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In this paper, we present a mesh-free, finite-volume-like scheme designed for numeri-

cally solving conservation laws. We first derive a conservative formulation for computing

mesh-free first derivatives based on a set of unknown coefficients satisfying polynomial

consistency and other conditions. This formulation leads to a generalization that allows

flexible choices of flux schemes while remaining locally conservative. We present an al-

gorithm, based on minimum-norm solutions, for calculating unique meshless coefficients

given a point distribution and connectivity. Numerical examples of solving the 2D Euler

equations demonstrate the flexibility and practicality of the conservative meshless scheme.

I. Introduction

In the past two decades, many have developed various meshless algorithms to circumvent mesh generation.
The strategies behind these algorithms range from applying variational formulations in mesh-free settings
to employing point collocation strategies for approximating quantities of interest. In the former category,
Nayroles et al.1 developed the Diffuse Element (DE) method. Belytschko et al.2 extended DE to Element
Free Galerkin (EFG) method. Both methods required a background grid to compute required integrals in
the variation formulation. Duarte and Oden3 then provided an h-p meshless method in a more general
partion-of-unity framework. Oñate et al.4 proposed the Finite Point Method (FPM), which was also later
used by Löhner et al.5 Although its derivation contains some flavor of finite element methods, FPM uses
point collocation in their final discretization to avoid the computation of integrals involving test functions.
Batina6 had also previously arrived at a very simular formulation using polynomial basis from a different
perspective. In other work involving point collocation techniques, Kansa7, 8, and later Shu et al.9 and Tota
and Wang,10 applied radial basis functions in their meshless algorithms. Sridar and Balakrishan,11 and Katz
and Jameson12 also developed meshless methods that resemble traditional finite difference methods by using
Taylor series.

The work mentioned above, and much more others, demonstrate the great potential in applying meshless
methods to tackling complex problems in scientific computing. However, to the best of our knowledge, all
meshless methods documented in the literature face a fundamental challenge of the lack of formal conserva-
tion. Because of the local nature of these schemes, they do not preserve conservation at the discrete level
except in very limited situations. Compared to mesh-based approaches, the lack of conservation hinders
computation speed as one cannot compute reciprocal fluxes as efficiently as in edge-based approaches. More
importantly, non-conservation leads to unpredictable errors when sharp discontinuities exist in the solution.
The difficulty in quantifying the effects of non-conservation on accuracy and stability of algorithms have
often raised doubts about meshless methods in the scientific community.

In this paper, we report a novel mesh-free scheme that not only possesses various conservation and
mimetic properties at the discrete level, but also provide the option for one to incorporate existing flux
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schemes when solving conservation laws. Accordingly, the rest of the paper is organized as follows: We first
define the discrete derivative operator for our meshless scheme in section II, along with the reciprocity and
consistency conditions we impose. Based on those conditions, we prove in sections III and IV, respectively,
the resulting global and local conservation properties of the scheme. These properties lead to analogs of finite
volume schemes and a generalization, also presented in section IV, that allows flexible flux schemes. Section
V outlines the scheme’s discrete geometric properties, which contributes to the design of the procedure in
section VI for generating the meshless coefficients. Section VII contains results from testing the coefficient
generation procedure on airfoil geometries and using the generalized meshless scheme to numerically solve
the 2D Euler equations in both subsonic and transonic regimes. Finally, section VIII concludes the paper
with a few remarks and highlights of future work related to the current meshless scheme.

II. Formulation

Consider a domain Ω filled with a set of np points, with coordinates �xi, i = 1, . . . , np, both in the interior
of the domain and on the domain boundary ∂Ω. Given a scalar u, we define its discrete derivative δkui at
point i by

miδ
kui = ak

iiui +
∑
j∈si

ak
ijuj , (1)

where k = I , II , III indexes the spatial dimension, si is the set of neighboring points around i (does not
include point i itself), and mi and ak

ij are coeffcients to be determined. For consistent dimensions of the
equation, one can consider mi to represent a virtual volume associated with each point, while the coefficients
ak

ij for the point pair (i, j) have corresponding dimensions of area (this characterization is justified in section
IV).

In addition, we enforce the following conditions on ak
ij and mi:

C-1. Reciprocity and boundary conditions:

ak
ij = −ak

ji , i �= j, j ∈ si ⇔ i ∈ sj ,

ak
ii = 0 , i ∈ Ω ,

ak
ii =

1

2
nk

i , i ∈ ∂Ω ,

where nk
i is the k-th component of the area-weighted outward facing boundary normal at the boundary

point i.

C-2. Consistency of order L:

ak
iiφ(�xi) +

∑
j∈si

ak
ijφ(�xj) = mi∂

kφ(�xi)

for all multivariate polynomials φ of total order L, where �xi is the vector coordinates of point i.

We shall now investigate the properties of discretizations satisfying Conditions C-1 and C-2.

III. Global Conservation

We shall first show that a discrete differentiation operator satisfying the conditions in section II also
preserves global conservation discretely.

Theorem 1 (Discrete Conservation). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miδ
kui =

∑
i∈sB

uin
k
i , (2)

where sB is the collection of all boundary points.
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Proof. We can write the discrete first derivative as

miδ
kui =

np∑
j=1

ãk
ijuj , (3)

where ãk
ii = ak

ii, ãk
ij = ak

ij if j ∈ si, and ãk
ij = 0 otherwise. Let φ ≡ 1 in C-2, and use ak

ij + ak
ji = 0 from C-1,

we get

ãk
ij = −ãk

ji (only if i �= j), (4)
np∑

j=1
j �=i

ãk
ji = ak

ii, or

np∑
j=1

ãk
ji = 2ak

ii . (5)

Incorporating equation (3) into the left hand side of equation (2) and using equation (4), we have

np∑
i=1

miδ
kui =

np∑
i=1

np∑
j=1

ãk
ijuj =

np∑
j=1

(

np∑
i=1

ãk
ij)uj =

np∑
j=1

2ak
jjuj =

∑
i=sB

nk
i ui ,

where we changed the dummy index from j to i in the last step.

The equality (2) is just the discrete analog of global conservation

∫
Ω

∂kudx =

∫
∂Ω

unkds .

In addition to conservation, the meshless operator also possesses certain discrete mimetic properties,
namely summations by parts and energy conservation.

Theorem 2 (Summation by parts). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miviδ
kui +

np∑
i=1

miuiδ
kvi =

∑
i∈sB

viuin
k
i . (6)

Corollary 3 (Discrete energy conservation). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miuiδ
kui =

∑
i∈sB

1

2
u2

i n
k
i . (7)

One can see that equations (6) and (7) represent respective discrete versions of integration by parts

∫
Ω

v∂kudx =

∫
∂Ω

vunkds−
∫

Ω

u∂kvdx

and energy conservation ∫
Ω

u∂kudx =

∫
∂Ω

1

2
u2nkds .

Appendix A contain the omitted proofs for theorem 2 and corollary 3.

IV. Local Conservation and Generalization for Arbitrary Flux

In this section, we demonstrate that the current meshless scheme possesses a discrete analog of local
conservation ∫

ωi

∂kudx =

∫
∂ωi

unkds

and use this property to obtain a generalized framework that accommodates a large class of flux schemes.
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Theorem 4 (Local Discrete Conservation). If mi and ak
ij satisfy conditions C-1 and C-2, then, defining

nk
fj

= 2ak
ij to be virtual face area vectors for the corresponding interior point pair (i, j), the following

conditions hold:

1. At each point i,

miδ
kui =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈si

ufj
nk

fj
+ uin

k
i i ∈ sB

∑
j∈si

ufj
nk

fj
i /∈ sB ,

(8)

where ufj
represents an interface value of u.

2. In addition, each mi represents a virtual volume associated with point i that is enclosed by some virtual
faces fj associated with the point pair (i, j) (plus boundary faces if i ∈ sB). Each face fj has a
corresponding area of �nfj

and an interface function value of ufj
.

To faciliate the proof, we introduce the following corollary.

Corollary 5 (Local Discrete Geometric Conservation Law). If mi and ak
ij satisfies conditions C-1 and C-2,

and the vector valued multivariate function �φ satisfies the divergence free condition

∇ · �φ = 0 ,

then the following condition holds:

�φi · �ni +
∑
j∈si

�φfj
· �nfj

= 0 i ∈ sB

∑
j∈si

�φfj
· �nfj

= 0 i /∈ sB .
(9)

We shall proof theorem (4) and corollary (5) together.

Proof. Applying condition C-2 to φ ≡ 1 leads to ak
ii +

∑
j∈si

ak
ij = 0. Multiplying this by ui and adding the

result to the definition of the first derivative operator (1), we have

miδ
kui = ak

iiui +
∑
j∈si

ak
ijuj + ak

iiui +
∑
j∈si

ak
ijui

= 2ak
iiui +

∑
j∈si

ak
ij(ui + uj)

= 2ak
iiui +

∑
j∈si

nk
ij

(ui + uj)

2
. (10)

For interior points, ak
ii = 0. For boundary points, ak

ii = 1
2ni

k. Thus, we obtain equation (8) with
ufj

= 1
2 (ui + uj).

To prove corollary 5, let u = φ be a polynomial of total order L. Consistency of order L gives

mi∂
kφi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
j∈si

φfj
nk

fj
+ φin

k
i i ∈ sB

∑
j∈si

φfj
nk

fj
i /∈ sB .

(11)

If �φ is divergence free, summing over equation (11) applied to each component of �φ results in equation (9).
To complete the proof of theorem 4, it remains to show that the coefficients mi and ak

ij are consistent
and does not lead to numerical sources.
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First, let u = xk (recall k indexes the spatial dimension). Equation (8) becomes

mi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
j∈si

nk
fj

xk
i + xk

j

2
i /∈ sB

∑
j∈si

nk
fj

xk
i + xk

j

2
+ nk

i xk
i i ∈ sB .

(12)

Then, corollary 5 applied to

φk̂ =

⎧⎨
⎩

1 k̂ = k

0 k̂ �= k

yields
∑

j∈si
nk

fj
= 0 for an interior point i and

∑
j∈si

nk
fj

+ nk
i = 0 for a boundary point. These conditions

guarantee that a volume of size mi is fully enclosed by its interfaces, which include boundary elements if
appropriate. Thus, no numerical sources arise from inconsistent definition of virtual faces and volumes. The
scheme is locally conservative.

Theorem 4 justifies the geometric interpretation of the coefficients ak
ij and mi as analogs of face areas

and volumes. This geometric interpretation also allow us to generalize our scheme. A set of ak
ij , nk

i and mi

(such as one generated by the algorithm in Section VI) can still respresent interface faces, boundary faces,
and volumes. However, with the above geometric information, we can replace the interface flux uf =

ui+uj

2
with more sophisticated fluxes of choice, while preserving conservation, by generalizing equation (10) as

miδ
k
fui = 2ak

iiui +
∑
j∈si

2ak
ijF

k
ij , (13)

where, for example, the interface flux Fij can be a function of ui, uj and the derivative of u at points i and
j. This general formulation also preserves the global conservation property of the original scheme (1).

In section VII, one can see the results from using this approach to successfully tackle transonic flow
problems. In particular, we demonstrate the potential to apply the generalized scheme (13) with a wide
variety of existing flux schemes by incorporating into it a numerical flux formulation originally developed for
stabilizing finite volume discretizations.

V. Additional Global Properties

Before we present the algorithm for computing ak
ij and mi in section VI, we discuss some extra global

properties of our scheme. Resulting from conditions C-1 and C-2, these properties parallel equation (11) and
corollary 5. They provide important insight into constructing the coefficient generation algorithm.

Theorem 6 (Discrete divergence theorem). If ak
ij and mi satisfy conditions C-1 and C-2, then the following

condition holds for all multivariate polynomials φ of total order 2L:

∑
i∈sB

φ(�xi)n
k
i =

np∑
i=1

mi∂
kp(�xi) . (14)

Proof. It is sufficient to prove (14) for all multivariate monomials L of order less than or equal to 2L. Let
φ = φ1φ2, where both φ1 and φ2 are monomials or order less than or equal to L, and thus satisfy condition
C-2:

ak
iiφ1(�xi) +

∑
j∈si

ak
ijφ1(�xj) = mi∂

kφ1(�xi) (15)

ak
iiφ2(�xi) +

∑
j∈si

ak
ijφ2(�xj) = mi∂

kφ2(�xi) . (16)

We first multiply equation (15) by φ2(�xi) and (16) by φ1(�xi). Then, adding the results together and summing
over i = 1, . . . , np, using the fact (derived from ak

ij + ak
ji = 0 in condition C-1) that

∑
(i,j)∈E

ak
ij

(
φ1(�xi)φ2(�xj) + φ1(�xj)φ2(�xi)

)
= 0 ,
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where E is the set of all neighborhood pairs in the domain, we get

np∑
i=1

2ak
iiφ1(�xi)φ2(�xi) =

np∑
i=1

mi∂
k
(
φ1(�xi)φ2(�xi)

)
.

Using the formula for ak
ii in condition C-1, we obtain equation (14) for φ = φ1φ2.

In this proof, we obtained equation (14) by taking linear combinations of the constraints in condition
C-2 and canceling out all aij ’s in the process. Therefore, this theorem shows that conditions C-1 and C-2,
as linear constraints for aij , are linearly dependent. In other words, these conditions can not be satisfied
simultaneously unless mi satisfies equation (14).

The following corollary shows that equation (14) as linear constraints for mi are also linearly dependent.
A solution for (14) can only exist if the boundary faces nk

i are chosen appropriately.

Corollary 7 (Geometric conservation law). If ak
ij and mi satisfy conditions C-1 and C-2, and the vector-

valued multivariate polynomials �φ of order 2L satisfies the divergence free condition

∇ · �φ = 0 ,

then the following condition holds: ∑
i∈sB

�φ(�xi) · �ni = 0 . (17)

Proof. Summing equation (14) over k and using the divergence free condition, we obtain quation (17).

VI. Construction of Meshless Coefficients

As we saw in the previous section, theorem 6 and corollary 7 means that nk
i must be first chosen to

satisfy equation (17). Here, we describe an algorithm for obtaining such nk
i ’s and, afterwards, computing

the coefficients ak
ijand mi that satisfies conditions C-1 and C-2. The steps are as follows:

1. Calculate estimates of �ni for all boundary points based on the geometry of the domain boundary.

2. Project the estimates of �ni into the linear subspace that satisfies (17).

3. Solve a quadratic program for �aij and mi to enforce C-1 and C-2 while minimizing

∑
(i,j)∈E

‖�aij‖22 ,

where E is the set of all neighborhood pairs {(i, j) | j ∈ si}.
The projection in step 2 involves a small number of constraints when L is small. We carry out this

projection using QR decomposition of the matrices involved. Specifically, let n be a column vector that
contains �ni for all boundary points i ∈ sB. We can write the geometric conservation law (17) in matrix form
as

GTn = 0 . (18)

The number of columns of the matrix G is equal to the number of linearly independent vector-valued,
divergence-free multivariate polynomials of order up to 2L. Each column of G contains the values of one
of these polynomials at all boundary points. When L is small, G is a thin matrix.

To ensure that the total volume enclosed by the boundary faces does not change during the projection
process, we also enforce the constraint

1

nd

∑
i∈sB

�xi · �ni = m0 (19)

for each closed boundary of the domain, where nd is the number of spatial dimensions and

m0 =
1

nd

∑
i∈sB

�xi · �n0i .
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Let n0 be the initial estimate of n based on the geometry of the domain boundary, we can calculate n by

RT y = g −GT n0

Δn = Qy

n = n0 + Δn , (20)

where g = (0, . . . , 0, m0)
T and QR = G is the (thin) QR decomposition of G. The projected n satisfies the

linear equation (18), which is equivalent to the geometric conservation law (17).
For step 3, we denote a as a column vector that contains �aij for all neighborhood pairs, and m as the

vector containing mi for all points. For each neighborhood pair (i, j), we store either �aij or �aji such that
the reciprocity condition in C-1 is automatically satisfied. We write condition C-2 in the linear form

CTa + Dkm = dk ,

where CTa contains the term
∑

j∈si
ak

ijφj , Dkm contains the mi(∂
kφ)i terms, and dk contains boundary

terms of the type ak
iiφi. We can rewrite the system as

⎡
⎢⎣
CT 0 0 DI

0 CT 0 DII

0 0 CT DIII

⎤
⎥⎦

⎡
⎢⎢⎢⎣

aI

aII

aIII

m

⎤
⎥⎥⎥⎦ =

⎡
⎢⎣

dI

dII

dIII

⎤
⎥⎦ (21)

In additiion, just like in finite volume schemes, we require mi > 0. To enforce this positivity constraint,
we set mi > mmin, where mmin is a user-selected parameter, typically on the order of

√
εmac (εmac is the

machine zero) to avoid the virtual volume at any location to be arbitrarily close to zero.
As long as enough neighbors per solution point exist, the system (21) remain underdetermined, and one

can solve the resulting problem using QP or convex optimization tools, such as CVX
13, 14 and CVXOPT.15

Here, we use Saunder’s PDCO16, a software, written in MATLAB R©, that solves convex optimization problems
using interior point methods. We apply right preconditioning by scaling the columns of CT by ‖ �Δxij‖2 when
enforcing the constraints (and scaling the objective function accordingly).

Note that, although the constraint matrix does not have full row rank because of the discrete diver-
gence theorem (14), we did not experience any problem of infeasibility during the solution procedure after
constructing the right-hand side using a set of �ni’s that satisfies equation (18).

VII. Application to Solving the Euler Equations

In this section, we present results from applying the generalized scheme to obtain steady-state numerical
solutions to the 2D Euler equations. In the process, we also show the results from generating the required
meshless coefficients using the algorithm in section VI.

The 2D Euler equations are
∂w

∂t
+

∂f

∂x
+

∂g

∂y
= 0 (22)

with

w =

⎛
⎜⎜⎜⎝

ρ

ρu

ρv

ρE

⎞
⎟⎟⎟⎠ , f =

⎛
⎜⎜⎜⎝

ρu

ρu2 + P

ρuv

ρuH

⎞
⎟⎟⎟⎠ , g =

⎛
⎜⎜⎜⎝

ρv

ρvu

ρv2 + P

ρvH

⎞
⎟⎟⎟⎠

and

E =
P

(γ − 1)ρ
+

1

2
(u2 + v2), H = E +

P

ρ
,

where ρ, u, v, P, E, and H are, respectively, the density, x- and y-components of the flow velocity, pressure,
total energy and total enthalpy.
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VII.A. Discretization

As mentioned in section IV, we use the generalized form of our scheme as shown in equation (13). We
compute the flux divergence as

mi(δf · F)i =
∑
j∈si

f̃ij , (23)

where

f̃ij =
1

2
(fni + fnj)− dij , (24)

is the the numerical flux at each connect edge that consists of the central flux and the diffusive flux dij for
stability, and fn denotes the area-weighted normal flux at the virtual interface between points (i, j). One
can show that equations (23) and (24) are equivalent to (13) with F k

ij containing components of dij . To

construct the diffusive flux, we employ the H-CUSP scheme17, which admits constant enthalpy in steady
flow, combined with symmetric limited positive (SLIP) reconstruction17 to retain higher order of accuracy
in regions with smooth solutions. Together, these schemes give

dij =
1

2
α∗c(whR −whL) +

1

2
β(fnR − fnL) (25)

where wh denotes the conservative variables with energy replaced by enthalpy, the subscripts “L” and “R”
denote limited reconstructed left and right states on both sides of the edge, c represents the speed of sound
at the virtual interface, and α∗ and β denote computed coefficients17 based on the average state.

For boundary conditions, we enforce flow tangency at solid walls and enforce constant stagnation enthalpy
with vortex correction18, 19 for non-zero circulation.

We march the solution to a steady state using a modified Runge-Kutta scheme20 designed for an enlarged
stability region. Given the semi-discrete set of equations

∂wi

∂t
+ Ri = 0 , (26)

where the total residual

Ri =
1

mi

(Qi −Di) , (27)

is separated into the convective part Q and diffusive part D. For the current spatial discretization,

Qi =
∑
j∈si

1

2
(fnj + fni), Di =

∑
k

∑
j∈si

dij (28)

For a scheme with q stages, we have

w(n+1,0) = wn

...
w(n+1,s) = wn − αsΔt

(
Q(s−1) + D(s−1)

)
...

w(n+1) = w(n+1,q) ,

where

Q(0) = Q(wn), D(0) = D(wn)
...

...
Q(s) = Q(w(n+1,s)), D(s) = βsD(w(n+1,s)) + (1− βs)D

(s−1) ,

and αs and βs are the stage coefficients. We use a 5-stage scheme that Mavriplis21 and many others have
reported success with the following coefficients.

�αs = (
1

4
,
1

6
,
3

8
,
1

2
, 1), �βs = (1, 0, 0.56, 0, 0.44)

To accelerate convergence, we also apply techniques such as local time stepping, residual smoothing22 and
enthalpy damping23 on the total residual.
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VII.B. Test Geometries, Connectivities and Meshless Coefficients

To most directly compare results among different spatial schemes, we use the same geometries and point
clouds as those in Katz and Jameson24. To obtain valid surface face areas for all boundary points, we remove
any points at geometric singularities (e.g. trailing edge) and connect each neighbor point of the boundary
singularity to the closest boundary point without intersecting any part of the geometry.

Then, we construct the 2D version of system (21) for linear consistency (L = 1). Following the procedure
in section VI, it takes less than twenty seconds for PDCO to obtain a set of meshless coefficients, even for
the finest point distributions, on a workstation with Intel Xeon 5160 processors in a quad-core configuration.
Moreover, the coefficients satisfy nodal polynomial constraints to order 10−6 or better in all cases.

Figure 1 shows scatter plots of the virtual volumes and virtual face area magnitudes corresponding to
the finest point cloud around the RAE 2822 airfoil used in some of the test cases. Interestingly, by enforcing
linear consistency, we obtain meshless coefficients that adjust to local point spacings in the point cloud,
i.e. the virtual volumes and face areas are smaller at locations which the point cloud is denser, and vice
versa. The meshless coefficients behave similarly in all of the test geometries. It is very encouraging that
the algorithm in section VI produce solutions, unique for each point cloud, that make sense physically.

VII.C. Compressible Flow Results

The selected test problems are classical subsonic and transonic benchmark aerodynamics problems listed
in AGARD documents25, 26 and investigated by many researchers using various numerical algorithms. It is
very natural to validate the current meshless framework on these test problems. In particular, Katz and
Jameson24 used some of the test problems for comparing a few strong-form-based meshless schemes against
a finite volume discretization on structured grids.23 Besides comparing the current results to their finite
volume counterparts, we shall also compare the current results to those obtained using different meshless
algorithms, presented in Katz and Jameson24, 27.

Theoretically, inviscid isentropic flow around objects has zero drag. We first look at some shock-free
problems to confirm that the computed drag does converge to zero with increasingly refined point distribu-
tions.

Table 1 lists drag convergence results for the test cases of flow over the RAE 2822 and KORN airfoils.
Since the point distributions were not regular, the tables also list the total number of points. From figure 2,
one can see the asymptotic second-order convergence, even thought the scheme is only formally first-order
accurate.

(a) RAE 2822, M = 0.5, α = 3◦

ns np cd

40 456 0.0056

80 1579 0.0013

160 5732 0.0002

(b) KORN, M = 0.75, α = 0◦

ns np cd

40 473 0.0063

80 1918 0.0019

160 7809 0.0003

Table 1: Inviscid drag convergence for subsonic flow over airfoils

Now, we present results from transonic test cases. Table 2 lists the lift and drag coefficients computed
with the current scheme along with structured finite volume and other meshless results listed in Katz and
Jameson24, 27. In each test geometry, there are 160 points on the airfoil surface. Recall, from section IV,
that the current generalized meshless framework allows us to implement the conservative meshless and finite
volume discretizations in the same way using point locations and reciprocal coefficients at interfaces (as
opposed to some finite volume implementations that compute face normals and other necessary quantities
from a set of dual or face vertices and face edges). As a result, we also compare our meshless results
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Figure 1: Virtual volumes and face magnitudes around RAE 2822

10 of 19

American Institute of Aeronautics and Astronautics



103
10−4

10−3

10−2

10−1

n
p

c d

KORN
RAE
O(h2)

Figure 2: Inviscid drag convergence for subsonic flow over airfoils

with unstructured finite volume results obtained using the same software without any modifications. In
the tables, “CM” represents the current results obtained using our conservative meshless framework. “FV-
U” represents unstructured finite volume results obtained using the same software used for computing the
conservative meshless results. “FV-S” represents structured finite volume results obtained using Jameson’s
FLO82. Other acronyms are consistent with those in Katz and Jameson24, 27. “MV” denotes the alignment-
based “meshless volume” scheme by Katz and Jameson27, “TLS” denotes a Taylor-series-based meshless
scheme, “PLS” denotes a polynomial-based meshless scheme, similar to the Finite Point Method, and “RBF”
denotes a meshless method based on radial basis functions.

As one can see, results from the conservative meshless scheme compares extremely well with those ob-
tained using structured and unstructured finite volume methods and other meshless techniques. Figures 3
through 6 show the surface pressure coefficient plot (overplotted on FLO82 results) and glyph plot of the
Mach number around the airfoil. The surface pressure coefficient plots show sharp capturing of shocks. Also,
the shock-free results in the KORN airfoil case indicate high accuracy of the simulations. These results show
excellent potential of the current scheme for wider applications.

VIII. Conclusion and Future Work

We addressed the long-standing issue of lack of formal conservation of meshless schemes by formulating a
mesh free derivative operator that preserves both global and local conservation at the discrete level. Formal
discrete conservation results from a set of reciprocity and polynomial consistency constraints. Furthermore,
based on the local conservation properties of the scheme, we generalized the scheme to a finite-volume-like
formulation that allows our scheme to be used with a broad range of existing flux schemes. We constructed
an algorithm for computing the conservative meshless coefficients satisfying the desired constraints and
other derived necessary conditions. For test geometries involving airfoils, the coefficient generation algo-
rithm produced meshless coefficients with very little overhead. When used in computing steady inviscid
subsonic and transonic flows over airfoils, the generated coefficients and the generalized formulation led to
stable, convergent and accurate results that compare very well to structured and unstructured finite volume
counterparts.

Given the encouraging results in this paper, we would like to test the current meshless scheme on problems
of larger scale and complexity. Important topics of interest in this aspect include 3D implementation of the
current scheme, parallelization and domain decomposition. We also plan on exploring possible improvements
or variants to the meshless scheme itself, such as the possibility to further compactify the connectivity stencil,
or improvements in the coefficient generation process.
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(a) NACA 0012, M = 0.8, α = 1.25◦

cl diff. (%) cd diff. (%)

FV-S 0.3737 - 0.0237 -

FV-U 0.3639 2.6 0.0221 6.8

CM 0.3615 3.3 0.0226 4.6

MV 0.3713 0.6 0.0229 3.4

TLS 0.3616 3.2 0.0231 2.5

PLS 0.3684 1.4 0.0242 2.1

RBF 0.3986 6.7 0.0269 13.5

(b) NACA 0012, M = 0.85, α = 1.0◦

cl diff. (%) cd diff. (%)

FV-S 0.3891 - 0.0582 -

FV-U 0.3904 0.3 0.0559 4.0

CM 0.3895 0.1 0.0568 2.4

MV 0.3923 0.8 0.0572 1.7

TLS 0.3830 1.6 0.0565 2.9

PLS 0.3883 0.2 0.0593 1.9

RBF 0.3343 14.1 0.0570 2.1

(c) RAE 2822, M = 0.75, α = 3.0◦

cl diff. (%) cd diff. (%)

FV-S 1.1481 - 0.0486 -

FV-U 1.1552 0.6 0.0475 2.3

CM 1.1589 0.9 0.0479 1.4

MV 1.1338 1.2 0.0474 2.5

TLS 1.1319 1.4 0.0481 1.0

PLS 1.1347 1.2 0.0491 1.0

RBF 1.1744 2.3 0.0545 12.1

(d) KORN, M = 0.75, α = 0.0◦

cl diff. (%) cd diff. (%)

FV-S 0.6308 - 0.0000 -

FV-U 0.6379 1.1 0.0002 -

CM 0.6372 1.0 0.0003 -

MV 0.6353 0.9 0.0000 -

TLS 0.6178 2.1 0.0009 -

PLS 0.6164 2.3 0.0011 -

RBF 0.6200 1.7 0.0010 -

Table 2: Inviscid lift and drag coefficients for transonic flow over airfoils
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Figure 3: Flow over NACA 0012, M = 0.80, α = 1.25◦
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Figure 4: Flow over NACA 0012, M = 0.85, α = 1.0◦
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Figure 5: Flow over RAE 2822, M = 0.75, α = 3.0◦
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Figure 6: Flow over KORN airfoil, M = 0.75, α = 0.0◦
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Appendix

A. Proofs of Global Conservation and Mimetic Properties

Here, we repeat the proof for global consertaion and include proofs for the summation by parts and
energy conservation properties of the meshless differentiation operator.

Theorem 1 (Discrete Conservation). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miδ
kui =

∑
i∈sB

uin
k
i (2)

where sB is the collection of all boundary points.

Proof. We can write the discrete first derivative as

miδ
kui =

np∑
j=1

ãk
ijuj (3)

where ãk
ii = ak

ii, ãk
ij = ak

ij if j ∈ si, and ãk
ij = 0 otherwise. Let φ ≡ 1 in C-2, and use ak

ij + ak
ji = 0 from C-1,

we get

ãk
ij = −ãk

ji only if i �= j (4)
np∑

j=1
j �=i

ãk
ji = ak

ii, or

np∑
j=1

ãk
ji = 2ak

ii (5)

Incorporate equation (3) into the left hand side of equation (2) and use equation (4), we have

np∑
i=1

miδ
kui =

np∑
i=1

np∑
j=1

ãk
ijuj =

np∑
j=1

(

np∑
i=1

ãk
ij)uj =

np∑
j=1

2ak
jjuj =

∑
i=sB

nk
i ui

where we changed the dummy index from j to i in the last step.

Theorem 2 (Summation by parts). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miviδ
kui +

np∑
i=1

miuiδ
kvi =

∑
i∈sB

viuin
k
i (6)

Proof. Substitute equation (3) into the left hand side of equation (6), we have

np∑
i=1

miviδ
kui +

np∑
i=1

miuiδ
kvi

=

np∑
i=1

vi

np∑
j=1

ãk
ijuj +

np∑
i=1

ui

np∑
j=1

ãk
ijvj

=

np∑
i=1

vi

np∑
j=1

ãk
ijuj +

np∑
i=1

ui(

np∑
j=1
j �=i

−ãk
ji + ak

ii)vj

=

np∑
i=1

np∑
j=1

ãk
ijviuj −

np∑
i=1

np∑
j=1

ãk
ijviuj + 2

np∑
i=1

aiiviui

=
∑
i∈sB

viuin
k
i

where we exchanged the dummy indices i and j in the second term on the second-to-last line.
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Corollary 3 (Discrete energy conservation). If mi and ak
ij satisfy conditions C-1 and C-2, then

np∑
i=1

miuiδ
kui =

∑
i∈sB

1

2
u2

i n
k
i (7)

Proof. Equation (7) is obtained by setting v = u in equation (6).
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