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Multigrid Solution of the Navier-Stokes
Equations on Triangular Meshes
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A new Navier-Stokes algorithm for use on unstructured triangular meshes is presented. Spatial discretization
of the governing equations is achieved using a finite-element Galerkin approximation, which can be shown to
be equivalent to a finite-volume approximation for regular equilateral triangular meshes. Integration to steady
state is performed using a multistage time-stepping scheme, and convergence is accelerated by means of implicit
residual smoothing and an unstructured multigrid algorithm. Directional scaling of the artificial dissipation and
the implicit residual smoothing operator is achieved for unstructured meshes by considering local mesh
stretching vectors at each point. The accuracy of the scheme for highly stretched triangular meshes is validated
by comparing computed flat-plate laminar boundary-layer results with the well known similarity solution and by
comparing laminar airfoil results with those obtained from various well established structured, quadrilateral-
mesh codes. The convergence efficiency of the present method is also shown to be competitive with those
demonstrated by structured quadrilateral-mesh algorithms.

I. Introduction

THE use of unstructured triangular meshes in two dimen-
sions and tetrahedral meshes in three dimensions has

proven valuable for computing inviscid compressible flow
about complex geometries.1"3 Unstructured meshes also pro-
vide a natural setting for the use of adaptive meshing, which
has been shown to provide large increases in efficiency and
accuracy.3-4 However, triangular and tetrahedral meshes have
seldom been employed for computing viscous flows. Solutions
of the ful l Navier-Stokes equations on triangular meshes can
be found in the literature.3-5~7 However, these are often limited
to low-Reynolds-number flows, and/or the accuracy and effi-
ciency of these methods is inferior to that of existing quadri-
lateral mesh solvers. Consequently, numerous attempts at
solving viscous flows for nonsimple configurations have re-
sorted to hybrid structured-unstructured meshing strategies,
where structured quadrilateral meshes are employed in the
viscous regions, and unstructured meshes are employed in the
inviscid regions. Though such strategies have proven valuable
for computing flows over various types of configurations,8

they lack the generality required for arbitrarily complex ge-
ometries. The use of completely unstructured meshes in both
viscous and inviscid flow regions, as proposed in Ref. 9, holds
the promise of producing a more general and flexible method
for computing viscous flows over truly arbitrary configura-
tions and provides an ideal setting for the use of adaptive
meshing techniques through the viscous layers as well as in
regions of strong viscous-inviscid interactions.

For high-Reynolds-number flows over streamlined bodies,
viscous effects are confined to thin boundary-layer and wake
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regions. As the Reynolds number increases, the viscous re-
gions generally become thinner, and the gradients in the nor-
mal direction within these regions increase. To accurately
resolve such flows, a small mesh spacing is required within the
viscous regions. Since the flow gradients are predominantly in
the normal direction, it proves economical to refine the mesh
only in this direction and to retain a large spacing in the
tangential direction. This approach is often employed for
quadrilateral meshes and may result in rectangular cells in the
viscous regions with aspect ratios up to 10,000:1 for Reynolds
numbers of 10 x 106. Clearly, for such cases, refinement in
both normal and tangential directions would be prohibitively
expensive. Thus, a directional refinement or stretching of the
mesh must be employed for triangular meshes as well. This
results in highly skewed triangles in the viscous regions, which
may potentially degrade the accuracy and efficiency of the
scheme.

In this work, a Navier-Stokes solver for unstructured trian-
gular meshes is described. A previously developed unstruc-
tured multigrid algorithm10 is employed to accelerate the con-
vergence of the solution to steady state. Our objective is to
demonstrate that by carefully tailoring the scheme for direc-
tionally stretched meshes, accurate and efficient solutions can
be obtained, which are competitive with those produced
by current state-of-the-art, structured, quadrilateral-mesh
Navier-Stokes solvers. The solutions presented in this paper
consist of laminar flow cases computed on regular stretched
triangulations. Although these meshes exhibit an underlying
Cartesian structure, as they have been derived from structured
quadrilateral meshes, they are treated as completely unstruc-
tured data sets by the flow solver. Thus, the solution process
does not rely in any way on the regularity of the meshes. It is
clear, however, that such meshes may lead to higher solution
accuracy than may otherwise be expected wi th t ru ly irregular
unstructured meshes. However, the present effort represents
the necessary first step for validating the proposed algorithm
and establishing the feasibility of computing viscous flows on
highly stretched unstructured meshes which contain a smooth
variation of elements through the viscous and inviscid regions.
Further investigations will be required to determine the precise
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effect of mesh irregularities on the accuracy of the solution in
the viscous regions.

II. Discretization of the Governing Equations
In conservative nondimensional form, the full Navier-

Stokes equations read

dw df, dg,
dt + dx + dy dx dy (D

where H' is the solution vector and/t and gc are the Cartesian
components of the convective fluxes
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In the above equation, p represents the fluid density, u and v
the .Y and y components of fluid velocity, E the total energy,
and p is the pressure which can be calculated from the equa-
tion of state of a perfect gas
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v2)

p = (y-

The viscous fluxes /,. and gY are given by

0

(3)
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where a represents the stress tensor and q the heat flux vector,
which are given by the constitutive equations for a Newtonian
fluid

axx = 2/zwA. - 2/3ju(w.Y + v v )

a = oyx = + v.v)

7 n d(p/p)
dx 7 - 1 Pr dx

7 fi d(p/p)
y - 1 Pr dy (5)

7 is the ratio of specific heats of the fluid, M^ the freestream
Mach number, Re^ the Reynolds number based on the airfoil
chord, and Pr the Prandtl number. The coefficient of viscosity
ju varies with the temperature of the fluid and is calculated as

= KT'0.72 (6)

where K is a constant. Since JJL and Tare both nondimensional-
ized with respect to their freestream values, the constant K can
be set equal to 1. Equation (1) represents a set of partial
differential equations, which must be discretized in space in
order to obtain a set of coupled ordinary differential equa-
tions, which can be then be integrated in time to obtain the
steady-state solution.

The spatial discretization procedure begins by storing flow
variables at the vertices of the triangles. The stress tensor a and
the heat flux vector q must be calculated at the centers of the
triangles. This is achieved by computing the required first
differences in the flow variables [(from Eqs. (5)] at the triangle
centers. For a piecewise linear approximation of the flow

variables in space, the first differences are constant over each
triangle and may be computed as

A V"dx

-i£ ! + WA.
(7)

Wy ~ A\\ dy y ~ A VV

1 V^ VVA. + ! + VI
(8)

where the summation over k refers to the three vertices of the
triangle and is cyclic such that vv4 = w\ and y* = y\. The flux
balance equations are obtained by a Galerkin finite-element-
type formulation. The Navier-Stokes equations are first
rewritten in vector notation

dw
— + V
dt

\AyMoo
— L- (9)

The /Y is a dyadic (second-order tensor), the Cartesian compo-
nents of which are given by the fc and gc convective f lux
vectors defined in Eq. (4). Similarly, /v and gr represent the
Cartesian components of the viscous flux dyadic f,.. Multiply-
ing by a test function 0, and integrating over physical space
yields

</>w dxdy +

0V FY (10)

Integrating the flux integrals by parts and neglecting boundary
terms gives

F, -

FY dxdy (H)

In order to evaluate the flux balance at a vertex P, <£ is taken
as a piecewise linear function which has the value 1 at node P
and vanishes at all other vertices. Therefore, the integrals in
the above equation are nonzero only over triangles which
contain the vertex P and thus define the domain of influence
of node P as shown in Fig. 1. To evaluate the above integrals,
we make use of the fact that <t>x and <£,. are constant over a
triangle and may be evaluated as per Eqs. (7) and (8). The

Fig. 1 Domain of influence of node P and equivalent control volume
for a finite-volume approximation to the convective terms.
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Fig. 2 Equivalent control volume for a finite-volume approximation
to the viscous terms.

convective fluxes Fc are taken as piecewise linear functions in
space, and the viscous fluxes Fv are piecewise constant over
each triangle since they are formed from first derivatives in the
flow variables. Evaluating the flux integrals with these as-
sumptions, one obtains

Of

^ ]w dxdy -

(12)

where the summations are over all triangles in the domain of
influence as shown in Fig. 1. The AAK represents the directed
(normal) edge length of the face of each triangle on the outer
boundary of the domain; F^ and F? are the convective fluxes
at the two vertices at either end of this edge, and F* is the
viscous flux in triangle e. If the integral on the left side of Eq.
(12) is evaluated in the same manner, the time derivatives
become coupled in space. Since we are not interested in the
time accuracy of the scheme, but only in the final steady-state
solution, we employ the concept of a lumped mass matrix.
This is equivalent to assuming w to be constant over the
domain of influence while integrating the left side. Hence, we
obtain

+ F. V7A/,, A 3 (is)

where the factor of '/» is introduced by the integration of </>
over the domain, and 0;, represents the surface area of the
domain of influence of P. For the convective fluxes, this
procedure is equivalent to the vertex finite-volume formula-
tion described in Refs. 1 and 10. For the viscous fluxes, in the
case of equilateral triangles, this formulation can be shown to
be equivalent to a finite-volume formulation where the control
volume is taken as the hexagonal cell formed by joining the
centroids of all triangles with a vertex at P as shown in Fig. 2.
For a smoothly varying regular triangulation, the above for-
mulation is second-order accurate.

III. Artificial Dissipation
In principle, the physical viscous terms of the Navier-Stokes

equations are capable of providing the numerical scheme with
the dissipative property necessary for stability and capturing
discontinuities. However, for high-Reynolds-number flows,
this can only be achieved by resorting to extremely small mesh
spacings throughout the domain. Thus, in practice, it is neces-
sary to introduce artificial dissipative terms to maintain stabil-
ity in the essentially inviscid portions of the flowfield and to
efficiently capture discontinuities. These additional dissipative

terms must be carefully constructed to ensure that the accu-
racy of the scheme is preserved both in the inviscid region of
the flowfield where the convective terms dominate as well as in
the boundary-layer and wake regions where the artificial dissi-
pation terms must be much smaller than the physical viscous
terms. Previous Navier-Stokes solutions on highly stretched
structured meshes11"13 have demonstrated the need for differ-
ent scalings of the artificial dissipation terms in the streamwise
and normal directions within the regions of viscous flow.
However, for unstructured meshes, directional scaling is sig-
nificantly more difficult to achieve since no mesh coordinate
lines exist. In fact, unstructured meshes have traditionally
been considered to be truly multidimensional, isotropic con-
structions with no preferred directions. However, as stated
previously, the efficient solution of high-Reynolds-number
viscous flows requires the use of meshes with highly stretched
elements in the boundary-layer and wake regions since these
physical phenomena are highly directional in nature. For such
meshes, even in the unstructured case, a direction and magni-
tude of stretching can be defined for each mesh point, as
shown in Fig. 3. This stretching vector, denoted as s, need not
necessarily line up with any of the mesh edges. For the meshes
employed in this paper, which are directly derived from struc-
tured quadrilateral meshes by splitting each quadrilateral into
two triangles, the stretching magnitude and direction may be
taken as the aspect ratio and the major axis of the generating
quadrilateral element for each triangular element, respec-
tively. In the more general case, the generation of directionally
stretched unstructured meshes9'14 requires the definition of
local stretching vectors thoughout the flowfield. These can in
turn be used to scale the dissipation terms. It is important to
note that these stretching vectors represent grid metrics which
do not depend on the flow solution.

The artificial dissipation operator on unstretched, unstruc-
tured meshes has previously been constructed as a blend of
undivided Laplacian and biharmonic operators in the flow-
field. Since the biharmonic operator may be viewed as a
Laplacian of a Laplacian, the dissipation operator may be
reformulated as a global undivided Laplacian operating on a
blend of the flow variables and their second differences:

D(w) =
where

uyy

- K 4 V 2 W

(14)

(15)

In the above equations, ft represents the area of the control
volume, which is of order Ajc2, and V 2w denotes the undi-
vided Laplacian of w. The first term in the above equation
constitutes a relatively strong first-order dissipation term,
which is necessary to prevent unphysical oscillations in the
vicinity of a shock. To preserve the second-order accuracy of
the scheme, this term must be turned off in regions of smooth

Fig. 3 Definition of a local stretching vector for unstructured trian-
gular meshes and coordinate system associated with stretching direc-
tion.
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flow. This is accomplished by evaluating K2 at mesh point / as dimensions, i.e.,

£
A ' - 1

[Pk -Pi]

[Pk+Pi]
(16)

Hence K2 is proportional to an undivided Laplacian of the
pressure, which is constructed as a summation of the pressure
differences along all edges meeting at node /, as depicted in
Fig. 3. This construction has the required property of being of
order unity near a shock and small elsewhere. The K2 is an
empirically determined coefficient which is taken as 0 for sub-
critical flows and as 1/2 for transonic and supersonic flows. In
Eq. (14), the overall scaling of the dissipation is performed by
the factor a, which has previously been taken as proportional
to the maximum eigenvalue of the Euler equations for inviscid
flow calculations.4 Directional scaling of the dissipation may
thus be achieved by replacing Eq. (14) by

D(w) = (17)

where a, and a2 represent the different scalings in the £ and rj
directions, respectively. Here, £ denotes the direction of the
mesh stretching and rj the direction normal to £. Appropriate
expressions for oi\ and ce2 remain to be determined as well as
the discretization procedure for the above operator on un-
structured meshes.

On structured meshes, the dissipation is often scaled by the
maximum eigenvalue of the Euler equations in each mesh
coordinate direction, which is given by

+ c] Ar? X, = [ | v | + c] (18)

where */, v , and A£, Ar; represent the local fluid velocity
components and the mesh spacings in the two mesh coordinate
directions, and c denotes the local speed of sound. However,
for efficient multigrid convergence, a more even distribution
of the dissipation is required in the two mesh coordinate
directions, and the above scaling is replaced by 1 1* 1 3

where

and

</>(r) = 1 + r

[\u + c] Ar?

(19)

(20)

(21)

On unstructured meshes, we begin by constructing an
isotropic value of the maximum eigenvalue at each mesh point
as

X = u x d(' + c df (22)

where the integration is performed around the boundary of
the control volume for the particular mesh point being consid-
ered. The discrete approximation to the above integral yields
the f inal form for X

X = (23)

where AA;.^ and A,v ,\K represent the x and y increments along
the outer edge AB of element e, as shown in Fig. 1, and uAfi,
v.,/,, and CAH represent averaged values along the edge AB. By
considering the equivalent integration around the control vol-
ume on a structured quadrilateral mesh, it can be seen that X
approximates the sum of the eigenvalues in the two space

X = Xt + X)? (24)

Furthermore, the magnitude of the stretching vector s on the
unstructured mesh can be considered to be closely related to
the cell aspect ratio. Thus, by analogy with the structured
mesh case

X,
(25)

where s represents the magnitude of s, and the second approx-
imation assumes that the magnitude of the speed of sound c is
much greater than the streamwise and normal velocities u and
v in the viscous flow regions. Thus, Eqs. (24) and (25) permit
an estimate of the values of the maximum eigenvalues in the
directions parallel and normal to the local mesh stretching
vector, given the values of X and 5. From Eqs. (19-21), the a\
and 0:2 coefficients of Eq. (17) are constructed as

(26)

Next, the discretization of the scaled Laplacian of Eq. (17) on
unstructured meshes must be considered. Previously, for in-
viscid flows,1'4 the unsealed Laplacian of Eq. (14) was approx-
imated as an accumulated edge difference in computational
space, i.e.,

1
- I f / ] (27)

where k = 1,... ,n represents the n neighbors of node / , and the
difference is taken along all edges meeting at node /. For a
Cartesian grid, this reduces to the familiar five-point Lapla-
cian finite-difference formula. Equation (17) can easily be
approximated on a Cartesian mesh aligned with the £ and r?
coordinate directions, simply by multiplying the constructed
second differences in the £ and r? directions by a\ and «2,
respectively. Alternatively, this can be obtained by considering
the finite-volume approximation to a Laplacian on a Cartesian
mesh in a stretched computational space, where \fa~\ stretching
is applied in the £ direction, and \la2 stretching is applied in
the r? direction. By considering the equivalent stretching of
computational space for unstructured meshes, a finite-volume
approximation to the Laplacian yields the discretization for-
mula for the directionally scaled dissipation operator15

-I- a2sin20*] (28)

where 0A represents the angle between the k\\\ mesh edge at
node /, and the principal stretching direction £, as shown in
Fig. 3. From the above equation, it can be seen that if the k\\\
mesh edge coincides with the £ or r? directions, then the differ-
ence along that edge is multiplied by ai or a2, respectively, and
if ai = «2, then the above discretization reduces to the
isotropic accumulated edge difference previously employed.
Since in practice a} and a2 vary throughout the mesh, Eq. (28)
is replaced by

["A ~ Uf] =
Ak + A-,

where

Ak =

(29)

(30)

and the / and k subscripts refer to variables evaluated at nodes
/ and A', thus ensuring a conservative formulation of the
dissipation operator.
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IV. Integration to Steady State
The discretization of the spatial derivatives transforms Eq.

(1 ) into the set of coupled ordinary differential equations

dvv/
ty——- + [Q(Wi)-D(Wj)] = 0, / = 1,2,3,...,A? (31)

d/

where n is the number of mesh nodes. The residual Q(w)
represents the discrete approximation to the convective fluxes.
The D ( w ) now represents the dissipative terms, i.e., the dis-
crete approximation to the viscous fluxes, as well as the artifi-
cial dissipation terms. These equations are integrated in time
using a five-stage, hybrid, time-stepping scheme given by

A/
-A)

A/
= w{( ) )-cx3^| Q(w(2))-D2

At
'-""o

W" * 1 = w (5 )

where

(32)

= D, =

D2 = A« = /3D(w (2 )) + (1 - ]8) A)

(1-7) D2

w" represents the value of the solution vector at the A?th time
step, and w(</) represents the value at the gth stage within a
time step. The dissipative operator D(w) is evaluated only at
the first , third, and f i f th stages of the scheme and is employed
to construct the subscripted D(j operator, which represents a
linear combination of present and previous evaluations of
D(w). This scheme represents a particular case of a large class
of multistage, time-stepping schemes where the coefficients
are chosen in order to maintain good stability properties when
the viscous terms are dominant and to ensure large damping of
high-frequency errors, which is crucial for a rapidly conver-
gent mult igrid method.11 The values of these coefficients are
taken as

(3 = 0.56 7 - 0.44

and

A.

= 1/4 0 :2=1/6 0-3 = 3/8 a 4 = l / 2 0-5 = 1

Local Time Stepping
Convergence to the steady-state solution may be accelerated

by sacrificing the time accuracy of the scheme and advancing
the equations at each mesh point in time by the maximum
permissible t ime step in that region, as determined by local
stabili ty analysis. Stability limitations due to both the convec-
t ive and diffusive characters of the Navier-Stokes equations
must be considered. The local time step is thus taken as

At = CFL
A/ t .A/ t .

A/ t. + A/v
(33)

where CFL is the Courant number for the particular time-step-
ping scheme, and A/(. and A/,, represent the individual convec-
t ive and viscous time-step limits, respectively. The convective
time-step limit has previously been derived for Euler solutions
on unstructured meshes4 and is given by

n
(34)

where X(., previously denoted simply as X, represents the max-
imum eigenvalue of the inviscid equations averaged around
the boundary of the control volume as given in Eq. (23), and
fi denotes the area of the control volume. The viscous time-
step limit is taken as

(35)

where Kv is an empirically determined coefficient which deter-
mines the relative importance of the viscous and inviscid time-
step limits in the final expression and has been taken as 0.25 in
this work. The Xr represents the maximum eigenvalue of the
diffusive operator of the Navier-Stokes equations, averaged
about the boundary of the control volume. For the structured
mesh case, X,.t and Xr)? in the two mesh coordinate directions
have been derived in Ref. 11. For example,

(36)
ReV \Prp

with a similar expression for Xvr / . If the cross terms are ne-
glected, Xr for unstructured meshes may thus be approximated
as

(37)
ReQ

where the integration is performed along the boundary of the
control volume. In discrete form, the expression for Xv be-
comes

Re Pr PAB
(38)

where IJLAH and p.\B represent averaged values of viscosity and
density along the outer edge AB of each element e (see Fig. 1).

B. Implicit Residual Smoothing
The stability range of the basic time-stepping scheme can be

increased by implicitly smoothing the residuals. Thus the orig-
inal residuals R may be replaced by the smoothed residuals R
by solving the implicit equations

(39)

at each mesh point / , where V2/?/ represents the undivided
Laplacian of the residuals, and e is the smoothing coefficient.
For highly stretched structured meshes, the use of individual
smoothing coefficients in the £ and 17 mesh coordinate direc-
tions, which vary locally throughout the mesh, has been found
to result in significantly improved convergence rates.11-13 The
use of locally varying smoothing coefficients has the effect of
making the scheme more implicit in the direction normal to
the boundary layer, or normal to the mesh stretching direc-
tion, and less implicit in the tangential direction. The imple-
mentation of implicit residual smoothing with locally varying
coefficients on unstructured meshes is accomplished by revvrit-
ting Eq. (39) as

Ri = R,•+ ttR,-....+ e n £ / . . (40)
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Fig. 4 Stretched triangular mesh about a NACA 0012 airfoil em-
ployed for the low-Reynolds number calculations; number of
nodes = 20,800, number of triangles = 41,600.

where £ and r? now represent the directions tangential and
normal to the local mesh stretching vector, as described previ-
ously. By analogy with the structured mesh case of Ref. 11 and
making use of Eq. (25), the smoothing coefficients are taken

u = max -
CFL

e,; = max

4[\CFL* s + 1

1 I / CFL s
——— ———6

4 \CFL*s + 1

- 1 , 0 (41)

(42)

where CFL and CFL* are the Courant numbers of the
smoothed and unsmoothed schemes, respectively, 5 denotes
the magnitude of the mesh stretching vector, and c/> is given by
Eq. (20). Since Eq. (40) now contains a directionally scaled
Laplacian, it can be discretized on an unstructured mesh in a
manner analogous to that employed for the directionally
scaled dissipation operator as given in Eq. (28). For economy,
the resulting set of algebraic equations are solved only approx-
imately by performing two Jacobi iterations.

C. MuHi"rid Algorithm
The idea of a multigrid algorithm is to accelerate the conver-

gence of the fine mesh solution by efficiently damping out the
low-frequency error components by means of time stepping on
coarser meshes. A multigrid method for unstructured meshes
has previously been developed for inviscid flow calculations.10

I t assumes the various coarse and fine meshes of the sequence
to be completely independent from one another and computes
the patterns for transferring the flow variables, corrections,
and residuals back and forth between the various meshes in a
preprocessing operation where an efficient tree-search al-
gorithm is employed. For viscous flow calculations, a full
multigrid (FMG) algorithm is employed where the initial flow-
field on the fine grid is obtained by interpolating a flow
solution, which has been converged on the previous coarser
grid with a small number (10-20) of multigrid cycles. Better
convergence and additional robustness can also be obtained if
the previously employed V cycle is replaced by a W cycle,
which performs one time step on each mesh when proceeding
from fine to coarse meshes and no time stepping but merely
prolongation of the corrections when proceeding from coarse
grids to fine grids. It also proves useful to implicitly smooth
the corrections after the prolongation operation when pro-
ceeding from coarse to fine meshes. The constant coefficient
implicit smoothing operator of Eq. (39) is employed for this

operation using a value of e = 0.2, and the resulting equations
are solved approximately using two Jacobi iterations.

V. Results
The intent of this work is to provide a validation of the basic

algorithm described above for triangular meshes and to
demonstrate that accurate and efficient solutions can be ob-
tained on triangular meshes with highly stretched elements.
This is best accomplished by computing solutions wi th the
present scheme on triangular meshes, which are directly
derived from structured quadrilateral meshes, and comparing
the accuracy and efficiency of these solutions with those ob-
tained on equivalent quadrilateral meshes with proven struc-
tured-mesh Navier-Stokes solvers.11 13 Although the triangular
meshes exhibit an underlying structure, they are treated as an
unstructured data set by the flow solver. The mesh stretching
vectors, which are used to scale the artificial dissipation and
residual smoothing operators, are directly derived from the
underlying structured mesh. This, however, does not represent
an essential limitation of the present scheme since it has been
shown how mesh stretching vectors can be defined and em-
ployed in the mesh generation phase for arbitrary unstruc-
tured meshes.9-14

A. Low Reynolds Number Cases
The first series of test cases involve very low Reynolds

number flows over a NACA0012 airfoil, which have been
computed by various authors for the GAMM workshop on the
Solution of Compressible Navier-Stokes Flows.16 For these
cases, the thin-layer assumption does not hold, and the flow is
dominated by viscous effects, thus, providing a means of
validating the discretization of the full Navier-Stokes viscous
terms implemented in this work. The mesh employed for these
calculations is depicted in Fig. 4. It contains 20,800 points and
41,600 triangles and is derived from a 320x64 structured
quadrilateral C mesh with 192 points on the airfoil, and 64
points in the wake. The far-field boundary is located 15 chords
out from the airfoil, and the mesh spacing in the normal
direction at the wall is 0.002 chords resulting in relatively
lowcell aspect ratios of the order of 10:1 on the airfoil surface
and 100:1 in the wake region. For all these cases, a constant
temperature wall boundary condition is prescribed along the
airfoil surface where the temperature is taken as the adiabatic
freestream temperature.

Fig. 5 Much number contours of computed solution and calculated
lift and drag coefficients due to pressure forces for case 1:
Mach = 0.8, Re = 73, Incidence - 10 deg.
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In the first test case, the Mach number is 0.8, the incidence
is 10 deg, and the Reynolds number is 73. The Mach number
contours of the computed solution are depicted in Fig. 5,
where a rapid growth of the boundary layer along the upper
airfoil surface is observed, and locally supersonic flow is at-
tained only in a small pocket outside the edge of the viscous
layer on the upper surface. This low Reynolds number flow
provides a test of the scheme near the Stokes limit of extremely
viscous flow. The computed flowfield pattern and the lift and
drag values are wi th in the same range as the results reported in
the workshop.16 A reduction of the density residuals of four
orders of magnitude over 200 multigrid cycles was achieved
for this case employing five meshes in the multigrid sequence
as shown in Fig. 8.

In the next test case, the Mach number is 0.8, the incidence
is 10 deg, and the Reynolds number is increased to 500. The

Fig. 6 Mach number contours of computed solution and calculated
li f t and drag coefficients due to pressure forces for case 2:
Mach = 0.8, Re = 500, incidence - 10 deg.

100 200 300 400 500

Number of Cycles
600

Fig. 8 Convergence rate as measured by the rms average of the
density residuals vs the number of multigrid cycles on the finest mesh
for the three low Reynolds number cases: case 1: Mach = 0.8,
Re = 73, incidence = 10 deg; case 2: Mach = 0.8, Re = 500, inci-
dence = 10 deg; case 3: Mach = 2.0, Re = 106, incidence = 10 deg.

Fig. 7 Density contours of computed solution and calculated l i f t and
drag coefficients due to pressure forces for case 3: Mach = 2.0,
Re = 106, incidence = 10 deg.

Fig. 9 Stretched triangular mesh employed for the flat-plate
boundary-layer calculation; number of nodes = 5913, number of tri-
angles = 1,1824.

Mach number contours of the computed solution are given in
Fig. 6. A slower boundary-layer growth, a stronger leading-
edge expansion, and an increased region of supersonic flow is
observed for this higher Reynolds number case. The recom-
pression from supersonic to subsonic flow appears to occur
gradually along the upper edge of the viscous layer. Separa-
tion occurs on the top surface of the airfoil, and a large wake
of low-velocity recirculating flow occurs downstream of the
airfoil. Nevertheless, rapid convergence is achieved with the
multigrid algorithm as shown in Fig. 8 where a reduction of 10
orders of magnitude of the density residuals is achieved in 200
cycles. The computed values of l i f t and drag for this case
compare well with those reported in Refs. 11 and 16.

The third case consists of a supersonic low-Reynolds-num-
ber flow where the Mach number is 2, the incidence is 10 deg,
and the Reynolds number is 106. This represents a standard
test case, which has received wide attention in the l i terature
and for which experimental data is available. The density
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contours of the computed flowfield are depicted in Fig. 7
where a strong bow shock is observed, which tends to weaken
in the far field due to curvature. These computed density
contours compare qualitatively with the experimental density
contours and numerical solutions given in Refs. 5, 11, and 16,
and the computed lif t and drag values are within the same
range as those reported in these references. For this case, the
density residuals were reduced by five orders of magnitude
over 200 multigrid cycles as shown in Fig. 8.

B. Flal-Plale Boundary Layer
An assessment of the accuracy of the scheme may be per-

formed by examining the ability of the method to reproduce
the well known, compressible, boundary-layer solution over a
thermally insulated flat plate. The mesh employed for the
boundary-layer calculation is shown in Fig. 9. It represents a

•» Computed Solution

—— Exact Solution

-0.40 0.00 0.40 0.801.20 1.60 2.00

Fig. 10 Comparison of computed and exact stream wise velocity in
the boundary layer at Rex = 3000 in terms of similarity coordinates.

Computed Solution

— Exact Solution

0.40 0.80 1.20 2.00

Fig. 11 Comparison of computed and exact normal velocity in the
boundary layer at Rex = 3000 in terms of similarity coordinates.

Computed Solution

— Exact Solution

0.00 0.80 1.20 1.60 2.00

Fig. 12 Comparison of computed and exact shear stress in the
boundary layer at Rex = 3000 in terms of similarity coordinates.

Computed Solution

- Exact Solution

0.40

5 x

Fig. 13 Comparison of computed and exact shear stress in the
boundary layer at Rex = 3000 using a mesh with 160 points in the
normal direction.

triangulation of a stretched Cartesian grid previously em-
ployed for computing the same problem with a structured
mesh solver.17 The mesh contains 24 points ahead of the plate,
48 points along the plate in the streamwise direction, and 80
points in the normal direction. The upstream boundary is
located two plate lengths ahead of the leading edge, and the
upper far-field boundary is located at a distance of 2.6 plate
lengths. The mesh points are clustered in the streamwise direc-
tion near the leading edge of the plate in order to better resolve
the stagnation point flow in this region. The mesh point spac-
ing at the wall is 0.0016 plate lengths resulting in elements of
aspect ratio 50:1 near the trailing edge of the flat plate. The
computations were performed for a Mach number of 0.8 and
a Reynolds number based on the plate length of 5000. An
exact analytical solution for this flow may be obtained by an
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Computed Solution

- Exact Solution
given by

0.40

Fig. 14 Comparison of computed and exact skin friction along the
plate for a Reynolds number based on the plate length of 5000, and a
Mach number of 0.8.

Fig. 15 Mach number contours of the computed solution for viscous
flow past a NACA 0012 airfoil; Mach = 0.5, Re = 5000, incidence = 0
deg.

application of the Howarth-Dorodnitsyn transformation to
the incompressible Blasius similarity solution.18 The transfor-
mation consists of a rescaling of the coordinate direction
normal to the plate as a function of the local density variation
through the layer:

_p_
J ( ) Poo

(43)

Comparison of computed and exact boundary-layer profiles at
the station x = 0.6 for a plate of length unity where the Rey-
nolds number based on A- is 3000 are shown in Figs. 10-12. The
normalized streamwise and nomal velocities, as well as the
shear stress across the layer are plotted vs the similarity coor-
dinate 17, which varies from 0 to 1 through the layer, and is

(44)

where Y is the transformed vertical coordinate given by Eq.
(43). Excellent agreement between the computed and exact
profiles of streamwise and normal velocity is observed from
Figs. 10 and 11. From Fig. 12, good correlation between the
computed and exact shear stress across the layer is observed.
The slight overprediction of the wall shear stress observed in
this figure, at 77 = 0, could be systematically reduced by fur-
ther refinement of the grid, as seen in Fig. 13, where the same
case has been computed using twice the mesh resolution in the
normal direction. The similarity property of the solution was
also verified by examining the profiles at various different
stations along the length of the plate. Good agreement was
observed except for stations close to the leading edge where
effects of the stagnation point flow are still present and for
stations directly adjacent to the outflow boundary. The skin
friction along the plate is plotted in Fig. 14, showing good
agreement between computed and exact solutions except in the
aforementioned regions.

For the present calculations, the K2 dissipation coefficient
was set to zero since the flow is subcritical. The value of the K4
coefficient was taken as 1/256, which resulted in artificial
dissipation terms, which were roughly two orders of magni-
tude smaller than the physical viscous terms in most regions of
the boundary layer. Thus, for these values of the dissipation
coefficients, the present mesh resolution, which from Figs.
10-12 can be seen to yield approximately 20 points in the
layer, appears to be sufficient for accurately resolving the
boundary layer. A reduction of eight orders of magnitude of
the density residuals was achieved over 300 multigrid cycles
for this case employing a sequence of four meshes. Similar
accuracy could be obtained when the Reynolds number was
raised to 50,000, and the mesh spacing at the wall was reduced
to 0.0005, thus increasing the aspect ratios of the cells but
retaining the same number of mesh points in the boundary
layer. A somewhat slower convergence rate was observed in
this case resulting in a reduction in the residuals of five orders
of magnitude over 300 multigrid cycles.

O
(D

CL

Upper Surface

Lower Surface

/—"

Elemt#: 1
cl : 0.0000

Nnode:21440
cd : 0.0229

Ncyc: 200
cm :-0.0034

Fig. 16 Computed surface pressure distribution and calculated pres-
sure force coefficients for flow past a NACA 0012 airfoil;
Mach = 0.5, Re = 5000, incidence - 0 deg.
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Table 1 Comparison of pressure and viscous drag coefficients and location of separation
point computed by the present scheme.

NACA 0012, Mach = 0.5, Re = 5000, a = 0 deg

Method
Triangle scheme K4 =
Triangle scheme K4 =
Triangle scheme K4 =
Cell-centered scheme

1/256
1/128
1/64
from Ref. 11

Cell-vertex scheme from Ref. 13
Cell-centered scheme
Cell-centered scheme

from
from

Ref.
Ref.

13
13

Grid
320
320
320
320
256
256

512

X

x
X
X
X
X

X

64
64
64
64
64
64
128

CDP

0.0229
0.0228
0.0225
0.0219
0.0227
0.02256
0.02235

CD\ Separation point, %
0.
0,
0.
0.
0,

.0332

.0336

.0344

.0337

.0327
0.03301
0.03299

81.
82.
83.
81.
81
80.
81,

.4
A
A
.9

.9

.4

sa

Upper Surface

Lower Surface

Elemt#: 1 Nnode:21440 Ncyc: 200
cl : 0.0000 cd : 0.0332 cm : 0.0000

Fig. 17 Computed skin friction distribution and calculated viscous
force coefficients for flow past a NACA 0012 airfoil; Mach = 0.5,
Re = 5000, incidence = 0 deg.

C. Symmetric Laminar Airfoil Case
The final test case consists of a NACA0012 airfoil at 0-deg

incidence with a freestream Mach number of 0.5 and a Rey-
nolds number of 5000. The thermally insulated wall boundary
condition is applied by prescribing zero heat flux across the
airfoil surface. This represents a well documented laminar test
case which has been computed independently with various
structured grid codes.11"13 The Reynolds number for this case
approaches the upper limit for steady laminar flow. For this
case, separation occurs near the trailing edge, and a small
symmetric recirculation bubble is formed in the trailing-edge
and near-wake region. The mesh employed for this case is
derived from a 320 x 64 structured quadrilateral C mesh with
192 points on the airfoil and 64 points in the wake. It is similar
in nature to the mesh of Fig. 4, with the exception that
increased stretching is applied near the airfoil surface and in
the wake for better resolution of the thin viscous regions. The
normal mesh spacing at the wall is 0.0002 chords resulting in
cells with aspect ratios of the order of 100:1 along the airfoil.
In the wake region, the element aspect ratios were limited to
100:1. Figure 15 depicts the computed Mach number contours
in the flowfield, where the thin boundary-layer and wake
regions are visible, and the recirculation bubble appears as a
region of low Mach number flow. Plots of surface pressure
and skin friction distributions are given in Figs. 16 and 17,
respectively. For this subcritical case, the values of the artifi-
cial dissipation coefficients were taken as K2 = 0.0, and *4 = I/
256. This resulted in artificial dissipation terms, which were
roughly two orders of magnitude smaller than the physical
dissipation terms in the viscous layer regions of the flow. The

128

64

1 0 100 200 300 400 500 600

Number of Cycles

Fig. 18 Convergence rate as measured by the rms average of the
density residuals vs the number of multigrid cycles on the fine mesh
for various values of the artificial dissipation coefficient /u;
Mach = 0.5, Re = 5000, incidence = 0 deg.

classic tradeoff between accuracy and speed of convergence
was observed for this case by varying the dissipation coeffi-
cient K4 from 1/256 to 1/64. Table 1 gives an estimate of the
accuracy of the solution as measured by the computed values
of pressure drag, viscous drag, and separation location vs
values produced by various structured-quadrilateral-mesh
Navier-Stokes solvers. The variation of the multigrid conver-
gence rate with the change in the dissipation coefficient is
illustrated in Fig. 18. The scheme is robust in that it converges
efficiently over a wide range of K4 values, and has been found
to remain stable for values as low as 1/640. Although the
fastest convergence rate is achieved for a value of *4 = 1/64,
the solution accuracy degrades slightly, the separation point
having shifted from 81.4% to 83.4% chord. For all cases,
convergence to engineering accuracy could be achieved in less
than 100 multigrid cycles, which requires roughly 7 min of
CRAY-2 CPU time. Finally, the same test case was run on a
similar mesh with a normal spacing of 0.00002 chords at the
wall with cell aspect ratios of the order of 1000:1 on the airfoil
surface and in the wake. For a K4 value of 1/64, a reduction of
the density residuals of 4 orders of magnitude over 200 multi-
grid cycles was achieved illustrating the robustness of the code
in dealing with the extremely stretched elements, which are
necessary for solving higher Reynolds number turbulent
flows.

VI. Conclusions
A new Navier-Stokes solver for use on unstructured triangu-

lar meshes has been validated by comparing various laminar
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flow results about simple geometries with well established
numerical and analytical solutions. The accuracy and conver-
gence efficiency of the present scheme were found to be com-
petitive with various well-known, structured, quadrilateral-
mesh, viscous-flow solvers for laminar flow cases. The present
code requires approximately 0 . 1 9 x l O ~ 3 s/node/multigrid
cycle of CPU time on a CRAY-2 supercomputer, which repre-
sents three to four times the computational effort required by
equivalent structured-mesh codes. This lower computational
efficiency is due in large part to the gather-scatter operations
required in unstructured-mesh algorithms. In future work it
will be shown how this solver can be applied to arbitrarily
complex configurations which are not easily handled by struc-
tured-mesh solvers and how the efficiency and accuracy can be
improved by the use of adaptive meshing techniques. The
effect of truly unstructured and irregular meshes on the solu-
tion accuracy in the viscous regions will also be examined.
Finally, a turbulence model for use on unstructured meshes
will be sought for higher Reynolds number calculations.
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