may combine explicit and implicit techniques. Implicit
and explicit schemes have very different constraints that may limit their usefulness on different mesh levels.
Depending to the constraints deemed important one may find very different ”optimal” combinations. For
example, in33 a scheme is proposed that uses a Discontinuous Galerkin method with an explicit Runge-Kutta
discretization on the finest grid, with implicit schemes on the coarser level, with the primary concern being
storage requirements on the finest grid. While storage requirements are certainly a very big concern, we are
considering the exact opposite approach here. Explicit schemes are deemed ineffective for higher orders of
accuracy, and p−multigrid not an optimal convergence acceleration, as discussed in section IV.A.

The main proposition of the present paper is a scheme that uses a damped Newton algorithm with
GMRES linear solves on the highest level of approximation, while using explicit Runge Kutta smoothing
with geometric h-Multigrid between Newton iterations using p1 and lower levels of approximation. The
rationale behind this is that experience indicates that error convection and expulsion is the primary mode
of convergence, when considering integrated quantities, such as force coefficients, which are often essentially
converged even at rather high levels of residuals, and when high-frequency errors still persist. For the
acceleration of this convergence mode, no higher order solution representation is needed, and may indeed be
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of hindrance. It seems attractive to use a fair number of explicit lower order multigrid cycles between each
Newton step with pm, m > 0 to accelerate the convection of large-scale error modes.

Intermediate p levels may be used through lower-order pre-conditioning instead of p−multigrid. In the
present work, however, we used ILU(n) pre-conditioning for matrix-explicit methods of all orders, while
squared pre-conditioning is used for all matrix-free methods. The multilevel approach is illustrated in Fig. 3,
where we have used the letter W to indicate a geometric multigrid w−cycle.

Figure 3. Illustration of hybrid multilevel relaxation strategy. The letter ”w” indicates geometric multigrid with
w-cycle explicit Runge-Kutta time stepping. Typically 10 or more explicit multigrid cycles are carried out between
Newton iterations on the highest level of approximation.

V. Implementation

The implementation of the techniques described thus far can be tedious. Explicit multilevel methods
have been implemented previously.6 Thus the main burden is on implementing the implicit relaxation
techniques, such as derivation of the exact Jacobian, and implementation of different solution methods,
including pre-conditioning techniques. We used the PETSc library,34 which is particularly useful for matrix-
explicit methods, removing the implementation of pre-conditioning. For the matrix-free methods, user-
defined routines implementing the matrix-vector product Av have to be provided. In this case, the usefulness
of the PETSc library is limited to driving the GMRES algorithm, calling in turn the necessary user-defined
routines.

V.A. Using Automatic Differentiation

In the one-dimensional case the block-diagonal of the system Jacobian consists of m + 1 ×m + 1 blocks of
3×3 matrices, which can be written for the jth local row and the nth local column in the block corresponding
to a particular cell

∂Rj
∂wn

=
∑
k

djkÃk lkn , j, n = 0, . . . ,m , (44)

where djk is the local differentiation matrix djk = J−1 l̂′k(ξj), and the reconstruction coefficients are given by
lkn = ln(ξ̂k). The matrix Ã is given by the flux Jacobian evaluated at the flux collocation points for interior
nodes, and the differentiation of the numerical flux function h for nodes on element boundaries. It can be
seen that assembly of the Jacobian is relatively straight-forward, since the reconstruction and differentiation
matrices are available for the residual computation.

In higher dimensions the structure of the Jacobian remains the same, with the only difference that d
sums are needed, and the matrices Ã become appropriately transformed matrices, due to the mapping Φ.
The only difficulty lies in the differentiation of the numerical flux h. This is the only part of the system
Jacobian that is not generic in the sense that a change of the numerical flux function requires a non-trivial
re-derivation of the Jacobian matrix.
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In order to easily generate these derivatives, we adopted TAPENADEb, an automatic differentiation
(AD) engine developed at the INRIA Sophia-Antipolis research centre. TAPENADE can be utilized as a
server, but can also be installed locally and be run by a simple command line, which can be included into
a Makefile. We actually adopted this second solution, so that no additional manual operations are required
by the user in case of implicit time integration. There is no need for writing a new routine which computes
the derivatives of the numerical flux: exchanging the numerical flux routine, recompiling and executing the
program will still be the only required operations.

After installing TAPENADE locally we had to transform the subroutine which computes the numerical
flux into a function, having among its arguments the dependent variables (i.e., the fluxes), which we want
to differentiate, and the independent variables (i.e., the conservative variables), w.r.t. which we want to
differentiate. The tapenade command line looks as follows:

tapenade -tangent -head numerical_flux -outvars "left_flux right_flux"
-vars "left_density left_x_momentum left_y_momentum left_energy
right_density right_x_momentum right_y_momentum right_energy"
-outputfiletype fortranplushtml numerical_flux.f90

This command can be introduced into the Makefile as a target rule, where the source code to be differentiated
is given at the end of the tapenade command (i.e., numerical flux.f90 ).

By inserting this instruction in the solver’s Makefile, we achieve our aim: every time that the routine
computing the numerical flux (numerical flux.f90 in this example) is modified, TAPENADE is automatically
called and the differentiated routine (numerical flux d.f90 ) for the Jacobian computation is newly generated.
This makes our solver extendable to any kind of numerical flux and the update requires no further job from
the user’s point of view and little extra work from the computational point of view.

This procedure shows a few disadvantages. Firstly, the differentiated routine may not be the optimal one.
If for instance one of the dependent variables does not depend on one of the independent variables, zeros will
be computed and carried on along the computation, with consequent waste of computational time. However,
if interested in optimizing the solving procedure, one could use AD to create the differentiated routine and
then manually optimize that routine later. Secondly, having TAPENADE installed locally means that from
time to time one has to re-install to get updates of the tool. In our opinion however the enhancement
provided to our solver by the adoption of AD is worth accepting these small disadvantages.

VI. Numerical Experiments

We first carry out a study with different orders of approximation using matrix-explicit and matrix-free
methods.

Consider inviscid flow over a smooth bump at free-stream Mach number M∞ = 0.3 (see Fig. 4)).
Computations were performed using the Spectral Difference scheme on a regular triangular mesh with 342

Figure 4. Contours of constant Mach number for inviscid flow over a smooth bump at free-stream Mach number
M∞ = 0.3. Computation performed with the Spectral Difference scheme using cubic polynomials (m = 3).

cells. Polynomial orders of m = 2, m = 3, and m = 5 have been used, leading to a maximum number of
degrees of freedom of Ndof = NwNmNelem = 28, 728 for the case m = 5. A comparison of the convergence
for various orders of approximation is shown in Fig. 5 for the matrix-explicit method. The Jacobian matrix

bTAPENADE can be downloaded at http://www-sop.inria.fr/tropics/tapenade.html
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(a) Density Residual vs. Newton Iterations (b) Density Residual vs. cumulative GMRES Iterations

Figure 5. Convergence of the matrix-explicit method for smooth inviscid flow around a bump at free-stream Mach
number M∞ = 0.3.

of the system is based on an exact differentiation of the residual, including the convective flux function, in
this case Jameson’s CUSP flux,13 and is re-computed every three Newton iterations. For the case m = 2
we use ILU(3) pre-conditioning, while ILU(4) is used for the other cases. By default GMRES is restarted
after 30 iterations. Besides the convergence in terms of Newton iterations (Fig. 5(a)) we also plot the con-
vergence against cumulative GMRES iterations, i.e. number of Krylov vectors generated. Note that the
number of linear iterations shown in Fig. 5(b) is by itself not very meaningful, as it can be adjusted very
easily through pre-conditioning. In particular, if an exact LU decomposition is used this number becomes
equal to the number of nonlinear Newton iterations, at the expense of much increased computational cost.
The GMRES iterations are shown here merely to give an idea of representative ”best practice” results, and
facilitate comparison between different approaches.

Consider the same test case with the matrix-free implementation outlined in section IV.B.3 using squared
pre-conditioning as described in section IV.B.4. The convergence is shown in Fig. 6. The number of Newton
iterations needed to drive the solution to a steady state is not significantly affected by the matrix-free

(a) Density Residual vs. Newton Iterations (b) Density Residual vs. cumulative GMRES Iterations

Figure 6. Convergence of the matrix-free method for smooth inviscid flow around a bump at free-stream Mach number
M∞ = 0.3.

approach. This indicates that numerical approximation of the Krylov vector (cf. eq. (42)) yields consistently
accurate results, despite the relatively simple step size estimation (43) in the difference approximation. In
fact, compared with the best practice matrix-explicit approach, which is usually more efficient when saving
the Jacobian for a number of iterations, the Newton iteration count is lower. Here the matrix elements
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cannot be saved, and instead the numerical approximation (42) is carried out each time a new Krylov vector
is needed, which decreases the number of nonlinear iterations, because a more up-to-date approximation
of the Jacobian is used, but also leads to more residual evaluations. The convergence in terms of linear
iterations is typically slower. This stems from the fact that it is usually advisable to keep the number of
linear iterations carried out for pre-conditioning purposes relatively low in order to avoid the associated
computational overhead. This means that one has to tolerate a higher number of GMRES iterations in each
Newton cycle.

We now turn to the hybrid multilevel method outlined in section IV.C. As an example consider smooth
flow around the NACA0012 profile, see Fig. 7, at free-stream Mach number M∞ = 0.3. We use a third

Figure 7. Contours of constant Mach number for inviscid flow around the NACA0012 profile at free-stream Mach
number M∞ = 0.3 and angle-of-attack α = 0o.

order accurate method, i.e. quadratic polynomials, on the highest level of approximation, along with an
implicit damped Newton/GMRES method. For now we consider the matrix-explicit approach with ILU(2)
pre-conditioning. Between each Newton step 20 multigrid cycles with explicit RK smoothing are performed
(cf. Fig. 3), starting from a piecewise linear finite-volume method on the same mesh, followed by a first
order finite-volume method on two coarser meshes. The meshes used for this test case are summarized in
Tab. 3. Besides the number of elements and the total number of degrees of freedom we show the level of
approximation and the cfl number used on each level. The explicit multigrid procedure carried out between
levels 3-1 uses the same relaxation method on all levels, given by the three-stage Runge-Kutta method due

Hybrid Multilevel
Level Ndof p Cells cfl Type

4 61,440 2 2,560 550 Implicit
3 10,240 1 2,560 6 Explicit
2 2,560 0 640 6 Explicit
1 640 0 160 6 Explicit

Table 3. Meshes and Degrees of freedom (DOF) used with the hybrid multilevel method.

to Shu35 presented in section IV.A.
The benefit of using the explicit relaxation steps between each Newton iteration comes from the fact that

these come at virtually no cost, compared to the implicit cycles. The speedup afforded by this approach is
demonstrated in Fig. 8. Here the multilevel method is compared to an implicit Newton method identical to
the approximation level 4, but with no additional explicit relaxation steps. For this coarse mesh the residual
reduction rate is almost unchanged, when plotted against execution time. Here the speed-up is roughly offset
by the additional cost. However, the convergence of the drag is much improved. Again it is clearly visible
that multigrid has a more dramatic effect on convergence of integrated quantities, such as force coefficients,
than residual reduction rate.

Consider now the comparison of the hybrid multilevel method with a straight explicit h/p multigrid
method for the same test case, where we use the RK3 scheme on the highest level of approximation. The
h/p-multigrid strategy is summarized in Tab. 4. In a sense we simply trade off the severe stability restriction
for the explicit scheme with the much reduced cost per iteration. Note that for the explicit h/p multigrid
method we use only one w-cycle per iteration on the finest mesh. Naturally there is a lower iteration count for
the hybrid solution method compared to the explicit method. However, this does not necessarily translate
into a faster turnaround. Figure 9 shows a plot of the density residuals, plotted against both iteration
number and execution time. It can be seen that while the reduction rate per cycle is clearly higher for the
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(a) Density Residual vs. Time (b) Drag Coefficient vs. Time

Figure 8. Inviscid Flow around the NACA0012 profile: Comparison of implicit relaxation with and without additional
geometric multigrid smoothing.

Explicit h/p Multigrid
Level Ndof p Cells cfl

4 61,440 2 2,560 1
3 10,240 1 2,560 6
2 2,560 0 640 6
1 640 0 160 6

Table 4. Meshes and Degrees of freedom (DOF) used with h/p-multigrid.

(a) Density Residual vs. Cycles (b) Density Residual vs. Time

Figure 9. Inviscid Flow around the NACA0012 profile: Comparison of convergence for explicit h/p-multigrid and hybrid
multilevel scheme.
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best-practice implicit method, the explicit multigrid method is faster measured in CPU time. This becomes
even more visible when comparing the convergence for the drag coefficient, which is depicted in Fig. 10 for
both measures, cycle count and time. Thus it seems that here the method of choice is explicit time-stepping

(a) Coefficient of Drag vs. Cycles (b) Coefficient of Drag vs. Time

Figure 10. Inviscid Flow around the NACA0012 profile: Comparison of convergence for explicit h/p-multigrid and
hybrid multilevel scheme.

with h/p-Multigrid. Even though the implicit solution methodology greatly reduces the number of cycles
needed to converge to a steady state, the efficiency per cycle of the explicit method wins out. However, this
is not likely to extend to higher order approximations, or high-Reynolds number viscous flow, as the stability
restrictions become very severe for the explicit method. Furthermore, the reduction in computational cost
compared to the highest level of polynomial approximation is by far less dramatic for p−multigrid, compared
with traditional h−multigrid, based on mesh coarsening. At present transfer operators for higher levels of
p−multigrid are not implemented. We defer investigation of explicit h/p-multigrid for higher orders to a
future publication.

We now turn to examining the convergence properties in mesh refinement. The aim of geometric multigrid
methods has traditionally been to achieve mesh-independent convergence rates. For the NACA0012 test case
we consider three different meshes, which are summarized in Tab. 5. The coarsest of these is identical to
the finest mesh in Tab. 3, and uses the same multigrid strategy. The multigrid strategy for a finer mesh

Level Ndof Elements
fine 983,040 40960

medium 245,760 10240
coarse 61,440 2560

Table 5. Meshes used for h-refinement study for hybrid Multilevel method.

includes the next coarser one recursively, so that the coarsest mesh is always the same (cf. Tab. 3), and
the total number of meshes used increases by one for every refinement. Consider first the matrix-explicit
approach. We use ILU(3) pre-conditioning for the implicit method on the highest level of approximation.
The Jacobian is updated every other iteration. Figure 11 shows the convergence of the drag coefficient vs.
Newton iterations and cumulative GMRES iterations. It can be seen that in both measures the convergence
of the multigrid method is very nearly mesh independent. In comparison the convergence of the single-grid
implicit iterations that use the same methodology as the multilevel method on the finest mesh degrades as
the mesh is refined. It is remarkable that the benefit of the additional multigrid relaxations come at trivial
computational expense, but aid tremendously in the convergence process.

Consider in comparison the matrix-free version applied to the same mesh refinement study. As shown
in Fig. 12 the convergence is still nearly mesh-independent for the multilevel method with the matrix-free
implementation. Again the number of Newton iterations is virtually unchanged, indicating good quality of
numerical approximation of the Jacobian. It should be stressed that the memory savings become extreme
for the finer meshes considered here. The finest mesh uses several GB worth of memory with the matrix-
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(a) (b)

Figure 11. Inviscid Flow around the NACA0012 profile at free-stream Mach number M∞ = 0.3, angle-of-attack α = 00

(a) Drag coefficient vs. Newton iterations (b) Drag coefficient vs. accumulated GMRES iterations

Figure 12. Inviscid Flow around the NACA0012 profile at free-stream Mach number M∞ = 0.3, angle-of-attack α = 00.
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explicit approach (for a 2D computation!). In fact, a further doubling of the mesh size was not possible
using the matrix explicit approach due to memory limitations on a machine with 8GB total memory. This
should motivate pursuing matrix-free methods, certainly for three-dimensional computations, where storage
requirements increase as m6 instead of m4.

VII. Future Work

It can be expected that for higher orders of approximation the implicit method should outperform the
explicit h/p-multigrid method even for inviscid flow, considering that permissible CFL numbers decrease
with m−2. However, this needs to be confirmed. For this purpose the explicit method needs to be extended
to higher order of accuracy using appropriate transfer coefficients for the p−multigrid method.

We have mentioned that the primary obstacle one faces when implementing matrix-free methods is pre-
conditioning. So far squared pre-conditioning has been used. Alternatively lower order pre-conditioning
may be used, which perhaps yields comparable results to squared pre-conditioning at reduced computational
expense.

The comparison between different relaxation methods has focused on inviscid flow in this paper. We are
currently in the process of extending the automatic generation of Jacobian matrices to the viscous case. Once
this is complete a more thorough investigation into viscous flow should be carried out. The implicit method
can be expected to become more efficient compared with the explicit approach as the Reynolds-number
increases, due to mesh-induced stiffness when resolving boundary layers with anisotropic meshes.
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