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Despite the continuous improvement of technology, generation of high-quality meshes

around complicated geometry remains a time consuming and even laborious task. In this

paper, we propose a semi-meshless computational framework designed to reduce the dif-

ficulty in generating the necessary point connectivity for numerically solving conservation

laws. The new framework is based on an analytic formulation of conservation laws in a

generalized coordinate frame, in which the time derivatives of the conservative variables

can be computed using a weighted average of estimates from local stencils. This formu-

lation naturally implies a merit function for generating stencils based on point distances

and the orthogonality of the generalized coordinates in the expected stencils. We applied

the framework to solving the Euler equations for inviscid flow. Test cases involving airfoils

showed that the new computational framework produced numerical solutions with quality

similar to their finite volume counterparts.

I. Introduction

Efficient generation of high quality meshes has been a subject of continued interest in various scientific
communities. Even with the abundance of available tools and technology, mesh generation often remains
the bottleneck in the analysis phase of an engineering design cycle, especially when the designed system
involves complicated geometry. In the last decade, many have attempted to circumvent mesh generation by
developing meshless algorithms. This led to different classes of meshless methods, a general one of which
solves the governing equations in a finite-difference setting using various local interpolation methods to obtain
derivatives. For example, Batina,1 Löhner et al.,2 and Oñate et al.,3 used polynomial basis in their work.
Sridar and Balakrishan,4 and Katz and Jameson5 employed Taylor series. Kansa,6 Shu et al.7 and Tota and
Wang8 applied radial basis functions for interpolation.

In addition to pure meshless schemes, many hybrid schemes that use meshless methods and traditional
spatial discretization in different parts of the domain have been investigated. Kirshnman and Liu,9 Koh et
al.10 and Luo et al.11 coupled meshless schemes near geometry surfaces with Cartesian grid methods in the
far field. Kamatsuchi12 performed viscous calculations using a meshless method in a near-wall subgrid that
supplemented sub-divided Cartesian meshes through immersed boundary methods. Katz et al.13 also used
a meshless method as an interface between two different meshes.

Even though the work mentioned above has demonstrated the potential of meshless methods, there
still seems to be doubt on wider application of meshless algorithms. A valid concern is that, even though
meshless methods does not require rigid connecitivity in the form of a grid, they still require initial point
distributions and ways to generate point clouds from these distributions. To form point clouds, Oñate et
al.3 used a quadrant search technique, while Löhner et al.2 used an octree search followed by local Delauney
triangulation. Both methods further prune clouds to avoid ill-conditioned local least squares matrices.
This highlights that, even though meshless connectivity have much less stringent reciprocity requirements,
meshless methods face other challenges in preprocessing, particularly in ensuring the quality of the meshless
clouds.
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Few have considered intermediate approaches to generate full connectivity from some limited initial
connectivity. Meakin et al.14 did so in their work on strand grids. Even though their work better fits into
the category of mesh generation, it did demonstrate that, if one can generate such initial connectivity at low
costs and make clever use of its (albeit limited) structure, this kind of intermediate approach may lead to
overall gains in preprocessing efficiency.

In this paper, we propose and validate an intermediate framework that, i) like meshless algorithms, relaxes
the requirements on the necessary connectivity for numerically solving conservation laws, ii) discretizes a
domain with less initial connectivity information than that provided by traditional meshes, but iii) by
using slightly more initial connectivity information than a pure meshless method, suggests a natural quality
estimate of the final connectivity that can help reduce quality tests during preprocessing. Current results
suggest that this framework can incorporate traditional spatial discretization schemes to produce solutions
comparable to those obtained using the same spatial discretization with traditional meshes.

In section II and III, we present the formulation of the framework along with some properties implied by
this analytic formulation. In section IV, we detail the algorithm used to produce stencils for approximating
spatial derivatives. Section V contains results from applying the current framework to computing steady-
state solutions for inviscid compressible flow over airfoils.

II. Formulation

II.A. Motivation

Consider a system of conservation laws in 2-D

∂w

∂t
+ ∇ · f = 0 (1)

One way to advance (in time) the numerical solutions to the discrete version of system (1) is to use the
discrete divergence of the spatial flux as an estimate of the time derivative at each solution point of interest.

The use of finite difference schemes on structured curvilinear meshes essentially solves eqn. (1) in a
curvilinear coordinate frame. For example, in 2-D, we have

∂w′

∂t
+
∂F

∂ξ
+
∂G

∂η
= 0 (2)

where (ξ, η) represent the curvilinear coordinates, and w′, F, G are, respectively, the transformed conser-
vative variables and the generalized fluxes along ξ and η directions. In this case, the mesh metric terms
implicitly define the tranformation from the Cartesian to curvilinear coordinates in which the flux divergence
is numerically calculated.

On the contrary, many meshless schemes operate on the directly discretized form of

∂w

∂t
+
∂f

∂x
+
∂g

∂y
= 0 (3)

which is eqn.(1) in Cartesian coordinates. As mentioned before, these schemes approximate the flux deriva-
tives using different local collocation techniques.

In the current framework, we take an intermediate approach that is equivalent to numerically solving
the governing equations at each solution point in a local transformed coordinate frame. In the formulation,
we start from a semi-mesh that defines the location of each solution point, its local η-direction and local
connectivity along this direction. To compute flux derivative estimates at each solution point, we also assume
that we find neighbor points to complete the definition of the local transformed coordinate frame using the
locations of these neighbor points relative to the solution point. Section IV contains an example of such
algorithms for obtaining candidate points.

II.B. Detailed Formulation

Because of the focus of our present work on computing external flow around objects, we define the semi-
meshes as a set of lines eminating from the object’s surfaces. All solution points are distributed on the lines.
At each solution point, we define η to be the local tangential direction of the line. The η-connectivity of each
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point is then its neighbors on the line. However, the resulting mathematical formulation does not preclude
the use of other definitions of semi-meshes, as long as they possess the local connectivity information as
stated in section II.A.

Consider a point ai on a mesh line A. Let us denote the local coordinate along A at ai by ηai
. If

the coordinate direction ξai
between ai and an out-of-line neighbor point is linearly independent of ηai

,
the two directions completely define the local transformed coordinates. Then, as long as we can use these
solution points along the two coordinate directions to form a stencil, we can approximate derivatives of
smooth functions along these directions. In other words, we can use the stencil points to obtain a local
approximation of eqn.(1) in 2-D at point ai, in the local coordinate frame (ξai

, ηai
):

∂w′

ai

∂t
+

∂F

∂ξai

∣

∣

∣

ai

+
∂G

∂ηai

∣

∣

∣

ai

= 0 (4)

where

w′

ai
= Jxyai

w

Jxyai
=

∂x

∂ξai

∂y

∂ηai

−
∂x

∂ηai

∂y

∂ξai

F = f
∂y

∂ηai

− g
∂x

∂ηai

G = −f
∂y

∂ξai

+ g
∂x

∂ξai

Because the transformed coordinates are local in nature, this formulation relaxes the requirement of one-to-
one reciprocity in traditional meshes. To allow even more flexibility, we recognize that although the mesh
lines define the direction ηai

, there may be more than one suitable definition of ξai
from different neighbor

points around ai. Let Sai
be a set of points around ai that contains suitable neighbor points to form n

stencils. Then, evaluating all of the terms in (4), we can write (4) for each stencil 1 ≤ k ≤ n and obtain

∂

∂t

(

Jxyaikwai

)

+
[ ∂

∂ξaik

(

f
∂y

∂η
− g

∂x

∂η

)]

ai

+
[ ∂

∂η

(

− f
∂y

∂ξaik

+ g
∂x

∂ξaik

)]

ai

= 0 ∀ 1 ≤ k ≤ n (5)

where “aik” represents the evaluation of a quantity at point ai using information from stencil k.
The last two terms on the left hand side of each of the above n equations then provide a different estimate

of the spatial derivatives for each stencil. We denote this estimate by Raik, i.e.

Raik = −
{[ ∂

∂ξaik

(

f
∂y

∂ηai

− g
∂x

∂ηai

)]

ai

+
[ ∂

∂η

(

− f
∂y

∂ξaik

+ g
∂x

∂ξaik

)]

ai

}

(6)

With stationary solution points, we can move the quantity Jxyaik outside the time derivative. In that case,

a natural way to obtain
∂wai

∂t
from all the residuals Raik is to determine

∂wjai

∂t
by solving the following least

squares problem for each conservative variable wj :

min
n

∑

k=1

{

√

θaik

[(

Jxyaik

∂wjai

∂t

)

− Rjaik

]}2

(7)

where θaik is the least squares weight for the k-th residual. Constructing each of the normal equations from
(7), we can recombine the equations in vector form and write the vector normal equation of (7) as

[
∑

k

θik(Jxyaik)2]
∂wai

∂t
=

∑

k

θik(Jxyaik)Raik (8)

from which we can obtain the time derivative

∂wai

∂t
=

∑

k θaik(Jxyaik)Raik

[
∑

k θaik(Jxyaik)2]
(9)
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There are two levels of generalizations one can make to the above derivation. Firstly, as we have men-
tioned, the derivation of eqn.(6) does not require the use of lines from surfaces as semi-meshes. Equation (6)
should accommodate other means of defining local coordinates at each solution point. Secondly, although
we arrived at eqn.(9) using finite-difference like notations, the idea of estimating the time derivative by the
least squares average of spatial residuals does not limit the choice of final spatial discretization for calculat-
ing these residuals. Therefore, this part of the formulation can be applied with other spatial discretization
schemes for which one can generate local stencils. Also, the time derivative estimate in (9) may serve as a
single-stage value in a multi-stage time-stepping scheme, as we do in section V.

Because the time derivative is a least squares average of values from different stencils, each of which can
be viewed as a collection of edges between the solution point and neighbor points, we refer to this method
as an edge-averaged semi-meshless (EAS) method. In the following section, we will discuss some properties
of eqn.(9) and our choice of the weights θaik based on these properties.

III. Properties and Weight Selection

Equation (9) possesses a few interesting properties. We have already seen that it provides us with freedom
in choosing the final discretization for the system of conservation laws. Here, we will focus on a property
that automatically puts emphasis on more orthogonal local coordinate bases. We also discuss the property’s
implication on the choice of desirable weights for the least squares problem.

III.A. Inherent Emphasis on Stencil Orthogonality

In eqn.(9), in addition to its weighting by the least-square weights θaik, the residual Raik is automatically
weighted by the coordinate Jacobian

Jxyaik =
∂x

∂ξaik

∂y

∂ηai

−
∂x

∂ηai

∂y

∂ξaik

(10)

Jxyaik vanishes if the unit vectors along ξaik and ηai
are parallel. Therefore, the current framework au-

tomatically weighs the k-th residual estimate in a way proportional to the orthogonality of the k-th local
coordinate basis, independent of the least squares weights. In other words, all other things being equal, the
framework prefers to compute the time derivative using spatial information from the most orthogonal bases
locally available.

In a finite volume mesh consisting of quadrilaterals, Jxyaik represents the volume of a cell. In particular,
Jxyaik = 0 when a cell is degenerate. In cases involving complicated geometries, obtaining high-quality
meshes with the constraint of reciprocal connectivity between points is often difficult. From above, one
can see that the current framework ignores the spatial information from these “degenerate cells”. Thus,
by relaxing the requirement to find one-to-one correspondences in all coordinate directions, the current
framework introduces the possibility to locally obtain better stencils that are equivalent to less-skewed mesh
cells.

The metric terms also influence the strategy to select the least squre weights. Because the magnitudes of
the metric terms increase with the representative spacing between stencil points, so does Jxyaik. Therefore,
given the same orthogonality, stencil points further away from ai (i.e. coarser stencils) actually receive
heavier weights. We will now detail how one can selecting appropriate weights θaik to avoid this problem,
while preserving the order of accuracy of the underlying spatial estimation.

III.B. Weight Selection

As mentioned in section III.A, the magnitude of Jxyaik increases with the representative stencil length
hk, leading to over-emphasis of coarse stencils. At first glance, setting θaik = (Jxyaik)−α, where α ≥ 1,
will negate the undesirable contribution from Jxyaik. Unfortunately, the product θaikJxyaik in eqn.(9) also
means that α ≥ 1 eliminates the orthogonality prioritization property, making this approach undesirable.

Instead, we proceed by observing that Jxyaik ∼ hnd

k , where nd is the spatial dimension of the problem and
hk is a representative length of the k-th stencil independent of the stencil orthogonality. Thus, a reasonable
way to restore the emphasis on stencils involving close-by points is to set

θaik = h−q
k , q ≥ nd (11)
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hk =
1

nb

nb
∑

j=1

‖xkbj
− xai

‖
2

(12)

where nb is the number of points in the k-th stencil that does not belong to the meshline A (for example,
with a 4-point stencil for central differencing in both ξ and η directions, nb = 2), and xkbj

is the coordinates
of the j-th cloud point in the k-th stencil.

One should also consider, however, the resulting effective accuracy of the spatial discretization due to
the combination of estimates obtained using multiple stencils. Consider a p-th order spatial discretization.
We can express the spatial residual estimate Rjaik

(defined by eqn.(6)) as

Rjaik
= Rj +Kph

p
k +O(hp+1

k ) (13)

where Rj is the exact spatial residual for the j-th conservative variable and Kp is the leading error constant
from the Taylor’s expansion of the scheme. Often, Kp does not depend on h. Therefore, combining eqns.
(8) and (13), we have

1
∑

k[θaik(Jxyaik)2]

∂wai

∂t
=

∑

k

[

θaikJxyaik(R+Kph
p
k)

]

=
∑

k

(

θaikJxyaik)R +
∑

k

(

θaikJxyaikhk
p
)

Kp (14)

With eqn.(11), and Jxyaik ∼ hnd

k , the summation in the second term of eqn.(14) becomes
∑

k

(

θikJxyaikhk
p
)

∼
∑

k

(

hk
−qhk

ndhk
p
)

=
∑

k

O(hp+nd−q
k ) (15)

A reasonable assumption is that the size of hk does not vary dramatically at a point for moderate values of
n (number of stencils). Therefore, to preserve the spatial accuracy, we need to choose

θaik = h−q
k , q ≤ nd (16)

Combining eqns.(11) and (16), we have

θaik = h−q
k , q = nd (17)

Thus, we have shown in this section that, given a set of neighbor points around a solution point ai and
suitably chosen least square weights, the proposed semimeshless scheme locally estimates the time derivatives
using spatial information from neighboring stencil points, taking into account the distance and orthogonality
of the stencil and maintaining the order of accuracy of the spatial discretization. In the next section, we will
illustrate how to select the set of neighbor points by a local cloud search procedure.

IV. Stencil (Edge) Generation

In this section, we present a procedure to generate the computation stencils in the current framework.
For better illustration, we show the specific steps for generating stencils for a 2-D finite-volume discretization
that is second-order accurate in smooth regions.15 We use the same discretization in our test cases in section
V. Our cloud search procedure bears some similarities to that by Oñate et al.3 in the sense that it tries to
ensure some level of orthogonality between point pairs in the stencil. However, in our case, the consideration
of orthogonality results directly from the formulation of our computational framework.

The outline of the procedure is as follows: After generating the mesh lines with points, we first perform
a cloud search based on local line spacing to locate possible candidate neighbors for forming stencils. Then,
a merit function ranks the points based on neighbor distances and orthogonality. Finally, the best points
are grouped together to form the stencils.

IV.A. Cloud Search

Given nmax, the desired number of stencils at each point ai, and cloud search parameters np,min and
np,max that bound the preprocessing cloud size, we first find all the points that are within a specified radius
from ai, i.e.,

Sai
= {bj

∣

∣ ‖xbj
− xai

‖
2
< rai

, bj /∈ A} (18)
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where rai
is the local search radius defined as a multiple of the representative point spacing along the line

at ai. In this step, we filter near-boundary points in a way similar to that adopted by Löhner et al.2

After forming Sai
, we rank the points in Sai

using a merit function ψ. we design ψ to bear some
similarities to the least squares weights θaikJxyaik so that we can expect that the stencils formed by the
neighbor points with the best merits will also receive the heaviest weights in the semi-meshless formulation.
In this work, we use the merit function

ψ =
(1 − |ξ̂aibj

· η̂ai
|)α

‖xbj
− xai

‖
β

2

(19)

where η̂ai
is the unit vector along line A at ai, ξ̂aibj

is the unit vector along xbj
− xai

and α and β are
user-chosen coefficients for balancing the contribution from orthogonality (the numerator) and distance (the
denominator) during the cloud search. In the present work, α = 1 and β = q = nd = 2. With these
parameters, ψ behaves like a product of the stencil’s normalized volume and its expected weight and serves
as an estimate of the quality of the resulting stencil.

We repeat the search with increasing radius rai
until either Sa contains at least np,min out-of-line neigh-

bor points or the algorithm has performed nsearch iterations. If the cloud already contains more than np,max

points before nsearch iterations, the algorithm retains the np,max points with highest values of ψ and termi-
nates. As we saw in section III, EAS favors orthogonality in stencil bases (ξaik, ηai

). Therefore, the user can
set an optional preprocessing minimum threshold on the included angle of (ξaik, ηai

) pairs to speed up the
cloud search.

IV.B. Stencil Assignment

The stencil assigment is specific to the chosen spatial discretization scheme. For the current finite volume
scheme, we set the local stencil for a point to include its immediate neighbors on the line and an out-of-line
point pair separated by the line.

We separate Sai
into

S+
ai

={bj ∈ Sai

∣

∣ ξaibj
· ζai

≥ 0}

S−

ai
={cl ∈ Sai

∣

∣ ξaicl
· ζai

< 0}
(20)

where ζai
is simply the unit vector in the out-of-plane direction. S+

ai
and S−

ai
thus contains points in Sai

that belongs to each of the respective left and right half planes created by bisecting R
2 by a the line tangent

to A at ai. Pairing up the k-th highest-ranked points in each of the half planes, we obtain the k-th stencil,
which consists of the points {ai, ai+1, ai−1, bjk

, clk}. For efficiency, we ensure that there are enough points
on both sides of line A during the cloud search in our implementation.

With the definition of stencil points, we can then calculate θaik and Jxyaik from the location of the stencil
points. Figure 1 provides a high-level illustration of the above procedure.

V. Application to Solving the Euler Equations

To test the current framework in a practical scenario, we apply it to obtain steady-state numerical
solutions to the 2-D Euler equations

∂w

∂t
+
∂f

∂x
+
∂g

∂y
= 0 (21)

with

w =











ρ

ρu

ρv

ρE











, f =











ρu

ρu2 + P

ρuv

ρuH











, g =











ρv

ρvu

ρv2 + P

ρvH











and

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2), H = E +

P

ρ
,

where ρ, u, v, P,E, andH are, respectively, the density, x- and y-components of the flow velocity, pressure, to-
tal energy and total enthalpy. We compute flow solutions around airfoils in subsonic and transonic conditions
and compare the convergence and accuracy of these solutions with well-validated numerical solutions.
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(a) Cloud search around selected point with
radius rai

x x

x
x

η

(b) Stencil 1

x

x

x

x

η

(c) Stencil 2

Figure 1: Cloud search of the semimeshless framework forming 2 stencils around a point.

V.A. Discretization

As mentioned in IV.B, the k-th stencil at point ai is a quadrilateral formed around ai with its respective
edge midpoints at the midpoint between ai and each point in the set {ai−1, ai+1, bjk

, clk}, where bjk
and clk

is the out-of-line point pair generated by the algorithm described in section IV. Contrary to a traditional
finite-volume mesh, overlaps and gaps may exist between these quadrilaterals. Therefore, there is no a

priori guarantee that the final discretization will be conservative, although the cloud search may generate
connectivity that leads to global conservation.

Each computational stencil at a point produces an estimate of the spatial flux derivatives based on the
spatial discretization. In the current cases, we compute this estimate using a procedure very similar to the
one previously used by Jameson, Schmidt and Turkel15 to discretize the Euler Equations on quadrilateral
meshes.

In each stencil cell, we obtain the spatial flux derivative estimate by an approximation to the integral
∫

V
(fdy − gdx). For example, the x-momentum flux computed using the k-th stencil of each node is

R2k =

nek
∑

mk=1

φ2mk
=

nek
∑

mk=1

(Qmk
ρumk

+ ∆ymk
Pmk

) (22)

where nek is the number of edges in the k-th stencil cell, φmk
is the directed flux vector along edge mk,

Qmk
= ∆ymk

umk
− ∆xmk

vmk
and (∆xmk

,∆ymk
) is the unnormalized vector along the length of the edge

mk of cell k. The quantities with subscripts “mk” are averages of values at stencil points separated by edge
mk.
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After obtaining the residuals for each stencil, the EAS solution procedure differs from that of a pure
finite-volume method: We weigh the residuals from each of the k stencils according to eqn. (9).

As in the case of much previous work that used similar spatial discretizations, we introduce necessary
aritificial dissipation to achieve stability. We employ the H-CUSP scheme,16 which admits constant enthalpy
in steady flow, combined with symmetric limited positive (SLIP) reconstruction16 to retain higher order of
accuracy in regions with smooth solutions. Together, these schemes replace the contribution to the spatial
residual from each stencil edge by

φ̃mk
= φmk

− dmk
(23)

where

dmk
=

1

2
α∗c(wmkR

− wmkL
) +

1

2
β(φmkR

− φmkL
) (24)

where the subscipts “L” and “R” denotes limited reconstructed left and right states on both sides of the
edge, and α∗ and β denotes computed coefficients16 based on the average state.

We march the solution to a steady state using modified Runge-Kutta schemes17 with larger stability
regions, along with convergence acceleration techniques such as local time stepping, residual smoothing18

and enthalpy damping15 on the total residual.

V.B. Results

We now present results from a number of test cases involving flow around airfoils. We compare the
results obtained using the EAS solver to those obtained using FLO82, a cell-centered finite volume solver
using structured O-meshes. To evaluate the connectivity generation procedure, both solvers use the same
point distributions. We use the connectivity of the cell centers in the wall-normal direction from FLO82 as
the initial semi-mesh for the EAS solver.

V.B.1. Connectivity Generation Results

In the previous sections, we suggested that the stencil generation procedure does not guarantee global
conservation at the discrete level, even with a conservative underlying spatial discretization. However, when
we select the best stencil at each point, the algorithm did globally produce reciprocal connectivity. One can
partly attribute this to the good quality of the initial point distribution. Nonetheless, it is still encouraging
that the current algorithm can potentially preserve conservativeness of the underlying spatial discretization.

To futher test our algorithm, we initiated the cloud search for points around a NACA 0012 airfoil with
a semi-mesh that contains a mesh line emanating from the trailing edge. In the region near the trailing
edge, the algorithm did locally form stencils that do not allow reciprocity but possess better orthogonality
than those composed of immediate neighbors in the structured mesh. In other regions of the domain, the
resulting stencils retained reciprocity. One can view these results as the willingness of the current algorithm
to sacrifice conservativeness near geometric singularities where mesh generation often becomes difficult.

Figure 2 shows the local cells generated from stencils near the trailing edge of the NACA 0012 airfoil
when we applied the current algorithm to both semi-meshes.

V.B.2. Flow Solutions

Table 1 shows the drag coefficient of a NACA 0012 airfoil computed at M = 0.3, α = 0◦, using the best
stencil obtained at each point on the initial semi-mesh.

Surface Points cd

(# Mesh Lines) EAS FLO82

40 0.0039 0.0025

80 0.0004 0.0005

160 0.0001 0.0001

Table 1: Drag coefficients for flow over NACA 0012, M = 0.3, α = 0◦

With one stencil at each point, the semi-meshless algorithm reduces to a locally finite volume solution
procedure. As expected, results from the current semi-meshless method compare very well with their finite
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(a) with no mesh lines from trailing edge (b) with a mesh line from trailing edge

Figure 2: Domain around a NACA 0012 airfoil discretized using the current algorithm, showing the areas covered
by final cells (grey), reciprocal connectivity (green) and resulting domain boundaries (black).

volume counterparts for reasonably dense point distributions. The drag convergence also suggests that the
discretization is effectively second-order accurate, same as that of the pure finite volume method.

Table 2 lists the lift and drag coefficients computed in other test cases, in which the semi-meshless solver
also used the best stencil available at each solution point on initial semi-meshes with 160 mesh lines.

Airfoil M α
cl cd

EAS FLO82 EAS FLO82

NACA 0012 0.3 3.0 0.3822 0.3824 0.0001 0.0001

NACA 0012 0.75 1.0 0.2256 0.2260 0.0026 0.0026

RAE 2822 0.75 3.0 1.1433 1.1452 0.0487 0.0488

Table 2: Numerical results from subsonic and transonic lifting test cases

One can see that the lift coefficients obtained using the current framework are practically identical to
those obtained using FLO82. Figures 3 to 5 show the excellent agreement between the semi-meshless and
the finite volume solutions. One may expect this excellent agreement from the fact that the semi-meshless
algorithm generated local cells that are very similar to those in the original finite volume mesh. However, we
found that the non-reciprocal connectivity in section V.A, which allowed overlaps and gaps in the domain,
still resulted in flow solutions comparable to those in the cases with fully reciprocal connectivity.

We also briefly investigated the effects of using more than one local stencil per point in the final dis-
cretization. Initial tests performed using the current weighting system and cloud search procedure suggest
that increasing the number of stencils per point may improve convergence through the increased support
provided by the extra stencils, but in general does not have a positive effect on the stability of the algorithm.
This may have resulted from the less superior quality of the additional stencils obtained from these partic-
ular semi-meshes. Potential future work in developing alternative weighting systems, cloud search or point
generation procedures may address this issue by improving the robustness of the semi-meshless framework.

VI. Conclusion

We proposed a new semi-meshless computational framework that relaxes the connectivity generation
requirements that often make mesh generation difficult. In 2-D, the new framework generates a user-defined
number of stencils by using a cloud search to supplement predefined partial connectivity in one local spatial
dimension. Based on local coordinate frames, the formulation considers the distance as well as the orthogo-
nality between points when generating stencils. A general least-squares type formulation for calculating the
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(a) pressure contours (b) surface pressure coefficient

Figure 3: Flow over NACA 0012, M = 0.3, α = 0◦

(a) pressure contours (b) surface pressure coefficient

Figure 4: Flow over NACA 0012, M = 0.75, α = 1◦

time derivatives using the stencils provides freedom in the choice of spatial discretization schemes and the
number of local stencils.

When equipped with underlyling finite volume spatial discretization, the semi-meshless algorithm gener-
ated local stencils very similar to those in existing finite volume meshes. Even though the formulation does
not guarantee fully reciprocal connectivity, we observed such connectivity in practice when the algorithm
selects the best stencil at each point in reasonable initial point distributions. In tests cases involving inviscid
compressible flow over airfoils, the semi-meshless algorithm also produced results comparable to finite volume
solutions. These results encourage future work in the development of weighting systems and connectivity
generation techniques to improve the robustness of the algorithm.
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(a) pressure contours (b) surface pressure coefficient

Figure 5: Flow over RAE 2822, M = 0.75, α = 3◦
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