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This paper addresses the aerodynamic performance of Busemann type supersonic bi-

plane at off-design conditions. An adjoint based optimization technique is used to optimize

the aerodynamic shape of the biplane to reduce the wave drag at a series of Mach numbers

ranging from 1.1 to 1.7, at both acceleration and deceleration conditions. The optimized

biplane airfoils dramatically reduces the effects of the choked flow and flow-hysteresis phe-

nomena, while maintaining a certain degree of favorable shockwave interaction effects at

the design Mach number. Compared to a diamond shaped single airfoil of the same total

thickness, the wave drag of our optimized biplane is lower at almost all Mach numbers,

and is significantly lower at the design Mach number.

I. Introduction

For decades, the speed of commercial aircraft was constrained by the sound barrier. Even with the most
successful Concorde, supersonic flight was only available on a small number routes and for those are willing
and able to pay for the expensive airplane tickets. The two major challenges for supersonic flight are high
drag due to shock waves and the sonic boom.

The biplane concept proposed by Adolf Busemann1 can potentially solve both the high drag and the
sonic boom problems. At the design condition, the Busemann biplane produces zero wave drag and no sonic
boom will escape from the biplane system due to the wave cancellation between two airfoil components.
Much research was performed on the Busemann biplane concept from 1935 to 1960’s. Moeckel2 and Licher3

developed optimized lifting supersonic biplanes by theoretical analysis. Furthermore, Tan4 calculated an-
alytical expressions for the drag and lift of a three dimensional supersonic biplane with finite span and
rectangular planer shape. Ferri5 obtained some experimental results of the aerodynamic characteristics of
the supersonic biplane using the wind tunnel and compared them with the analytical results. Currently
there is renewed interest in supersonic biplane airfoils. Igra and Arad6 tested different parameters’ effect on
the drag coefficient of the Busemann airfoil at various flow conditions. Recently, Kusunose proposed using
the Busemann’s biplane concept to the next generation supersonic transport design. His research group
carried out a series of studies including both computational fluid dynamic (CFD) methods and wind tunnel
experimental methods.7–12
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Although the Busemann airfoil demonstrates very good performance at the design Mach number, the
drag of the Busemann airfoil at the off-design conditions is much higher due to the choked-flow phenomenon.
An even worse problem for the off-design Busemann airfoil is the flow-hysteresis phenomenon. In order to
alleviate these problems of the Busemann airfoil, Kusunose et al10 proposed a configuration with leading
and trailing edge flaps.

In this paper, we use multiple point adjoint based aerodynamic design and optimization method to
improve the baseline Busemann biplane airfoil’s off-design performance and alleviate the flow hysteresis
problem. The adjoint method efficiently solves the every high dimensional design problem and thus can find
the true optimal aerodynamic shape that maintenance superior design point performance and significantly
improve the off-design performance.

II. Busemann Type Biplane – Design Point Performance

A. The Wave drag of Supersonic Thin Airfoil

Based on the physical origins of the drag components, the total drag of a wing can be divided into several
components: skin friction drag, wave drag, pressure drag and vortex drag. In supersonic cruise flight, the
wave drag, the drag due to the presence of shock waves, is dominant.

The shock-expansion theory can be used to solve the lift and drag of an airfoil in supersonic flow. If the
airfoil is thin and the angle of attack is small, then the lift and drag can be approximately given as simple
analytical expressions via the thin airfoil theory.13 We define the lift and drag coefficients as

cl =
L

qc
, cd =

D

qc

where L and D are the lift and wave drag of the air foil respectively. And q represents the dynamic pressure,
which is

q =
1

2
ρ∞U2

∞

Then according to thin airfoil theory, cl and cd for an arbitrary two-dimensional airfoil (as shown in Figure
1) can be given as:

cl =
4α0√
M2

∞
− 1

cd =
4√

M2
∞
− 1

[
(
dh

dx
)2 + α2

0 + α2
c(x)

] (1)

From the above equation, it is clear that the lift of this general thin airfoil in supersonic flow only depends
on the mean angle of attack. And the wave drag of this airfoil can be split into three parts: drag caused by
angle of attack, drag caused by camber and drag caused by thickness. The wave drag in the 2-D case can
only be reduced separately according to the different generation mechanism.13

B. Busemann Airfoil

Adolf Busemann1 proposed a biplane concept by simply dividing a diamond airfoil into two components and
placing the triangular surfaces facing each other (Figure 2). The Busemann airfoil is an excellent design to
reduce the drag due to life (refer as wave reduction effect) and also the drag due to thickness (refer as wave
cancellation effect).

1. Wave Reduction Effect

The drag due to lift (including the drag caused by angle of attack and the drag caused by airfoil camber) can
not be eliminated completely. But this part of the drag can be reduced significantly by combining multiple
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Figure 1. Linear resolution of arbitrary airfoil into lift, camber, and drag13

Figure 2. Design vs off-design condition of the Busemann biplane
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airfoils together.7 To show this, we first simplify the general airfoil to a flat plate airfoil. Thus cl is the same
as given in equation (1) and cd is reduced to

cd =
4α2

0√
M2

∞
− 1

(2)

We can see clearly that for a flat plate, the lift coefficient is proportional to the angle of attack while the
drag coefficient is proportional to the square of the angle of attack.

Considering an airfoil consists of n parallel flat plates with the same chord length c as the single flat
plate airfoil, as shown in Figure 3. To set the total lift of this n-plates airfoil equal the lift of the single plate
airfoil, the angle of attack αn should be αn = α0/n. Thus,

cln = n ·
4αn√
M2

∞
− 1

= n ·
4α0/n√
M2

∞
− 1

= cls.

Similarly, the wave drag of this n-plates airfoil equal the summation of the wave drag of each individual plate

cdn = n ·
4α2

n√
M2

∞
− 1

= n ·
4(α0/n)

2√
M2

∞
− 1

=
1

n

4α2
0√

M2
∞
− 1

=
1

n
cds

Figure 3. Wave reduction effect

From the above equation, we can see that the wave drag of the n-plate airfoil is only 1
n
of that of a single

plate airfoil with the same lift. However, we also should notice that the increased surface area of the multiple
airfoil combination will produce more skin-friction drag.

For a multiple airfoil combination configuration, the lift of the individual airfoil will be reduced so that
the drag caused by lift will be reduced, while the total lift of the multiple airfoil will not be reduced but only
be re-distributed. This is called as the ”wave reduction effect” by Kusunose et al in their paper.7

2. Wave Cancellation Effect

The drag due to thickness can also be significantly reduced by introducing the biplane configuration. By
adjusting the distance between the two airfoils at a given Mach number, the strong shock wave generated
at the leading edge will exactly reach the inner corner point of the opposite airfoil and will be canceled by
the expansion wave at that point. At the design condition, theoretically the shock waves can be completely
canceled so that zero wave drag is produced, as shown in Figure 4.
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Figure 4. Wave cancellation effect

However, at design point, because of the entropy increase caused by the shock wave inside the bi-
plane system (as shown in Figure 4) and the non-linear effect during the shock-expansion wave interaction
processes,13,14 the zero wave drag condition of the Busemann airfoil design will not be actually realized.
Kusunose15 introduces the Oswatitsch’s wave drag expression which can be used to predict this internal
shock wave related wave drag. This part of the drag can be given as

Dw = P∞

∫
Δs

R
dz = P∞

∫ (
−ln

P0

P0∞

)
dz

where, Δs and P0

P0∞

denote entropy production and the total pressure deficit through shock waves.
At other Mach numbers, the shock wave will only be partially canceled, as shown in Figure 2. Therefore,

the wave drag will not be zero anymore in the off design case. We will discuss the off design conditions in
more detail in next section.

3. Wave Reflection Effect

There is another attractive property of biplane airfoil design. The configuration can be arranged so that the
shock wave is reflected to the sky and does not reach the ground, and consequently the sonic boom will be
dramatically reduced as shown in Figure 5.

However, according to thin airfoil theory, the lift of the biplane system is reduced due to this shock wave
reflection. Using CFD Kusunose et al proved in their paper,7 the lift of the biplane system will be zero if
all the shock waves are reflected into the sky. Airfoils producing zero lift are not practically useful. Also,
because of the poor lift to drag ratio (L/D), as shown in Figure 6, the simple shock reflection biplane will
not satisfy the low drag and low boom requirements for the supersonic flight.

Liepmann13 examines several different biplane examples to optimize the ratio D/L2. Because at a lifting
condition, there is a wave drag due to lift, the wave drag of the Busemann biplane is no longer zero. To
obtain a beneficial shock-expansion wave interaction, the lift, thickness and camber effects must be considered
together.
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Figure 5. Wave reflection effect

Figure 6. L/D ratio reduction due to the wave reflection effect
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III. Off-Design Condition of the Busemann Airfoil

As discussed above, the Busemann biplane airfoil produces very small wave drag at the design condition.
However, at off-design conditions, the Busemann airfoil shows very poor aerodynamic performance. Here,
we use computational fluid dynamics (CFD) method to demonstrate this. The configurations of the baseline
diamond airfoil and the Busemann biplane airfoil are given in Figure 7.

Figure 7. Configuration comparison

Figure 8 shows the comparison of the drag coefficient(cd) for these two airfoils over a range of Mach
numbers. In these calculations, an impulsive start from uniform flow is used as the initial condition.

Figure 8. cd plot for different airfoils at zero-lift condition.

As can be seen, when the Mach number is small (lower than 1.6 in the plot), the drag for the Busemann
airfoil is higher than that of the diamond airfoil. But in the range of Mach numbers from 1.61 to 2.7, the
drag coefficient for the Busemann airfoil becomes lower than that of the diamond airfoil. Especially at Mach
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number 1.7, which is the design condition for this Busemann airfoil, cd = 0.00341. Due to the favorable
shock-shock interaction effect, it is possible for the Busemann airfoil to produce much smaller drag (the red
line in the plot) near the design Mach number than the standard diamond airfoil does. This is the advantage
of using the Busemann airfoil design.

These calculations verify that the Busemann airfoil demonstrates very good performance at the design
Mach number. But for the off-design conditions, the drag of the Busemann airfoil can be much higher
because of the choked-flow phenomenon. Figure 9 shows the pressure field around the Busemann airfoil
under two different off-design Mach numbers. In the case of M∞ < 1.0, as given in Figure 9 (a), the flow
becomes sonic at the mid-chord apex and is further accelerated to supersonic. Then a vertical shock wave is
formed at the trailing edge of the biplane airfoil. The high wave drag of this Mach number condition is due
to the low pressure of the rear part of the airfoil. In the case of 1.0 < M∞ < 1.6, as given in Figure 9 (a),
the flow condition is different. A strong bow shock wave is formed in front of the leading edge and the flow
is choked. The flow behind the bow shock wave becomes subsonic and a high pressure field is built so that
the wave drag of this off-design condition is also very high.

(a) M∞ =0.8 (b) M∞ = 1.6

Figure 9. Pressure field of the Busemann airfoil under off-design Mach numbers

However, there are even worse problem for the off-design conditions of the Busemann airfoil due to the
flow-hysteresis phenomenon. If we slowly accelerate the flow by using the previous simulation result as the
initial condition, we obtain a new cd plot versus Mach number as Figure 10. From the plot we can see two
separated cd lines in the range near Mach number 1.6 to Mach number 2.1 for the Busemann airfoil. The
green line shows the cd of the Busemann airfoil during acceleration and the red one shows the cd during
deceleration, which are due to the flow-hysteresis phenomenon during acceleration and the choked-flow
phenomenon during deceleration.

IV. Numerical Methods for Optimizing Off-Design Condition

The Euler equations for compressible inviscid flows can be written in an integral form

∂

∂t

∫∫
S

wdS +

∫
∂S

(fdy − gdx) = 0 (3)
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Figure 10. cd plot for different airfoils at zero-lift condition.

for a domain S with boundary ∂S, where w represents the conserved quantities, and f and g represent the
fluxes in x and y directions respectively:

w =

⎛
⎜⎜⎜⎝

ρ

ρu

ρv

ρE

⎞
⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

ρuH

⎞
⎟⎟⎟⎠ , g =

⎛
⎜⎜⎜⎝

ρv

ρvu

ρv2 + p

ρvH

⎞
⎟⎟⎟⎠ . (4)

In this paper, we use second order finite volume space discretization. A blended first and third order
flux artificial dissipation proposed by Jameson, Schmidt and Turkel16 is applied. The coefficients of these
differences depend on the local pressure gradient. Since we don’t care about the details of the transient
solution, and the only objective here is to reach a steady state as fast as possible, the time integration
schemes with a fast convergence property are chosen. In this research, we use a modified Runge-Kutta
approach introduced by Jameson.17 This scheme has been successfully applied to both structured and
unstructured mesh problems.16,18,19 To further accelerate the convergence, the multigrid scheme is used,
which is developed by Jameson to efficiently solve hyperbolic equations.18,20

For this off-design conditions design problem, the geometry of the airfoil is defined by a set of shape
parameters. The cost function, which is also a function of the shape parameters, is chosen as the drag
coefficient or the lift to drag ratio. The gradient is needed to determine a direction of improvement. The
disadvantage of using finite difference scheme to find the gradient is the huge computational cost because
for each design variable the flow is recalculated to estimate the gradient. Using control theory the gradient
can be determined by solving a single adjoint equation, the cost of which is comparable to that of solving
the flow equation.

Assume the cost function I
I = I(w,F) (5)

The change of the cost function due to a change in F is:

δI =

[
∂IT

∂w

]
I

δw +

[
∂IT

∂F

]
II

δF (6)
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Here, the subscripts I represents the change related to the variation δw in the flow field and II represents
the change caused by the shape modification δF .

The governing equation R can also be written as function of w and F within the flow field domain D:

R(w,F) = 0 (7)

Then δw is determined from the equation

δR =

[
∂R

∂w

]
I

δw +

[
∂R

∂F

]
II

δF = 0 (8)

Because the variation δR equals zero, it can be multiplied by a Lagrange Multiplier ψ and subtracted
from the variation δI without changing the result. Thus, equation (6) can be rewritten as

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψT

([
∂R

∂w

]
δw +

[
∂R

∂F

]
δF

)

=

{
∂IT

∂w
− ψT

[
∂R

∂w

]}
I

δw +

{
∂IT

∂F
− ψT

[
∂R

∂F

]}
II

δF .

(9)

where ψ is chosen to satisfy the adjoint equation[
∂R

∂w

T
]
ψ =

∂I

∂w

Now the first term in equation (9) is eliminated and δI can be given as

δI = GδF (10)

where

G =
∂IT

∂F
− ψT

[
∂R

∂F

]
Since equation (10) is independent of δw, the gradient of I with respect to an arbitrary number of design
variables can be determined without the need to resolve the flow equation. Once the gradient vector G has
been obtained, it may be used to determine the direction of improvement.

Since the gradient F from above equation is generally less smooth than the shape, we use smoothed
sobolev gradient instead to optimize the problem.

For example, if we want to apply smoothing in the ξ1 direction, the smoothed gradient Ḡ can be calculated
from a discrete approximation to

Ḡ −
∂

∂ξ1
ε
∂

∂ξ1
Ḡ = G,

where ε is the smoothing parameter. Then we replace G by its smoothed value Ḡ and set

δF = −λḠ.

Then we assume the modification is applied on the surface ξ2 = constant, the first order change in the cost
function is

δI = −

∫∫
GδFdξ1dξ3

= −λ

∫∫ (
Ḡ −

∂

∂ξ1
ε
∂Ḡ

∂ξ1

)
Ḡdξ1dξ3

= −λ

∫∫ (
Ḡ2 + ε

(
∂Ḡ

∂ξ1

)2
)
dξ1dξ3

< 0.
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If λ is a sufficiently small positive, above equation will guarantee an improvement until the decent process
reach a stationary point at which G = 0. Conventional optimization methods assume that the design variables
are completely independent. However, for our optimization case, the mesh points are used as the design
variables, which can not be moved independently due to the shape smoothness requirement. Thus, gradient
smoothing is important and necessary. Also, the above optimization algorithm is based entirely on driving
the gradient to zero and does not directly measure the cost function. It is possible the gradient could reach
zero at a local minimum. For the two dimensional inviscid transonic airfoil optimization problem, however,
the drag is almost invariably reduced to zero corresponding to a shock free shape. But the final optimized
shape is not unique and depends on the initial shape.

V. Supersonic Biplane Airfoil Optimization Results

The results of the optimized Busemann type biplane airfoil at both zero-lifting and lifting conditions are
showed. To test the sensitivity, two cases are studied and we found that the optimized design is robust and
not very sensitive to changes in the angle of attack or the separation distance.

A. Original Busemann Airfoil Design

Firstly, the standard diamond airfoil and the Busemann airfoil are calculated at the zero-lift condition. To
make the results comparable, the total airfoil thickness of these two airfoils are set the same value. Here, the
thickness-chord ratio of the diamond airfoil is t/c=0.1, while the thickness-chord ratio of the the Busemann
airfoil are t/c=0.05 for each component. The distance between two Busemann airfoils is set to half of the
chord length in order to obtain the theoretical minimum drag for the designed Mach number 1.7. The angle
of attack of both airfoils are set to zero.

Figure 11 shows the H mesh of the Busemann airfoils used for calculation. The grid numbers before the
airfoil and after the airfoil in the horizontal direction are both 64. In the vertical direction, the grid between
the two components is 64× 64.

(a) Mesh for Busemann airfoil (b) Mesh for Busemann airfoil zoom in

Figure 11. Grid configuration for calculation

The analytical results obtained by the supersonic thin airfoil theory are given in Table 1 and the numerical
results calculated by current method are given in Table 2. Comparing these two tables, we can see that
the numerical results are generally in good agreement with the analytical results. Because of the wave
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cancellation effect, the wave drag of the Busemann airfoil is much lower than those of other two airfoils.
However, we also find that the wave drag of the Busemann airfoil can not be completely eliminated due to
the non-linear effect as we discussed before.

cl cd

Diamond airfoil 0.0000 0.0291

Busemann biplane airfoil 0.0000 0.0000

Table 1. Theoretical lift and drag coefficients of different airfoils

cl cd

Diamond airfoil 0.0000 0.0287

Busemann biplane airfoil 0.0000 0.0034

Table 2. Numerical lift and drag coefficients of different airfoils

Next we examine at the detailed conditions for the flow-hysteresis phenomenon during acceleration and
the choked-flow phenomenon during deceleration of the Busemann airfoil. Figure 12 shows the pressure
coefficient of the Busemann airfoil during acceleration. The angle of attack is set to zero and the resulting
non-lifting flow field is shown at various supersonic Mach numbers. As can be seen, at Mach numbers up
to 2.1, there is a bow shock wave in front of the airfoil. After the bow shock wave, there is a subsonic
region between the two airfoils where the pressure coefficient is high (marked by red). This bow shock
results in substantially (an order of magnitude) higher drag than at the design condition. When the Mach
number increases from 2.1 to 2.11, the bow shock wave is swallowed into the two airfoils and replaced by
two oblique shock waves, and the subsonic region between the two airfoils finally disappears. The drag
coefficient decreases dramatically and a flow similar to the design condition is obtained. This plot illustrates
the poor off-design performance of the original Busemann airfoil. During acceleration, the design condition
(cd = 0.00341) can not be obtained at Mach number 1.7 and the drag coefficient is much higher (cd =
0.08728). Because of the flow-hysteresis effect, the Busemann airfoil has different cd during acceleration and
deceleration as shown in Figure 10.

Figure 13 shows the pressure coefficient of the original Busemann airfoil during deceleration. As before,
the angle of attack is also set to zero and the resulting flow field is zero-lift. Although the Busemann
airfoil shows decent performance in the range near design Mach number, high drag occurs when the Mach
number further decreases during deceleration. Because a strong bow shock wave is formed before the airfoil
when the Mach number changes from 1.61 to 1.6, the drag increases dramatically from 0.00603 to 0.08886,
substantially higher than that of the standard diamond airfoil. The flow is choked at the maximum thickness
section and a subsonic area is formed. This is also a good demonstration of the poor off-design performance
of the Busemann airfoil since the drag of the Busemann airfoil will be greater than the standard diamond
airfoil for Ma ≤ 1.6.

In conclusion, compared to the standard diamond airfoil of the same thickness, the Busemann airfoil
produces a higher drag in the low Mach number zone (below the designed Mach number). In addition, we
need to accelerate the Busemann biplane to a higher Mach number, while producing higher drag and then
decrease velocity to get the design condition. Thus, the Busemann biplane airfoil need to be redesigned so
that the high drag zone caused by the flow-hysteresis and choke-flow phenomenon can be avoided or at least
reduced.

The separated diamond design is the first biplane design calculated here to avoid the flow-hysteresis
and choke-flow phenomenon. Figure 14 shows the comparison of drag coefficients of the standard diamond
airfoil, the separated diamond airfoil and the Busemann airfoil. The Mach number ranges from 0.3 to 3.3
just as in Figure 10. From the plot, we can see that the cd line of separated diamond airfoil agrees very well
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(a) M∞=1.7,cd=0.08728 (b) M∞=1.8,cd=0.08575

(c) M∞=1.9,cd=0.08415 (d) M∞=2.0,cd=0.08223

(e) M∞=2.1,cd=0.08009 (f) M∞=2.11,cd=0.00950

Figure 12. Cp-contours of the Busemann biplane with zero-lift during acceleration
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(a) M∞=1.8,cd=0.00363 (b) M∞=1.7,cd=0.00341

(c) M∞=1.65,cd=0.00435 (d) M∞=1.63,cd=0.00505

(e) M∞=1.61,cd=0.00603 (f) M∞=1.6,cd=0.08886

Figure 13. Cp-contours of the Busemann biplane with zero-lift during deceleration
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with the standard diamond airfoil. In the separated diamond airfoil case, no choke-flow or flow hysteresis
phenomenon happened. However, since the separated diamond airfoil shows the same drag characteristics
as the standard diamond airfoil, which produces higher cd at our design condition (Mach number 1.7) than
the Busemann airfoil, we hope to optimize the Busemann airfoil by choosing a shape combining Busemann
airfoil and the separated diamond airfoil designs.
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Figure 14. cd plot for different airfoils at zero-lift condition.

B. Optimized design under Non-lifting Condition

The initial computational grid is shown in Figure 11. Multiple design points are used in the optimization
process since the original Busemann airfoil showed flow hysteresis and choke-flow phenomenon during ac-
celeration and deceleration. For this multi-point design case, the objective function used here is a weighted
average of cd, which can be written as:

I =
n∑

i=1

wiIi (11)

Because the wave drag of a biplane airfoil will be much smaller when the flow is unchoked, we want the
strong bow shock wave be swallowed before the design Mach number. The multiple design points and the
corresponding weight used in this research are given in Table 3. Here equal weight is given to each design
point. Actually, higher weight could be put on the most important design Mach number to produce lower
drag at that point.

Mach 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Weight 1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

1
13

Table 3. Multiple design points and the corresponding weight

The lift coefficient cl is fixed to zero and a constant thickness constraint is used during the optimization
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process. In addition, the points of the maximum thickness section of the Busemann airfoil are fixed so that
the optimized airfoil has the same throat area as the original Busemann airfoil.

Figure 15 shows a comparison of the optimized biplane airfoil with the original Busemann airfoil. We
can see that the optimized biplane airfoil has the same thickness as the original Busemann airfoil at all
corresponding positions and the thickest position is fixed by the constraints. The wedge angles of these two
airfoils are the same. The leading edges and trailing edges of the optimized biplane airfoil bend towards the
center. The two components of the optimized biplane airfoil are still symmetric with respect to the Y-axis
in Figure 15 due to the zero-lift condition.

Figure 15. Comparison of the baseline Busemann airfoil and the optimized biplane airfoil. The red line
indicates the baseline Busemann airfoil; the blue line indicates the optimized biplane airfoil.

The drag coefficients for each design point are compared in Table 4. From the table, we can see the
baseline Busemann airfoil is choked at all Mach numbers in the optimization range, while the optimized
biplane is unchoked at a wider range (from 1.6 to 1.7 to 1.4). And even at the choked condition, the
optimized biplane airfoil has much lower drag than the baseline Busemann airfoil.

Mach 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 1050 996 957 928 906 889 873 889 906 928 957 996 1050

Optimized 527 473 419 376 332 112 106 112 127 152 419 473 527

Table 4. cd comparison at zero lift condition (1 count = 0.0001)

Figure 16 shows the comparison of the drag coefficient for the optimized biplane airfoil with the standard
diamond airfoil and the baseline Busemann airfoil. From the plot, we can see there are still two separated
cd lines for the optimized biplane airfoil, which means that the flow hysteresis and choked-flow effect still
exist. However, the flow hysteresis area has been greatly reduced. We also found from the plot that the drag
increase due to the choked-flow also becomes much smaller than that of the original Busemann airfoil. From
the plot, we can see that the drag of the optimized biplane airfoil is also smaller than that of the original
Busemann airfoil in the subsonic area (Mach number 0.5 to 0.9) although it is higher than the standard
diamond airfoil below Mach number 0.8. Considering both subsonic and supersonic conditions, we see the
optimized biplane airfoil greatly reduces the wave drag. At the design condition (Mach number 1.7), the
wave drag of the optimized biplane airfoil is higher (cd = 0.01064) than that of original Busemann airfoil (cd
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= 0.00341). This is because we focused on reducing the choked-flow and flow hysteresis effect in this design
and optimized the airfoil for multiple Mach numbers with equal weight. To alleviate this problem, we could
put more weight on the design Mach number 1.7 during the optimization process.
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Figure 16. cd plot for different airfoils at zero-lift conditions.

We now examine the details of the accelerating and decelerating conditions. Figure 17 and Figure 18
show the pressure coefficient distribution of the optimized biplane airfoil during acceleration and deceleration
respectively. During acceleration (Figure 17), the flow hysteresis effect still forms a bow shock wave in front
of the airfoil. When the Mach number increases from 1.52 to 1.53 (compared with Busemann at Mach
number 2.11), the shock wave is swallowed into the two airfoils and the wave drag decreased greatly from
0.03336 to 0.01221. During deceleration (Figure 18), we can also observe that there is also a choked-flow
phenomenon. But the optimized biplane airfoil shifts the choked flow at the maximum thickness sections to
a lower Mach number (Mach number 1.37 here) than the original Busemann airfoil (Mach number 1.6).

C. Busemann Biplane under Lifting Condition

In the real word, we care more about the lifting condition than the zero-lift condition. Here, we apply our
optimization method to the lifting condition. Two lifting cases are tested - cl 0.05 and 0.1. The same number
of mesh points and grid configurations are used in all the computations. Figure 19 shows the comparison of
the drag coefficient of the standard diamond airfoil and the original Busemann airfoil over a range of Mach
numbers (0.3 to 3.3) for these two lift coefficients. From the plot, we can see the cd plot for the Busemann
airfoil still splits into two lines, one for acceleration and the other for deceleration in both cases. This split
implies flow hysteresis and choke-flow phenomenon. At Mach number 1.7, the Busemann airfoil produces
much less wave drag than the standard diamond airfoil does because of the favorable shock-shock interaction
effect.

At both lifting conditions, the bow shock wave in front of the airfoil results in substantially higher drag
at high Mach numbers (about 2.08) during acceleration. When the Mach number increases, the bow shock
wave is swallowed and the subsonic region between the two airfoils finally disappears. The flow-hysteresis
phenomenon still exists as it does at the zero-lift condition. During deceleration,the wave drag is small (an
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(a) M∞=1.3,cd=0.04190 (b) M∞=1.4,cd=0.03761

(c) M∞=1.5,cd=0.03318 (d) M∞=1.52,cd=0.03336

(e) M∞=1.53,cd=0.01221 (f) M∞=1.6,cd=0.01125

Figure 17. Cp-contours of the optimized biplane with zero-lift during acceleration

18



(a) M∞=1.6,cd=0.01125 (b) M∞=1.5,cd=0.01273

(c) M∞=1.4,cd=0.01526 (d) M∞=1.38,cd=0.01582

(e) M∞=1.37,cd=0.03886 (f) M∞=1.3,cd=0.04191

Figure 18. Cp-contours of the optimized biplane with zero-lift during deceleration
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(a) cl = 0.05

(b) cl = 0.1

Figure 19. cd plot of different airfoil at lifting condition
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order of magnitude) until a strong bow shock wave forms in front of the airfoil when the Mach number
decreases due to the choked-flow effect.

In conclusion, similar to the zero-lift condition, the Busemann airfoil produces substantially lower wave
drag than the standard diamond airfoil of the same thickness at Mach number 1.7 due to the favorable
shock-shock interaction effect when cl is fixed. However, the Busemann airfoil demonstrates poor off-design
performance during acceleration and deceleration caused by the flow-hysteresis and choke-flow effect.

1. Optimized designs at lifting conditions

Just as at the zero-lift condition, multiple design points are used to optimize the biplane airfoil during
acceleration and deceleration. A fixed thickness constraint is applied. The points at the maximum thickness
section are fixed. The cost function is still the weighted cd at all design points.

The comparison of the drag coefficient for both cases are given in Table 5 and Table 6.

Mach 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 1054 1000 962 934 913 896 881 896 913 934 962 1000 1054

Optimized 520 472 425 388 351 119 112 119 134 158 425 472 520

Table 5. cd comparison for cl = 0.05 (1 count = 0.0001)

Mach 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 1066 1013 977 952 933 918 905 918 933 952 977 1013 1066

Optimized 535 489 446 413 377 136 131 136 149 173 446 489 535

Table 6. cd comparison for cl = 0.1 (1 count = 0.0001)

Figure 20 shows a comparison of the optimized biplane airfoil with the original Busemann airfoil for
both lift coefficients. As can be seen, the optimized biplane airfoil still has the same thickness as the
original Busemann airfoil at all corresponding positions and the maximum thickness position is fixed by the
constraints. Both the leading edges and trailing edges of the optimized biplane airfoils bend towards the
center. However, due to the lifting condition, the two components of the optimized airfoil are not symmetric.

(a) cl = 0.05 (b) cl = 0.1

Figure 20. Comparison of baseline Busemann airfoil and the optimized biplane airfoil.

Figure 21 shows the comparison of the drag coefficient for the optimized biplane airfoil with the stan-
dard diamond airfoil and the original Busemann airfoil at cl = 0.05 and cl = 0.1. Just as at the zero-lift
condition, flow-hysteresis and choke-flow phenomenon still exist for the optimized Busemann airfoil. During
acceleration, the wave drag of the optimized biplane airfoil is smaller than the wave drag of the original
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Busemann airfoil during the whole Mach number range (from 0.3 to 3.3). For deceleration, the wave drag
of the optimized biplane airfoil is smaller than the wave drag of the original Busemann airfoil except for the
Mach number range 1.6 to 2.1. Therefore, it is possible to greatly reduce the wave drag of the Busemann
airfoil by using our multiple design point method.

(a) cl = 0.05 (b) cl = 0.1

Figure 21. cd plot of different airfoils at lifting condition.

The pressure coefficient distribution of the optimized biplane airfoil during acceleration and deceleration
at cl = 0.05 and cl = 0.1 show the flow-hysteresis and choke-flow phenomenon are similar to the original
Busemann airfoil. However, during acceleration, the bow shock wave is swallowed at a lower Mach num-
ber (Mach number 1.54). During deceleration, the optimized biplane airfoil shifts the choked flow at the
maximum thickness section to a lower Mach number (Mach number 1.38).

D. Sensitivity Tests

To check whether the optimized biplane airfoil is robust at other off-design conditions, two sensitivity studies
have been performed. The optimized biplane airfoil for zero lift is used in these studies.

Figure 22(a) shows the sensitivity to the angle of attack. In our simulation, the angle of attack is a
uniform random number between 0 and 1 degree. Twenty-five different angle of attack conditions are tested.
From the plot, we can see that the drag coefficient of the optimized biplane airfoil only change very small at
all different angle of attack conditions. The flow hysteresis range (wave drag coefficient line splitting rang)
for all cases are within 0.01 Mach number variation. Thus the optimized design is not very sensitive to the
variation of the angle of attack.

Figure 22(b) shows the sensitivity to the separation distance (the distance between two airfoils). The
separation distance is a uniform random number between ±(0.02) chord length and again 25 different cases
are tested. The separation distance of biplane airfoil is an important parameter because the shock wave from
the leading edge will arrive different part of the opposite airfoil such that the pressure over the airfoil surface
will change obviously. Thus we can see the wave drag in the Mach number range (1.6, 2.5) for different cases
are about 20% variation. For different separation distance cases, the flow will be unchoked at different Mach
number. Thus the flow hysteresis ranges are not the same as the angle of attack sensitivity test. When the
Mach number is higher than 2.6, the shock wave from the leading edge will not interact with the opposite
airfoil component. The wave drag for all different separation distance case will be the same.
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(a) To angle of attack (b) To separation distance

Figure 22. Sensitivity tests.

VI. Conclusions

In this paper, the favorable shock wave interaction of the supersonic biplane airfoil is studied. Two-
dimensional numerical simulation results show that the Busemann biplane airfoil produces very low wave drag
at design condition due to the perfect shock-expansion wave cancellation. But for off-design conditions, the
Busemann biplane airfoil performance is poor. To overcome the choked-flow and flow-hysteresis problems of
the Busemann biplane at off-design conditions, the inviscid compressible flow (Euler) optimization techniques
based on control theory have been applied.

In order to obtain an optimized supersonic airfoil with lower wave drag within the given optimization
Mach number range, a multiple design point strategy is employed. The optimized biplane airfoil shows good
performance at both design and off-design conditions. The flow-hysteresis phenomenon of the optimized
airfoil still exists but the area is greatly reduced compared to that of the baseline Busemann biplane and the
wave drag caused by choked flow is also much lower. For inviscid flow, the wave drag of the optimized biplane
airfoil is lower than that of the diamond airfoil with the same total thickness throughout the optimization
range. The two sensitivity studies show that the optimized design is robust and not very sensitive to the
change of the angle of attack or the separation distance.
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