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Development of a new meshless technique is described, called the meshless volume

scheme. The method is completely meshless, yet retains the low storage and simple flux

distribution technique characteristic of finite volume methods. The new method is based on

the well-known Taylor series expansion method with least squares. A least squares weight-

ing scheme is introduced that significantly reduces storage and computational requirements

compared to other meshless schemes. The scheme is shown to be analogous to finite volume

schemes in many ways, but still lacks a discrete telescoping property and is not discretely

conservative. The method is applied to the Euler equations in two dimensions. Results are

presented which agree well with established methods.

I. Introduction

D
espite a wide variety of formulations, meshless methods in general have not achieved mainstream use for
computational fluid dynamics (CFD). Most practical CFD algorithms are based on finite volume, finite

difference, or finite element methods. To date, meshless methods have not truly shown the ability to relieve
difficulties in mesh generation associated with mesh-based schemes. In fact, a major difficulty for meshless
schemes is obtaining arbitrary clouds of points which lead to stable and accurate computations. Point cloud
generation appears to be nearly as difficult as mesh generation itself for complex cases. While progress has
been made by Löhner and Oñate1 and Löhner, Sacco, and Oñate2 to fill space with points, obtaining optimal
point clouds remains difficult. Meshless methods also lack a discrete conservation property, are often more
expensive, and often require more storage than traditional approaches. However, the persistent difficulties
in mesh generation for complex configurations have left room for meshless schemes as a potential alternative
in certain scenarios. This is the justification for this and other meshless work.

Many approaches to meshless discretization have been developed over the past three decades. Batina3

showed the ability of a meshless method based on a polynomial basis and least squares to compute inviscid
and viscous flows in two and three dimensions. A more detailed formulation of a finite point method
for a wide variety of problems has been provided in the work of Oñate and others.4–6 Löhner et al.7

have applied the finite point method to compressible flow computations. Morinishi8 assessed issues of
accuracy and conservation of meshless solvers, as did Sridar and Balakrishnan.9 Additionally, Balakrishnan
and Praveen10, 11 have formulated an upwind least squares method for the Euler equations. In a different
approach, Liu et al.12 proposed a reproducing kernel particle method, an improvement over the smooth
particle hydrodynamics method of Monaghan.13 In yet a different approach, Belytschko et al.14 devised an
element-free Galerkin method, which was based on the weak forms characteristic of finite element methods.
Duarte and Oden15 have also developed the method of Hp clouds to solve boundary value problems.

Like many previous methods, the development in this paper is based on a least squares fitting of discrete
nodal values to obtain the discretization of partial differential equations. However, our method differs from
previous approaches in the way we perform the least squares weighting procedure. Instead of weighting
the nodal contributions to the least squares gradient procedure based purely on proximity, we perform
local constrained optimization procedures at each node to determine a new set of weights. These weights
lead to simplified gradient computations, reducing storage and computational requirements as compared to
other meshless schemes. We require half the storage in two dimensions and one third the storage in three
dimensions as traditional least squares approaches. When applied to the Euler equations, we require half
the number of flux computations in both two and three dimensions. The method requires similar storage
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and computational requirements as conventional finite volume schemes. In fact, the implementation of our
meshless method is quite similar to finite volume schemes, which is why we have chosen the name, “meshless
volume,” to describe our scheme.

As this paper is focused on the development of a new meshless agorithm, we do not address the important
issue of point cloud generation. In fact, in this work we use meshes to establish local clouds of points for
our simulations as a matter of convenience. However, in previous papers, we have implemented meshless
schemes for which no underlying mesh was used to obtain the connectivity. For example, we showed that a
meshless method could be used to connect overset grid systems in mesh interface regions.16 Additionally,
we have used a meshless method for convergence acceleration in a multigrid fashion, in which only clouds of
points were used to represent coarse levels.17 The meshless volume scheme could be implemented in these
scenarios or other situations where a mesh is difficult to obtain. Furthermore, meshless techniques can also
prove useful when meshes are available. For example, since the meshless volume scheme is essentially a
gradient estimation method, it could be used for gradient reconstruction in finite volume schemes to reduce
storage requirements over conventional least squares reconstruction. Consequently, the use of meshes to
obtain connectivity in this context does not diminish the utility of the meshless volume scheme for many
applications.

This work begins by exploring a commonly used meshless scheme based on local Taylor series expansions.
Next, we show how we can eliminate some of the drawbacks of the Taylor approach with the use of a unique
least squares weighting procedure. We then apply the new scheme to the Euler equations. Finally, we
perform fundamental error studies and show two dimensional Euler results for well-known test cases.

II. Traditional Weighted Least Squares Gradient Procedure

Meshless discretizations of partial differential equations for CFD have revolved around the accurate
computation of solution gradients given scattered grid data. One of the most common methods of gradient
estimation is based on local Taylor series expansions and least squares. Such methods are not unique to
meshless discretizations and have been applied in the context of finite volume gradient reconstruction.18, 19

The Taylor series method requires that for every point in the global domain to be solved, there exist a local
cloud of points consisting of nearest neighbors. The global and local clouds of points are shown in Figure
1. As shown in Figure 1(b), for each node 0 in the global domain, a local cloud of n surrounding nodes

(a) Global point cloud.
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(b) Local point cloud.

Figure 1. Meshless discretization framework.

is identified, establishing the connectivity throughout the domain. In this work we obtain global and local
clouds of points from meshes for convenience, but in other works we have obtained clouds with truly meshless
techniques.16, 17

In order to estimate the gradient of a function φ in a local cloud, the Taylor method requires that we
expand a Taylor series with a given number of terms to each point in the local cloud. For example, a linear
approximation leads to the following n equations for the gradients at node 0:

φi = φ0 + ∆r0i · ∇φ̂0, i = 1, · · · , n, (1)

2 of 16

American Institute of Aeronautics and Astronautics



where ∆r0i = ri −r0, and ∇φ̂0 is the estimate of the gradient at node 0 for which we seek. The enforcement
of the condition n > 2 leads to an overdetermined system for the gradients and the use of least squares
techniques. The least squares problem involves finding the minimum of the function

f(∇φ̂0) =
n

∑

i=1

w0i(∆r0i · ∇φ̂0 − ∆φ0i)
2, (2)

where ∆φ0i = φi − φ0, and w0i is a weighting function designed to emphasize the contribution of certain
points in the local cloud, usually based on proximity to node 0. A common weighting scheme is to weight
the contribution of each node in the local cloud by the inverse square of its distance to node 0, with

w0i =
1

|∆r0i|2
. (3)

The mimimization of f(∇φ̂0) leads to the normal equations, which may be expressed as

M∇φ̂0 = P∆φ, (4)

where ∆φT =
[

∆φ01 ∆φ02 · · · ∆φ0n

]

is the known vector of undivided differences. For this linear case,

the 2x2 matrix M and 2xn matrix P take the following forms:

M =

[

∑

i w0i∆x2
0i

∑

i w0i∆x0i∆y0i
∑

i w0i∆x0i∆y0i

∑

i w0i∆y2
0i

]

, P =

[

w01∆x01 w02∆x02 · · · w0n∆x0n

w01∆y01 w02∆y02 · · · w0n∆y0n

]

.

The solution of Equation 4 involves the computation of the matrix M−1, which is usually well-conditioned
enough to obtain a solution directly from the normal equations. However, since M is only 2x2 for the two-
dimensional linear least squares approximation, an analytical solution for the gradient estimates is easily
obtained for this case, leading to partial derivative estimates which may be expressed in the following form:

φ̂0,x =
∑

i

a0i∆φ0i, φ̂0,y =
∑

i

b0i∆φ0i, (5)

where a0i and b0i are the derivative weight coefficients for ith node in the local cloud centered around node
0, defined by

a0i =
w0i∆x0i

∑

k w0k∆y2
0k − w0i∆y0i

∑

k w0k∆x0ky0k
∑

k w0k∆x2
0k

∑

k w0k∆y2
0k − (

∑

k w0k∆x0k∆y0k)
2

(6)

b0i =
w0i∆y0i

∑

k w0k∆x2
0k − w0i∆x0i

∑

k w0k∆x0ky0k
∑

k w0k∆x2
0k

∑

k w0k∆y2
0k − (

∑

k w0k∆x0k∆y0k)
2
. (7)

Here, the index k runs over the nodes in the local cloud of node 0.
The weight coefficients, a0i and b0i are independent of φ and depend only on the nodal positions. As

such, they are generally computed in a preprocess step for static point distributions. The partial derivative
estimates of Equation 5 may be used to directly estimate derivative terms in partial differential equations
for a meshless discretization. For example, the flux derivatives of the Euler equations may be discretized
directly with the least squares approach. Alternatively, Equation 5 may be used to reconstruct solutions
for linear preserving finite volume schemes. In either case, this method approximates the gradients of any
function to first order accuracy in general, and improves to second order accuracy for certain regular point
distributions.

In order to assess the properties of the Taylor series least squares approach applied to meshless schemes,
it is helpful to compare it with a finite volume formulation when applied to a conservation law,

Q0,t + ∇ · F0 = 0, (8)

which has integral form

V0Q̄0,t +

∫

∂V0

F (Q, n)dA = 0, (9)
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Figure 2. Differences between meshless and finite volume discretizations.

where Q̄0 is the cell average value of Q in cell 0. A common finite volume scheme is formulated in a node-
centered manner on a dual mesh, as shown in Figure 2(b). Such a scheme can be shown to be equivalent to
a Galerkin weighted finite element discretization on linear triangular elements.20 Following the derivation of
Barth,18 the finite volume discretization of Equation 9 is

V0Q0,t +
∑

i

1

2
[F (Qi, dx0i, dy0i) + F (Q0, dx0i, dy0i)] − DFV

0 = 0, (10)

where the geometric terms, (dx0i, dy0i), represent the dual area associated with edge 0i, and DFV
0 represents

diffusive terms arising from either artificial diffusion or upwind interpretations. Here we focus on the convec-
tive terms in the discretization by simply lumping all the diffusive contributions into DFV

0 . It is important to
note that DFV

0 also depends on the geometric terms associated with the edges incident to node 0. Similarly,
the meshless discretization of Equation 8 based on the Taylor series least square method is

Q0,t +
∑

i

[F (Qi, a0i, b0i) − F (Q0, a0i, b0i)] − DM
0 = 0, (11)

where the geometric terms, (a0i, b0i), represent the derivative weights obtained from the least squares mini-
mization procedure in Equation 5, and DM

0 again represents diffusive terms, which are also functions of the
coefficients .(a0i, b0i) associated with edges incident to node 0.

It is important to highlight a few key differences between these two discretizations. First, the implemen-
tation of the finite volume formulation lends itself naturally to an edge-based flux distribution scheme in
which a common flux is computed at an edge and subsequently distributed to the nodes which share the
edge. Thus, the scheme is reciprocal in nature since a node on an edge lies in the stencil of the opposing
node on the same edge. Such reciprocal relationships are not neccessarily present in the meshless scheme, as
shown in Figure 2(a), which contains a directed edge connecting node 2 to node 1, but not node 1 to node
2. Directed edges like this are a result of connectivity that is defined by local clouds on a node-wise basis
for meshless schemes. This potential break in reciprocity leads to difficulties in the implementation of the
meshless scheme since an edge-based method similar to the finite volume implementation could not be used
here without significant complications.

A second observation is that the geometric terms for the finite volume scheme, (dx0i, dy0i), are common
to the two nodes sharing an edge. Thus, these terms represent the only geometric information that needs
to be stored for that edge. In the meshless scheme, however, the geometric information for the two nodes
sharing an edge is different due to the local nature of the least squares procedure at each node (assuming
the nodes act reciprocally on the edge). For the edge connecting nodes 0 and i, there will arise geometric
terms (a0i, b0i) needed for the discretization at node 0. Similarly, there will arise terms (ai0, bi0) at each
edge corresponding to the discretization at each node i in the stencil. Consequently, four pieces of geometric
information need to be stored for each reciprocal edge. This is double the finite volume edge storage.

A final observation comes as a consequence of the previous observation. Since the geometric information
is different for each node sharing an edge in the meshless scheme, two flux computations are necessary for

4 of 16

American Institute of Aeronautics and Astronautics



each edge, instead of a single flux computation as in the finite volume method. This is a significant drawback
for meshless schemes, since flux computation represents a significant portion of solution time of the overall
algorithm. In the next section, we show how a simple modification to the Taylor series meshless approach
circumvents these difficulties.

III. Least Squares Gradient Procedure with Constrained Weights

In order to overcome many of the shortcomings of the Taylor series least squares approach described
in the previous section, we develop a modified meshless approach, which addresses the issue of reciprocal
connectivity, while reducing geometric storage and flux computations. Our approach requires similar storage
and computational effort as conventional finite volume schemes, but still remains non-conservative at a
discrete level. Our approach involves a new weighting scheme for the least squares method described in
Equation 2. The weighting scheme requires slightly more computational effort in preprocessing, but results
in significantly reduced computation time to resolve the solution over the traditional least squares approach.

Before describing the weighting scheme, it is important to note that we adopt an edge-based data struc-
ture. Even though the meshless connectivity is the collection of all local clouds, we may express these local
clouds implicitly by a collection of edges if we enforce reciprocal relationships between nodes on an edge.
If in the local cloud definition procedure, a directed edge arises, as shown in Figure 2(a), the local cloud
connectivity is modified to form a reciprocal edge. Since meshes are used in this work to obtain local clouds,
reciprocity is automatically enforced. However, in our previous works, reciprocity was not automatically
guaranteed, requiring the modifications just described to form an edge-based connectivity.16, 17 As in the
case of finite volume schemes, the edge-based data structure greatly simplifies the solution procedure.

Considering the least squares optimization procedure of Equation 2, there is a certain degree of flexibility
in defining the weighting system for each node in the local cloud. While we generally follow the approach in
Equation 3 to emphasize nodes which are closer in proximity to node 0, we modify these weights to satisfy
certain constraints. These constraints are designed to diagonalize the least squares matrix, M , of Equation
4, which simplifies the computation of the derivative weight coefficients, a0i and b0i. If we select weights,
w0i, such that

∑

i

w0i∆x2
0i =

∑

i

w0i∆y2
0i,

∑

i

w0i∆x0i∆y0i = 0, (12)

then M becomes diagonal with the diagonal entries being equal in magnitude. Note that for regular point
distributions that possess a great degree of symmetry, these constraints are already satisfied by the simple
weight definition in Equation 3. Thus for reasonably even point distributions, the satisfaction of these
constraints should not require significant modification from inverse square weighting. As point distributions
become more irregular, the satifaction of these constraints means finding weights which increasingly depart
from the inverse square weighting method.

Praveen21 has examined extensively the properties of the least squares matrix, M , and has shown that its
eigenvalues represent the semi-major axes of an ellipse which completely bounds the nodes in a given local
cloud. Upon satisfaction of the constraints in Equation 12, the eigenvalues, which are simply the diagonal
elements of M , are equal. This means the connectivity is bounded by a circle in the space transformed by
the weighting of radius

r0 =

√

∑

i

w0i∆x2
0i =

√

∑

i

w0i∆y2
0i. (13)

Furthermore, upon examination of Equation 6 we see that if the constraints of Equation 12 are satisfied, the
derivative weight coefficients become simply

a0i = ŵ0i∆x0i, b0i = ŵ0i∆y0i, (14)

where
ŵ0i =

w0i

r2
0

. (15)

Note that the vector formed by the coefficients (a0i, b0i) is simply a scalar multiple of the vector joining
the endpoints of the edge, (∆x0i, ∆y0i). Thus, both a0i and b0i may be represented with a single weight,
ŵ0i, as long as the nodal coordinates are accessible, which is usually the case. Similarly, both ai0 and bi0

may also be represented with the edge weight, ŵi0 = wi0/r2
i , needed for the discretization of the opposing
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node i on the edge. Thus, the only storage necessary for the edge connecting nodes 0 and i are the weights
ŵ0i and ŵi0, which is the same amount of storage used in the finite volume scheme of Equation 10. Actually,
the meshless scheme requires less storage since no storage for cell volumes is needed. In three dimensions
this scheme would still only require two pieces of information per edge, while the finite volume scheme would
require three, (dx0i, dy0i, dz0i), plus the volume.

Along with decreased storage, the simplified derivative weights of Equation 14 enable only a single flux
evaluation per edge, similar to the finite volume method. Applying the derivative weights of Equation 14 to
the meshless discretization of the conservation law in Equation 11, we obtain

Q0,t +
∑

i

ŵ0i [F (Qi, ∆x0i, ∆y0i) − F (Q0, ∆x0i, ∆y0i)] − DM
0 = 0. (16)

Note that the convective flux is only a function of the solution at the edge endpoints and the edge vector
itself. Once the flux is computed it will be weighted with ŵ0i and distributed to node 0. The same flux
for this edge can be used and distributed to node i, with a weight, ŵi0. The diffusive terms needed for
upwinding and stabilization follow a similar procedure. Because of its similarity in implementation to finite
volume schemes, we call this scheme the meshless volume scheme.

We have just shown how the satisfaction of the constraints in Equation 12 locally leads to reduced
storage and flux computation over the traditional least squares meshless scheme. We now show how we
choose weights, w0i, such that these constraints are satisfied in general. The constraints can be satisfied on
arbitrary point distributions as part of a local weight optimization procedure. In the optimization problem,
a minimum of g(w) is sought, subject to the constraints h1(w) and h2(w), where

g(w) =
∑

i

(w0i − w̃0i)
2, h1(w) =

∑

i

w0i(∆x2
i − ∆y2

i ), h2(w) =
∑

i

w0i∆xi∆yi. (17)

Here, wT =
[

w01 w02 · · · w0n

]

is the vector of weights for which we seek corresponding to each node in

the local cloud, and w̃T =
[

w̃01 w̃02 · · · w̃0n

]

are the corresponding target weights obtained from any

conventional weighting procedure, such as the inverse square procedure:

w̃0i =
1

|∆r0i|2
. (18)

The method of Lagrange multipliers may be invoked here, yielding the following system of equations at each
node:

[

I UT

U 0

]{

w

l

}

=

{

w̃

0

}

, (19)

with

U =

[

∆x2
01 − ∆y2

01 ∆x2
02 − ∆y2

02 · · · ∆x2
0n − ∆y2

0n

∆x01∆y01 ∆x02∆y02 · · · ∆x0n∆y0n

]

,

where l = (l1, l2) is the vector of Lagrange multipliers. Since this system of equations is solved on a local
node by node basis, matrix sizes are kept small and efficiency is maintained. This procedure appears to be
a small price to pay for the gains in memory and solution efficiency already described. In practice, it has
been observed that the optimized weight vector, w, does not differ much from the conventional weights, w̃.
In other words, for reasonably even point distributions, the derivative weight coefficients are nearly parallel
with their edges anyway, so invoking the optimization procedure amounts to merely tweaking the weights in
order to satisfy the above constraints.

In order to obtain a conservative scheme, the weights, w0i, would need further constraints, which seem
difficult or impossible to satisfy in general. First, the two weights needed for the edge connecting nodes 0
and i, w0i and wi0, would have to be equal in magnitude. If such weights existed, the procedure to find
them would involve the solution of a large sparse matrix with dimension equal to the number of edges in
the domain, which might cost as much as the flow solution itself. Second, the weights would have to satisfy
∑

i ŵ0i∆x0i =
∑

i ŵ0i∆y0i = 0 at each node, which would mean the weights actually represented a closed
volume, implying the existence of a mesh. However, these constraints appears to be too restrictive in general,
over-constraining the weight computation. Both these constraints are automatically satisfied for point clouds

6 of 16

American Institute of Aeronautics and Astronautics



possessing a great deal of symmetry and regularity. Thus, discrete conservation is obtained for these cases,
but would likely degrade for increasing cloud irregularity.

In summary, we have shown how the traditional Taylor series least squares method of gradient estimation
may be modified with a particular weighting scheme to significantly reduce storage and the number of flux
computations. The price for the increased efficiency is a local weight optimization problem with small matrix
sizes. Underlying this procedure, we have adopted an edge-based data structure to represent local meshless
clouds of points in a reciprocal manner. This gradient estimation technique may be used in a variety of
contexts. Next we show it can be applied directly to the Euler equations to compute inviscid flows using a
meshless procedure.

IV. Application of the Meshless Volume Method to the Euler Equations

In this section, we directly apply the meshless volume method to the Euler equations in two dimensions.
The implementation is facilitated by the use an edge-based data structure, similar to finite volume schemes.
We show how the simple geometric information computed from Equation 14 at each edge is sufficient for the
entire discretization procedure. The Euler equations in strong conservation law form are

∂Q

∂t
+

∂f

∂x
+

∂g

∂y
= 0, (20)

where the vector of conserved variables and Euler fluxes are

Q =











ρ

ρu

ρv

ρE











, f =











ρu

ρu2 + P

ρuv

ρuH











, g =











ρv

ρvu

ρv2 + P

ρvH











.

In the above notation, ρ, u, v, P , E, and H = E + P
ρ

are the density, Cartesian velocity components,
pressure, total energy, and total enthalpy. The Euler equations are completed by the ideal gas law,

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2).

To obtain a stable meshless discretization, we seek to satisfy a local extremum diminishing (LED) prop-
erty, as articulated by Jameson.22 We do this by augmenting the purely convective discretization with
artificial diffusion terms which enforce positivity, at least at local extrema. In this manner, a local minimum
cannot decrease and a local maximum cannot increase unbounded with time, which is the essential principle
of LED schemes. The LED principle leads to the class of total variation diminishing (TVD) schemes in one
dimension proposed by Harten.23 Applying the derivative weights obtained in Equation 14, we can construct
a stable scheme of the form

Q0,t +
∑

i

[ŵ0i(Fli − Fl0) − |ŵ0i|d0i] = 0, (21)

where Fl = ∆x0if + ∆y0ig is a directed flux in the direction of the edge connecting nodes 0 and i, and d0i is
an artificial diffusion term. The design of d0i is critical to the accuracy and convergence characteristics of the
meshless scheme. A highly accurate, yet efficient formulation is the convective upwind split pressure (CUSP)
scheme of Jameson.22 The CUSP scheme produces shocks with a single interior point in one dimension, while
minimizing computational cost. The CUSP scheme may be formulated to admit solutions with constant
stagnation enthalpy, a defining characteristic of steady inviscid flows with uniform freestream.24 Following
the CUSP scheme for constant stagnation enthalpy, we may express the diffusive flux as

d0i = α∗c(Qhi − Qh0) + β(Fli − Fl0), (22)

with speed of sound, c, and enthalpy variables, Qh = (ρ, ρu, ρv, ρH)T . Here, α∗ and β are dimensionless
parameters controlling the amount of diffusion to be added and may be computed following the analysis of
Jameson.25

We may reduce the amount of artificial diffusion to be added by replacing d0i with dLR,

dLR = α∗c(QhR − QhL) + β(FlR − FlL), (23)
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which is a function of left and right reconstructed states. A simple method to obtain the reconstructed states
is the symmetric limited positive (SLIP) scheme of Jameson,22 which leads to high order accuracy in smooth
regions and reverts to the strictly LED scheme in the vicinity of discontinuities to avoid oscillations. Here
we adapt the SLIP scheme to our meshless method by defining the left and right states as

QL = Q0 +
1

4
s(∆Q+, ∆Q−)(∆Q+ + ∆Q−), QR = Qi −

1

4
s(∆Q+, ∆Q−)(∆Q+ + ∆Q−). (24)

Here, ∆Q+ and ∆Q− are estimates of the change in the solution on either side of the edge connecting nodes

i

0

L R
i∗

Q−

Q+

0
∗

Figure 3. Edge reconstruction procedure to obtain left and right states.

0 and i, as shown in Figure 3. First, points 0∗ and i∗, the points in the local clouds of 0 and i which are
most closely aligned with the edge 0i are identified. Estimates with ∆Q+ = Qi∗ −Qi and ∆Q− = Q0 −Q0∗

may be used. However an increase in accuracy is observed by making corrections of the form

∆Q+ = Qi∗ − Qi + li · ∇Qi∗ , ∆Q− = Q0 − Q0∗ − l0 · ∇Q0∗ , (25)

where the gradients of Q are computed using the same least squares coefficients as the base meshless volume
scheme, and l0 and li are the position vectors from 0∗ and i∗ to the psuedo-points past the edge. The ∆Q
estimates obtained in this way have lead to sharp capturing of discontinuities.

For the enforcement of boundary conditions, we prefer to use ghost points while using the same interior
scheme for points coinciding with boundaries. At domain boundaries, interior points are reflected across
tangent boundary planes to form ghost points, as shown in Figure 4. The ghost points serve two purposes.
First, they balance the local clouds of the boundary points, improving the condition of the least squares
computation and the weight optimization procedure. Second, solution values at ghost points may be set
to enforce flow tangency or far field conditions. With the injection of proper conditions at the boundary,
no modification of the interior scheme is necessary at the boundary points. Integration to steady state was
accomplished with the modified Runge-Kutta approach of Jameson26 with local time stepping, enthalpy
damping, and implicit residual smoothing. Additionally we have implemented the multicloud algorithm of
Katz and Jameson,17 enhancing the convergence to steady state.

The savings in geometric information storage by using the meshless volume Euler scheme is quantified
in Table 1. Along with the meshless volume (MV) scheme, shown in the table are the traditional Taylor
meshless (Tay) scheme and nodal finite volume schemes on simplicial volumes for both least squares (FV-LS)
and Green-Gauss (FV-GG) linear reconstruction. The geometric storage needed for the nodal coordinates,
volumes, flux distribution, and reconstruction procedures are shown. Flux distribution includes least squares
gradient weights for the meshless schemes or face areas for the finite volume schemes. If a “0” appears in
the reconstruction column, it means that the same coefficients that are used for flux distribution are also
used for reconstruction, and no additional storage is counted. This is the case for three of the schemes, while
the finite volume scheme with least squares reconstruction requires additional storage. The total number of
geometric variables to be stored, shown in the final column, is the sum of the previous column values, where
the number of edges, ne, is expressed in terms of the number of points, np, in a typical mesh. The number
of edges exceeds the number of points by a factor of roughly three in two dimensions and roughly seven in
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Figure 4. Reflection of interior points to produce ghost nodes.

three dimensions.27 As the table indicates, the geometric storage needed for the meshless volume scheme
is the smallest, being slightly smaller than finite volume with Green-Gauss reconstruction. It is nearly a
factor of two more efficient than the traditional meshless approach, and nearly a factor of three smaller than
finite volume with least squares reconstruction in both two and three dimensions. Aside from geometric
storage, the remaining storage needed for the solution procedure is expected to be about the same for all
four schemes.

Table 1. Geometric storage comparison of various schemes. (ne ≈ 3np in two dimensions, ne ≈ 7np in three
dimensions.)

coordinates volume flux distribution reconstruction total

2D

MV 2np 0 2ne 0 8np

Tay 2np 0 4ne 0 14np

FV-LS 2np np 2ne 4ne 21np

FV-GG 2np np 2ne 0 9np

3D

MV 3np 0 3ne 0 24np

Tay 3np 0 6ne 0 45np

FV-LS 3np np 3ne 6ne 67np

FV-GG 3np np 3ne 0 25np

While more difficult to quantify, the CPU time spent per iteration for the meshless volume scheme should
be approximately equal to the time spent for the finite volume schemes since the number of flux computations
and other solution procedures are similar. The traditional Taylor approach is expected to be more expensive,
since two flux computations per edge are needed.

V. Results in Two Dimensions

In order to characterize the error of the meshless volume scheme, we performed a fundamental grid
convergence study. The study consisted of prescribing a known function with known gradient over a domain,
and comparing the computed gradient with the exact gradient. We applied the function,

f(x, y) = sinx sin y,

the exact gradient of which is easily found analytically. We then computed the gradient of this function
using the meshless volume technique on a variety of point distributions, shown in Figure 5. The nodes and
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connectivity were obtained from structured and triangular meshes which were both regular and perturbed
in nature. We computed the L2 norm of the error between the exact and computed gradients. As shown
in Figure 5(e), the regular distibutions led to gradient estimates which were second order accurate, while
the perturbed meshes led to estimates which were first order accurate. This is the expected result, common
to linear preserving schemes in general, which often lose one order of accuracy as meshes become distorted.
We would expect similar behavior from most finite volume, finite element, or finite difference schemes with
linear representations. Even with the new least squares weighting scheme we have proposed, the meshless
volume method of gradient estimation formally does not lose accuracy compared to the traditional method.
Thus, the scheme appears suitable for direct application to the Euler equations for a meshless discretization
or for other gradient estimation applications, such as linear reconstruction.

With regard to our meshless discretization of the Euler equations, we first present three airfoil cases,
which should give zero drag, since the flow is inviscid and we prescribe conditions which lead to shock free
results. We tested three airfoils at shock-free operating conditions, as shown in Table 2. Two of the cases,
the NACA and RAE airfoils, were tested at subsonic conditions, while the KORN airfoil was tested in a
transonic regime. A series of three increasingly refined meshes were used to assess the convergence to zero
drag. In all three cases, nearly zero drag was obtained with 160 points on the airfoil surface. It appears that
error due to the artificial diffusion remains low as the mesh in refined as indicated by the rapid convergence
to zero drag for all cases. Additionally, the highly sensitive transonic KORN airfoil case produced zero drag,
which is the theoretical behavior of this airfoil at the shown operating condition.

Table 2. Drag convergence for inviscid test cases

NACA 0012 KORN Airfoil RAE 2822

M = 0.5, α = 3o M = 0.75, α = 0o M = 0.5, α = 3o

Surface points Total points Cd Total points Cd Total points Cd

40 526 0.0082 474 0.0036 457 0.0104

80 1591 0.0009 1919 0.0013 1580 0.0018

160 5443 0.0001 7810 0.0000 5733 0.0003

Figures 6-8 show the surface pressure, pressure contours, mach contours, and the meshless point distri-
bution for three well known inviscid test cases. We show both subsonic and transonic results for the NACA
0012 airfoil, along the with transonic KORN airfoil case discussed above. The local cloud definitions for
these cases were extracted from a triangulation created with the Delaundo package.28 The airfoil surfaces
contained 160 points, while the interior domains contained roughly 5000 points. Also provided with each
test case is a comparison of lift and drag with a structured finite volume solver, which also makes use of
CUSP and SLIP algorithms. The comparison to finite volume results is also made in the plots of surface
pressure, with the dots showing the meshless result, and the solid line showing the finite volume result. The
subsonic case of Figure 6 shows nearly zero drag. In the transonic case of Figure 7, the shock location and
magnitude coincide well with the finite volume results. In the case of the KORN airfoil of Figure 8, the upper
surface is virtually shock free at its design point, indicating a high level of accuracy. The KORN airfoil case
is particularly encouraging, since the shock-free result is highly sensitive and difficult to obtain for many
schemes. The results for all cases tested agree remarkably well with established finite volume results in spite
of a loss of formal conservation at the discrete level.

VI. Conclusions

We have developed a meshless technique, which significantly reduces storage and flux computations as
compared with traditional least squares meshless approaches. We have done this by adopting an edge-based
connectivity to describe local clouds, and by introducing a weighting scheme which simplifies the least squares
procedure. The cost of computing the new weights is relatively low, considering the reduced memory and
fewer flux computations needed to resolve the solution. We have shown similarities between the meshless
scheme and finite volume schemes in two dimensions. Both schemes are similar in implementation. However,
since geometric terms of the meshless scheme do not form a closed volume, discrete conservation appears
difficult to prove.
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We have applied the new scheme directly to the Euler equations in two dimensions. We have used an
LED-based method with artificial diffusion derived from CUSP and SLIP concepts to accurately resolve flow
features. We use an explicit method with a truly meshless multigrid-like operator to rapidly achieve steady
state. The results agree well with established methods in terms of solution time and accuracy for all cases
tested despite the non-conservation of the scheme.

In this work we have shown improvement over many existing meshless schemes in terms of efficiency in
memory and computation. In doing this, we have shown that accuracy does not appear to suffer for all
cases tested. The widespread use of this or other meshless schemes will depend on the creation of point and
cloud generation techniques which can be shown to relieve mesh generation difficulties. While our previous
works have demostrated this in certain specific scenarios,16, 17 widespread use of meshless schemes depends
on more general approaches to point generation and cloud definition. Future work in meshless schemes will
focus on these areas. Providing that point and cloud generation prove successful, the application of the
meshless volume scheme could prove to be a highly efficient and easily implemented scheme useful for many
CFD problems.
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12 of 16

American Institute of Aeronautics and Astronautics



X

-C
P

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5

2

finite volume
meshless

(a) Surface pressure coefficient

0.86

0.88
0.90

0.92
0.940.96

0.96

0.98

0.98

1.00

1.00

1.00

1.00

1.02

1.02

1.02

X

Y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Pressure contours

0.28
0.43

0.46

0.46

0.48

0.48

0.48

0.48

0.48

0.51

0.51

0.51

0.51

0.54

0.54

0.54

0.57

0.60

X

Y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(c) Mach contours

X

Y

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(d) Point distribution

Figure 6. Flow over NACA 0012, M = 0.50, α = 3.0o, Meshless volume scheme.

Table 3. Lift and drag coefficients, NACA 0012 airfoil, M = 0.5, α = 3.0o.

cl cd

FV 0.4313 0.0000

MV 0.4321 0.0001
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Figure 7. Flow over NACA 0012, M = 0.85, α = 1.0o, Meshless volume scheme.

Table 4. Lift and drag coefficients, NACA 0012 airfoil, M = 0.85, α = 1.0o.

cl cd

FV 0.3891 0.0582

MV 0.3923 0.0572
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Figure 8. Flow over KORN airfoil, M = 0.75, α = 0.0o, Meshless volume scheme.

Table 5. Lift and drag coefficients, KORN airfoil, M = 0.75, α = 0.0o.

cl cd

FV 0.6308 0.0000

MV 0.6353 0.0000
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