Select ADO-DG Case Studies in Aerodynamic Design Optimization

Antony Jameson

 T. V. Jones Professor of Engineering Dept. Aeronautics & Astronautics Stanford University Stanford, CA 94305-3030, USA

John C. Vassberg

Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA

Invited Presentation

AIAA Sci-Tech Conference Kissimmee, FL 5 January, 2015

OUTLINE

• NACA0012-ADO INVISCID AIRFOIL

- ADO-DG Case 1
- SYN83 Optimizations
- FLO82 Cross Analyses
- GSA Study
- Case Summary
- ADO-CRM-WING
 - ADO-DG Cases 4.1-4.3
 - SYN107 Optimizations
 - Case Summary

NACA0012-ADO MODEL PROBLEM

Optimization Statement

- Minimize Drag
- M = 0.85, $\alpha = 0^{\circ}$, Inviscid Flow
- Maintain or Exceed Thickness Distribution of Baseline
- NACA0012-ADO Airfoil Equation
 - Closed Trailing-Edge at x = 1

$$y_A(x) = \pm \frac{0.12}{0.2} \left(0.2969 \sqrt{x} - 0.1260x - 0.3516x^2 + 0.2843x^3 - 0.1036x^4 \right)$$

3

ADO-DG CASE 1: NACA0012-ADO

Optimization Methods

- SYN83
- GSA Design Space Survey

• FLO82 Cross-Analysis

- Vassberg & Jameson, "In Pursuit of Grid Convergence for Two-Dimensional Euler Solutions," AIAA Journal of Aircraft, Vol.47, No.4, pp.1152-1166, July-August, 2010.
- High-Quality O-Mesh with Aspect-Ratio-1 Cells
- Family of Meshes (32x32)-to-(2048x2048) Cells
- Converge Residuals to Machine-Level Zero
- Richardson Extrapolation

BASELINE NACA0012-ADO SOLUTION

FLO82 Solution for NACA0012-ADO Airfoil at M = 0.85, $\alpha = 0^{\circ}$.

SYN83 OPTIMIZATION

SYN83 C-mesh (768x128) about NACA0012-ADO.

SYN83 OPTIMIZATION

SYN83 Results (C_d in counts).

	Airfoil	C_d	ΔC_d
Seed	NACA0012-ADO	456.34	_
Design	SYNA	103.71	-352.63
Seed	SEEDB	101.79	-354.55
Design	SYNB	79.31	-377.03

FLO82 Solution for SYNB Airfoil at M = 0.85, $\alpha = 0^{\circ}$.

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015

FLO82 Convergence Histories at M = 0.85, $\alpha = 0^{\circ}$.

FLO82 Convergence Histories at M = 0.85, $\alpha = 0^{\circ}$.

FLO82 CROSS-ANALYSIS

FLO82 Drag Assessment (C_d in counts).

Airfoil	N256	N512	N1024	N2048	∞	ΔC_d
NACA0012-ADO	470.19	470.09	471.13	471.23	471.27	-
SYNA	153.78	123.24	119.03	118.34	118.21	-353.06
SEEDB	111.04	98.98	97.68	96.85	95.42	-375.85
SYNB	109.25	86.87	84.68	84.50	84.48	-386.79
NADOT101	487.50	488.20	488.48	488.58	488.62	+17.35
SYNBT101	122.22	99.20	96.75	96.64	96.63	-374.64

Note: 1% Increase in Thickness Increases Drag:

- NACA0012-ADO Airfoil by 3.68%
- SYNB Design by 14.38%.

CARRIER-DESTERAC AIRFOIL (G)

FLO82 Solution, Carrier-Desterac Airfoil (G), M = 0.85, $\alpha = 0^{\circ}$.

BISSON-NADARAJAH AIRFOIL (S)

FLO82 Solution, Bisson-Nadarajah Airfoil (S), M = 0.85, $\alpha = 0^{\circ}$.

GSA STUDY

- GSA Sub-Space Spanned By 3 Airfoils
 - Gerald's, Siva's & Andrew's Optimimum Airfoils
- Geometric RMS Distances Between GSA Airfoils
 - GS: 0.0258890
 - GA: 0.0328760
 - SA: 0.0096097
- GSA Triangle Interior Angles
 - ∠G: 12.9886°
 - $\angle S: 129.7516^{\circ}$
 - ∠A: 37.2598°

GSA FLO82 Results, M = 0.85, $\alpha = 0^{\circ}$.

	G_{WT}	S_{WT}	A_{WT}	$C_{d\infty}$	X_{TRI}	Y_{TRI}
Α	0.00	0.00	1.00	39.189621	0.03203	0.00739
	0.00	0.25	0.75	~37.0	0.03050	0.00554
	0.00	0.50	0.50	~37.0	0.02896	0.00369
	0.00	0.75	0.25	40.531373	0.02743	0.00185
S	0.00	1.00	0.00	45.656136	0.02589	0.00000
	0.25	0.00	0.75	43.724493	0.02403	0.00554
	0.25	0.25	0.50	39.300977	0.02249	0.00369
	0.25	0.50	0.25	40.930957	0.02095	0.00185
	0.25	0.75	0.00	44.367019	0.01942	0.00000
	0.50	0.00	0.50	44.688405	0.01602	0.00369
	0.50	0.25	0.25	41.051787	0.01448	0.00185
	0.50	0.50	0.00	42.651239	0.01294	0.00000
	0.75	0.00	0.25	39.288289	0.00801	0.00185
	0.75	0.25	0.00	37.520335	0.00647	0.00000
	0.90	0.00	0.10	34.978658	0.00320	0.00074
*	0.90	0.10	0.00	33.911086	0.00259	0.00000
	0.95	0.00	0.05	34.777423	0.00160	0.00037
	0.95	0.05	0.00	34.142484	0.00130	0.00000
G	1.00	0.00	0.00	35.818186	0.00000	0.00000

GSA FLO82 Solutions, Iso-A Contours, M = 0.85, $\alpha = 0^{\circ}$.

GSA FLO82 Solutions, Iso-S Contours, M = 0.85, $\alpha = 0^{\circ}$.

FLO82 Solutions, M = 0.85, $\alpha = 0^{\circ}$.

FLO82 Solutions, Level View of Valley, M = 0.85, $\alpha = 0^{\circ}$.

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 25

ADO-DG CASE-1 SUMMARY

- Optimizations Yield Pathological Designs
 - Small Geometric Changes \Rightarrow Large Solution Deltas
- Non-Unique Solutions at Design Point
 - Lifting (±) Solutions for Symmetric Airfoils at $\alpha=0^\circ$
- Convergence Issues with Flow & Adjoint Solvers
 - Forcing Symmetric Solutions Helps
- Shock-Free Design Still Not Found
 - The GSA Airfoils Are Close

ADO-CRM-WING MODEL PROBLEM

• ADO-DG Case 4 General Statement

- Minimize Drag at Fixed Lifting Condition(s)
- $Re = 5.0 \times 10^6$
- $C_M \geq -0.17$ at $C_L = 0.50$ & M = 0.85
- Maintain or Exceed Internal Volume of Baseline Wing
- Case 4.1 Single-Point - $M = 0.85, C_L = 0.50$
- Case 4.2 Triple-Point C_L Sweep - M = 0.85, $C_L = [0.45, 0.50, 0.55]$, WT = [1, 2, 1]
- Case 4.3 Triple-Point Mach Sweep $-M = [0.84, 0.85, 0.86], C_L = 0.50, WT = [1, 2, 1]$

ADO-CRM-WING MODEL PROBLEM

• ADO-CRM-Wing Reference Quantities

- -Sref/2 = 3.407014, Cref = 1.0, b/2 = 3.75820
- -Xref = 1.2077, Yref = 0.0, Zref = 0.007669

• SYN107 Optimizations

- Constrained Lifting Condition(s) \circ Active Adjustment of α During Convergence \circ Includes dC_D/dC_L Terms in Gradient Formulation
- Added Pitching-Moment Penalty \circ Sufficient to Achieve C_M Constraint
- Constrained Airfoil Area Distribution
 Over-Constraint on Wing Volume
 More Representative of Practice
- Omits Eddy Viscousity Derivatives

SYN107 OPTIMIZATIONS

- SYN107 Optimization Require ~ 2.3 Hours
 - Per Design Point, Per 100 Design Cycles
 - 2046 Design Variables; (2x31x33) Cubic B-Spline CPs
 - Initial & Every 10th Design Cycle
 - o 240 Iters for Analysis
 - \circ 160 Iters for dC_D/dC_L , dC_M/dC_L & $dC_L/d\alpha$
 - 240 Iters for Adjoint
 - Otherwise
 - 20 Iters for Analysis & Adjoint
- SYN107 Analyses Require ~ 4.2 Minutes
 - Per Flow Condition (200 Iters)
 - Run as Alpha or Mach Sweeps
 - Grid: (256x64x48) C-Mesh
- Parallel Execution on 4 Cores Deskside Computer
 - Intel i7-970 CPU at 3.2 GHz; 2011-Q1
- \bullet Current Computers \sim 5X Faster

ADO-DG CASE 4: BASELINE WING

- Design Pt.: M = 0.85, $C_L = 0.50$, $Re = 5.0 \times 10^6$
- Polar: $C_L = [0.45, 0.50, 0.55]$
- **DragRise:** M = [0.84, 0.85, 0.86]
- Comparisons
 - Overlaid Pressure Distributions

ADO-DG CASE 4.1: Single-Point

- M = 0.85, $C_L = 0.50$, $Re = 5.0 \times 10^6$
- Design Cycle Histories
 - Drag & Pitching Moment
- Baseline .vs. Final Design Comparisons
 - Overlaid Pressure Distributions
 - Side-by-Side Upper-Surface Isobars
 - Overlaid Spanload Distributions

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 35

COMPARISON OF UPPER SURFACE CONTOURS ADODG-CRM CASE 4.1 OPTIMIZATION REN = 5.00, MACH = 0.850

(Contours at 0.05 Cp)

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 37

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.1 OPTIMIZATION REN = 5.00, MACH = 0.850

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 38

ADO-DG CASE 4.2: Triple-Point C_L

- M = 0.85, $C_L = [0.45, 0.50, 0.55]$, $Re = 5.0 \times 10^6$
- Design Cycle Histories, All 3 Conditions
 - Drag & Pitching Moment
- Baseline .vs. Final Design Comparisons
 - Overlaid Pressure Distributions
 - Overlaid Spanload Distributions

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.2 OPTIMIZATION REN = 5.00, MACH = 0.850

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 42

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.2 OPTIMIZATION REN = 5.00, MACH = 0.850

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 44

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.2 OPTIMIZATION REN = 5.00, MACH = 0.850

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 46

ADO-DG CASE 4.3: Triple-Point M

- M = [0.84, 0.85, 0.86], $C_L = 0.50$, $Re = 5.0 \times 10^6$
- Design Cycle Histories, All 3 Conditions
 - Drag & Pitching Moment
- Baseline .vs. Final Design Comparisons
 - Overlaid Pressure Distributions
 - Overlaid Spanload Distributions

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.3 OPTIMIZATION REN = 5.00, MACH = 0.840

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 51

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.3 OPTIMIZATION REN = 5.00, MACH = 0.850

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 53

COMPARISON OF SPANLOAD DISTRIBUTIONS ADODG-CRM CASE 4.3 OPTIMIZATION REN = 5.00, MACH = 0.860

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 55

ADO-DG CASE 4 RESULTS

- M = 0.85, $C_L = 0.50$, $Re = 5.0 \times 10^6$
- Comparison of Baseline & Final Designs
 - Tabulated Data
 - Overlaid Pressure Distributions
- Drag Polars; Alpha Sweeps
- Drag Rises; Mach Sweeps

ADO-DG CASE 4 RESULTS

Baseline ADO-CRM-Wing.					
M	C_L	$C_D cor$	$C_M cor$		
0.84	0.50	0.02092	-0.18114		
0.85	0.45	0.01906	-0.16710		
0.85	0.50	0.02149	-0.18482		
0.85	0.55	0.02443	-0.20340		
0.86	0.50	0.02249	-0.19087		

Case 4.1 Optimum Wing.					
M	$M \mid C_L \mid C_D cor \mid \Delta C_D \mid C_M cor$				
0.85	0.50	0.02062	-0.00087	-0.16750	

ADO-DG CASE 4 RESULTS

[
Case 4.2 Optimum Wing.						
M	C_L	$C_D cor$	ΔC_D	$C_M cor$		
0.85	0.45	0.01861	-0.00045	-0.16330		
0.85	0.50	0.02064	-0.00085	-0.17855		
0.85	0.55	0.02318	-0.00125	-0.19548		

Case 4.3 Optimum Wing.						
M	C_L	$C_D cor$	ΔC_D	$C_M cor$		
0.84	0.50	0.02056	-0.00036	-0.17578		
0.85	0.50	0.02066	-0.00083	-0.17801		
0.86	0.50	0.02096	-0.00153	-0.18294		

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 61

Jameson & Vassberg, AIAA Sci-Tech, Kissimmee FL, January 2015 62

ADO-DG CASE 4 SUMMARY

- Optimizations Yield Designs with Near Theoretical Minimum Drag
 - Essentially No Shock Drag
 - Near Minimum Induced Drag
 - Near Minimum Profile Drag per Thickness Distribution
- Case 4.1 Single-Point Design
 - Exhibits Poor Off-Design Performance
- Case 4.2-4.3 Triple-Point Designs
 Relinquished < 0.5 counts at Cruise Condition
- Multi-Point Optimizations Clearly Improve Off-Design Characteristics

Select ADO-DG Case Studies in Aerodynamic Design Optimization

Antony Jameson

 T. V. Jones Professor of Engineering Dept. Aeronautics & Astronautics Stanford University Stanford, CA 94305-3030, USA

John C. Vassberg

Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA

Invited Presentation

AIAA Sci-Tech Conference Kissimmee, FL 5 January, 2015