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Non-unique solutions of the Euler equations were originally discussed by Jameson in 1991
for several highly cambered airfoils which were the result of aggressive shape optimization.
In 1999 Hafez and Guo found non-unique solutions for a symmetric parallel sided airfoil,
and subsequently Kuzmin and Ivanova have discovered some fully convex symmetric airfoils
that provide non-unique solutions. In this article four new symmetric airfoils, all of which
exhibit non-unique solutions in a narrow band of transonic Mach numbers, were studied.
The first, NU4 was the result of shape optimization. The second, JF'1 is an extremely simple
parallel sided airfoil. The third JB1, is also parallel sided but has continuous curvature
over the entire profile. The fourth, JC6, is convex and ('« continuous. Cp — a plots of
these airfoils exhibit three branches of zero angle of attack, the P, Z and N-branches with
positive, zero and negative lift respectively. At some Mach numbers no stable Z-branch
could be found. When the P-branch is continued to negative o in some cases there is a
transition to the Z-branch, while in other cases there is a direct transition from the P to
N-branch.

I. Introduction

Given that the equations governing steady inviscid compressible flow are nonlinear, one can anticipate
the possibility of non-unique solutions. A familiar example is the case of supersonic flow past a wedge at an
angle 6, where there are two solutions with different shock angles § corresponding to the strong and weak
branches of the § — 6 diagram. Non-unique solutions of the transonic potential flow equation were discovered
by Steinhoff and Jameson® (1981), who obtained lifting solutions for a symmetric Joukowski airfoil at zero
angle of attack in a narrow range of Mach numbers in the neighborhood of Mach 0.85. This non-uniqueness
could not be duplicated with the Euler equations and it was conjectured by Salas et al?> (1983) that the
non-uniqueness was a consequence of the isentropic flow approximation. Subsequently, however, Jameson®
(1991) discovered several airfoils which supported non-unique solutions of the Euler equations in a narrow
Mach band. These airfoils were lifting.

The question of non-unique transonic flows was re-examined by Hafez and Guo*® (1999) who formed
both lifting and non-lifting solutions for a 12 percent thick symmetric airfoil with parallel sides from 25 to
75 percent chord in a Mach range from 0.825 to 0.843. The question was further pursued in detail in a series
of studies by Kuz'min and Ivanova”™ ! (2004,2006) who confirmed the results of Hafez and Guo, and also
showed that airfoils with positive curvature everywhere could support non-unique solutions.

II. Problem Statement

II.LA. NU4 Airfoil

The present authors have encountered another example as a consequence of a shape optimization study for
symmetric airfoils in transonic flow,'? in which an attempt was made to find a 12 percent thick airfoil with
a shock free solution at Mach 0.84. The resulting airfoil, labelled NU4, has an almost shock free solution at
its design Mach number, but also allows a lifting and non-lifting solution at zero angle of attack. In order
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to better understand this phenomenon three other ~ 12 percent thick symmetric airfoils have been analyzed
in detail.

II.B. JF1 Airfoil

The first, JF1 airfoil, is even simpler than the shape proposed by Hafez and Guo, consisting of a parallel
sided slab closed by a semi-circular nose and two parabolic arcs at the rear. Depending on the extent of the
parabolic arcs a Mach range exists in which lifting solutions can be found at zero angle of attack.

II.C. JB1 Airfoil

The second, JB1 airfoil, also has a parallel center section but the nose and tail are closed by higher order
curves which maintain continuity of the curvature at the junction points. The nose section is defined by a
Bezier curve with the control points

z1=0,y1=0
o =0,y2 =1
r3=1y3 =1
re=1ys =1

scaled to a length of .125 and a height of .0625. The upper surface curve is defined by

x = .125(3t% — 2t3)

,0<t<1
y = .0625(3t — 3t + 1)

The trailing curve from = .625 to 1 is
1—2\\°
=.0625 |1 —(1—
y=-0625 [ < <.375 >) ]

The third airfoil, JC6, is a fully convex airfoil defined by a simple algebraic formula

II.D. JC6 Airfoil

y(x):C:z:%(l—:r"),ngg 1

where the constant C, with a value of 0.06817, is adjusted to give the specified maximum thickness, 12
percent of the chord. The choice n=6 results in a very blunt-nosed airfoil with maximum thickness at about
55 percent of the chord, which has positive curvature everywhere and is Co, continuous.

II.LE. Overview

These four airfoils have very different characteristics, but they all share the property that in non-lifting
transonic flow they exhibit a transition from a solution with two supersonic zones on each surface below a
certain critical Mach number to a situation with one supersonic zone on each surface above the critical Mach
number. In the region of instability solutions with positive lift are found in which there is a single supersonic
zone on the top surface and two supersonic zones on the lower surface, and also solutions with negative lift
which are the mirror images of the solutions with positive lift. There results are presented in more detail
below.

ITI. Results

The calculations for the first three airfoils were performed using the authors’ SYN83 code, which imple-
ments the Jameson-Schmidt-Turkel scheme!® on a mesh with C-topology. The mesh contained 384 cells in
the clockwise direction and 64 cells in the normal direction.
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III.A. NU4 Airfoil

Examining first the NU4 airfoil stable asymmetric solutions were found in the range of Mach numbers from
0.837 to 0.841. As the Mach number is increased there is again a progressively decreasing distance between
the two supersonic zones on the lower surface (in the case of positive lift). This is illustrated in Figures (1)
to (3). At Mach 0.841 the symmetric solution is close to shock free, with a single relatively weak shock.

III.B. JF1 Airfoil

Examining next the JF1 airfoil, closed at the rear by parabolic arcs from 76 percent chord, non-unique
solutions are found in the range of Mach numbers from 0.825 to 0.835, illustrated in Figures (4) to (6).
Figures (4)(a) and (4)(c) show the symmetric and positive lifting solutions at Mach 0.825 respectively,
together with their convergence histories. The lifting solution was obtained by starting at an angle of attack
of 0.005 degrees, and switching to zero after 500 iterations. The corresponding negative lifting solution
can be obtained by starting at -0.005 degrees, and is the exact mirror image. Figures (5) and (6) show
the corresponding results at Mach 0.830 and 0.835. As the Mach number is increased the double shock
zone becomes narrower. When it becomes too narrow above Mach 0.835 or too wide below Mach 0.825 the
initial lifting solution at 0.005 degrees decays when the angle of attack is reduced to zero. It may also be
observed that the symmetric solutions at Mach 0.825 and 0.830 started to diverge after reaching extremely
low values of the residual of the order of 10712 and 10~ respectively at around 1500 cycles, suggesting that
at these Mach numbers the symmetric solution may not be a stable equilibrium point. Syn83 uses a multigrid
solution procedure, in combination with variable local time steps and residual averaging. These procedures
could possibily stabilize an unstable solution, so time accurate simulations will be needed to assess the true
stability of the symmetric solutions.

III.C. JB1 Airfoil

The JB1 airfoil differs from the JF1 airfoil primarily in maintaining continuity of the curvature over the
entire profile, and having a slightly larger thickness of 12.5 percent. Nevertheless the results displayed in
Figure (7) - (15) have a very similar character, with non-unique solutions in a somewhat narrower range of
Mach numbers from .823 to .827.

III.D. JC6 Airfoil

Corresponding results for the JC6 airfoil are shown in Figures (10) to (12). In these cases stable asymmetric
solutions are formed in the range of Mach numbers from 0.844 to 0.848. These calculations were also
performed with Syn83, but because of the extreme blunt nose shape of this airfoil, a finer mesh with 768x128
cells was used. The general characters of the solutions is externally similar to that of the JF1 airfoils,
confirming that non-unique solutions can be found for an extremely smooth convex profile with positive
curvature everywhere. In order to verify that these solutions are not a consequence of the mesh or the
discretization scheme, this airfoil has also ben analyzed on an O-mesh with 512x512 cells with an uniform
aspect ratio of unity. Figure (13) illustrates a corresponding mesh with 128x128 cells. Calculations were
performed using a version of the authors’ FLO82 code which implements the H-CUSP scheme,'* and with
NASA’s Overflow code.'® The results confirmed the same trend. Figure (14) shows the three solutions for
Mach .847 at zero angle of attack calculated using FLOS82.

ITI.LE. Plots of Cp — a Sweeps

In order to further elucidate the behavior Cf, vs « curves have been calculated for all four airfoils at Mach
number where they exhibit non-unique solutions. Overall three different regimes can be identified as the
Mach number is varied over a narrow band. Typically the C'r, — «a curve has three branches with zero, positive
and negative lift at zero angle of attack (the Z, P and N branches). In the first regime there appears to be no
stable solution at zero angle of attack although it may be possible to force convergence to very small values
of the error residual. In this case there is no Z-branch. The P-branch can be continued to negative angles
of attack before there is a transition directly to the N-branch. In the second regime there is a Z-branch
in which stable solutions are found over a small range of angle of attack. However, when the P-branch is
continued to negative « there is eventually a direct transition to the N-branch. In the third regime there is
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a larger Z-branch, and when the P-branch is continued to negative « there is a transition to the Z-branch,
and then as « is further reduced to more negative value there is a second transition to the N-branch. These
regimes can be seen for the different airfoils in Figures (15) - (18). Figure (15) shows the NU4 airfoil at
Mach .840. It exhibits the third behavior with transition from the P to the N-branch via the Z-branch.
Figure (16) shows that the JF1 airfoil has a similar behavior at Mach .835. the lower figure is a zoom of the
upper picture. Figure (17) shows the JBI1 airfoil at Mach .827. This shows the second regime where there
is a direct transition from the P to the N-branch. At Mach .825 no stable Z-branch could be found for this
airfoil, indicating that it is in the first regime. Figure (18) shows that the JC6 airfoil is in the second regime
at Mach .847. In this case the C, — o sweep was calculated on 512 x 512 O-mesh using both FLO82-HCUSP
and Overflow, in order to verify the behavior.

IV. Conclusion

The results for these four very different airfoils exhibit a similar general pattern. They all have solutions
which have a rather abrupt transition from two supersonic zones below a certain critical Mach number to a
single supersonic zone above that Mach number. Non-uniqueness occurs in a range of Mach numbers between
a point at which the two zones are quite widely spaced up to the point at which they coalesce. In this range
symmetric double shocked solutions appear to be unstable. Stable asymmetric solutions are found when two
supersonic zones coalesce on one surface but not the other. When, for example, there are two supersonic
zones on the lower surface the increase in pressure behind the first shock produces lift. The corresponding
circulation then leads to an increase in the effective Mach number on the upper surface and a decrease on
the lower surface, thus reinforcing the upper and lower surface solutions along the branches corresponding
to single and double supersonic zones respectively. This mechanism is not sufficient, however, to describe
the behaviors of the original non-unique solutions for lifting airfoils reported by Jameson in 1991. Unsteady
simulations similar to those performed by Caughey'® (2004) are needed to gain a better understanding of
the evolution and stability of these flows.
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JB1 at Mach=0.827 showing the symmetric solution (a) and convergence history (b), and the pair of
asymmetric solutions (c)(e) and convergence histories (d)(f)
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Figure 10. JC6 at Mach=0.844 showing the symmetric solution (a) and convergence history (b), and the pair of
asymmetric solutions (c)(e) and convergence histories (d)(f)
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Figure 11. JC6 at Mach=0.846 showing the symmetric solution (a) and convergence history (b), and the pair of
asymmetric solutions (c)(e) and convergence histories (d)(f)
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Figure 12. JC6 at Mach=0.848 showing the symmetric solution (a) and convergence history (b), and the pair of
asymmetric solutions (c)(e) and convergence histories (d)(f)
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Figure 13. A size 128x128 O-topology mesh used for the JC6 airfoil. Each mesh element has an unit aspect ratio.
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Figure 14. JC6 at Mach=0.847 showing (a) the z-branch solution, (b) the p-branch solution, and (c) the n-branch
solution.
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Figure 15. C — a sweep for NU4 airfoil at Mach=0.840
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(b) Zoom of the (a) C, — « sweep curve near the Z-branch

Figure 16. Cp —a sweep for JF1 airfoil at Mach=0.835. Top figure displays the full view. Bottom figure is a zoom near
the Z-branch.
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Figure 17. CL — o sweep for JB1 airfoil at Mach=0.827
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Figure 18. C — a sweeps for JC6 airfoil at Mach=0.847.
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