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Adjoint-based shape optimization methods have proven to be computationally efficient for aerodynamic

problems. Themajority of the studies on adjoint methods have used structured grids to discretize the computational

domain. Because of the potential advantages of unstructured grids for complex configurations, in this study we have

developed and validated a continuous adjoint formulation for unstructured grids. The hurdles posed in the

computation of the gradient for unstructured grids are resolved by using a reduced gradient formulation. The

methods to impose thickness constraints on unstructured grids are also discussed. The results for two- and three-

dimensional simulations of airfoils and wings in inviscid transonic flow are used to validate the design procedure.

Finally, the design procedure is applied to redesign the shape of a transonic business jet configuration; we were able

to reduce the inviscid drag of the aircraft from 235 to 216 counts resulting in a shock-free wing. Although the Euler

equations are the focus of the study in this paper of the adjoint-based approach, the solution of the adjoint system and

gradient formulation can be conceptually extended to viscous flows. The approach presented in this study has been

successfully used by the first and third authors for viscous flows using structured grids. However, particular aspects

of the design process, such as the robustness of the mesh deformation process for unstructured grids, need more

attention for viscous flows and are therefore the subject of ongoing research.

Nomenclature

Ai = Jacobian of the Euler fluxes
B = boundary of the computational domain
BF = boundary of the computational domain containing the

far field
BW = boundary of the computational domain containing the

wing surface
c = speed of sound
D = computational domain
Do = numerical dissipation at node o
E = total energy
Eo = difference of the state vector along edge ko
F = function to represent the boundary shape
fi = convective flux term of the Euler equation
G = gradient
H = enthalpy
I = cost function
Kij = elements of the transformation matrix
ni = unit outward normal at the boundary
p = pressure
pd = desired pressure distribution
pt = target pressure distribution
q = dynamic pressure
R = Euler or Navier–Stokes operator
Rk = discrete residual at node k
S = boundary of the control volume

Sij = cofactors of the transformation matrix
Sx = component of the normal to the boundary of the

control volume in the x direction
Sy = component of the normal to the boundary of

the control volume in the y direction
Sz = component of the normal to the boundary of the control

volume in the z direction
ui = velocity components
V = control volume
w = state vector for the equations
xi = computational coordinates
�xi = displacement of node i
� = specific heat ratio
��1�ko = coefficient of first-order dissipation for edge ko

��2�ko = coefficient of third-order dissipation for edge ko

�i = transformed coordinates
� = density
� = arbitrary differentiable test function
 = Lagrange multiplier

I. Introduction

W ITH the availability of high-performance computing
platforms and robust numerical methods to simulate fluid

flows, it is possible to shift attention to the automated design
procedures that combine computational fluid dynamics (CFD) with
optimization techniques to determine optimum aerodynamic
designs. The feasibility of this is by now well established[1–6],
and it is actually possible to calculate optimum three-dimensional
transonic wing shapes in a few hours, accounting for viscous effects
with the flow modeled by the Reynolds-averaged Navier–Stokes
equations. By enforcing the constraints on the thickness and span-
load distribution, one can make sure that there is no penalty in
structure weight or fuel volume. Larger scale shape changes, such as
planform variations, can also be accommodated [7]. It then becomes
necessary to include a structural weight model to enable a proper
compromise between minimum drag and low structure weight to be
determined.

Aerodynamic shape optimization has been successfully
performed for a variety of complex configurations using multiblock
structured meshes [8,9]. Meshes of this type can be relatively easily
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deformed to accommodate the shape variations required in the
redesign. However, it is both extremely time consuming and
expensive in human costs to generate such meshes. Consequently,
we believe it is essential to develop shape optimization methods that
use unstructured meshes for the flow simulation.

Typically, in gradient-based optimization techniques, a control
function to be optimized (the wing shape, for example) is
parameterized with a set of design variables, and a suitable cost
function to be minimized is defined. For aerodynamic problems, the
cost function is typically lift, drag, or a specified target pressure
distribution. Then, a constraint, the governing equations, can be
introduced to express the dependence between the cost function and
the control function. The sensitivity derivatives of the cost function
with respect to the design variables are calculated to get a direction of
improvement. Finally, a step is taken in this direction and the
procedure is repeated until convergence is achieved. Finding a fast
and accurate way of calculating the necessary gradient information is
essential to developing an effective design method, because this can
be the most time-consuming portion of the design process. This is
particularly true in problems that involve a very large number of
design variables, as is the case in a typical three-dimensional shape
optimization.

The control theory approach [1,10,11] has dramatic computational
cost advantages over the finite difference method of calculating
gradients. With this approach, the necessary gradients are obtained
through the solution of an adjoint system of equations of the
governing equations of interest. The adjoint method is extremely
efficient, because the computational expense incurred in the
calculation of the complete gradient is effectively independent of the
number of design variables.

In this study, a continuous adjoint formulation has been used to
derive the adjoint system of equations. Accordingly, the adjoint
equations are derived directly from the governing equations and then
discretized. This approach has the advantage over the discrete adjoint
formulation in that the resulting adjoint equations are independent of
the form of discretized flow equations. The adjoint system of
equations has a similar form to the governing equations of the flow
and, hence, the numerical methods developed for the flow equations
[12–14] can be reused for the adjoint equations.

The gradient is derived solely from the adjoint solution and the
surface displacement, independent of the mesh modification. This is
crucial for unstructured meshes. If the gradient depends on the form
of the mesh modification, then the field integral in the gradient
calculation has to be recomputed for mesh modifications
corresponding to each design variable. This would be prohibitively
expensive if the geometry is treated as a free surface defined by the
mesh points. Consequently, to reduce the computational cost with
this approach [15–17], the number of design variables would have to
be reduced by parameterizing the geometry. However, this reduced
set of design variables could not recover all possible shape variations.

A steepest descent method is finally used to improve the initial
design. To guarantee that the shape variations remain sufficiently
smooth, the gradients are redefined so that they correspond to an
inner product in a Sobolev space. This is accomplished by an implicit
smoothing procedure that also acts as an effective preconditioner,
with the result that the number of design steps needed to reach an
optimum is quite small, of the order of 20–50.

II. General Formulation of Adjoint Approach to
Optimal Design

For flow about an airfoil, or wing, the aerodynamic properties that
define the cost function are functions of the flowfield variables and
the physical location of the boundary. Then,

I � I�w;F �

and a change in F results in a change

�I � @I
T

@w
�w� @I

T

@F
�F (1)

in the cost function. Using control theory, the governing equations of
the flowfield are introduced as a constraint in such away that the final
expression for the gradient does not require reevaluation of the
flowfield. To achieve this, �w must be eliminated from Eq. (1).
Suppose that the governing equation R, which expresses the
dependence of w and F within the flowfield domain D, can be
written as

R�w;F � � 0 (2)

Then �w is determined from the equation
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Next, introducing a Lagrange multiplier  , we have
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Choosing  to satisfy the adjoint equation
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the first term is eliminated and we find that

�I � G�F (5)

where

G � @I
T

@F
�  T

�
@R

@F

�
(6)

This process allows for the elimination of the terms that depend on
the flow solution, with the result that the gradient with respect to an
arbitrary number of design variables can be determined without the
need for additional flowfield evaluations.

After taking a step in the negative gradient direction, the gradient
is recalculated and the process repeated to follow the path of steepest
descent until a minimum is reached. To avoid violating constraints,
such as the minimum acceptable wing thickness, the gradient can be
projected into an allowable subspacewithinwhich the constraints are
satisfied. In thisway, one can devise procedures thatmust necessarily
converge at least to a local minimum and that can be accelerated by
the use of more sophisticated descent methods, such as conjugate
gradient or quasi-Newton algorithms. There is a possibility of more
than one local minimum but, in any case, this method will lead to an
improvement over the original design.

III. Design Using Euler Equations

The application of control theory to aerodynamic design problems
is illustrated in this section for the case of a three-dimensional wing
design using the compressible Euler equations as the mathematical
model. It proves convenient to denote the Cartesian coordinates and
velocity components by x1, x2, x3 and u1, u2, u3 and to use the
convention that summation over i� 1 to 3 is implied by a repeated
index i. Then, the three-dimensional Euler equations may be written
as

@w

@t
� @fi
@xi
� 0 in D (7)

where
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w�

8>>>>><
>>>>>:

�
�u1
�u2
�u3
�E

9>>>>>=
>>>>>;
; fi �

8>>>>><
>>>>>:

�ui
�uiu1 � p�i1
�uiu2 � p�i2
�uiu3 � p�i3

�uiH

9>>>>>=
>>>>>;

(8)

and �ij is the Kronecker delta function. Also,

p� �� � 1��
�
E � 1

2
�u2i �

�
(9)

and

�H � �E� p (10)

where � is the ratio of the specific heats.
Consider a transformation to coordinates �1, �2, �3 where

Kij �
�
@xi
@�j

�
; J� det�K�; K�1ij �

�
@�i
@xj

�

and

S� JK�1

The elements of S are the cofactors of K and, in a finite volume
discretization, they are just the face areas of the computational cells
projected in the x1, x2, and x3 directions. Using the permutation
tensor �ijk we can express the elements of S as

Sij �
1

2
�jpq�irs

@xp
@�r

@xq
@�s

(11)

Then

@
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2
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@�s@�i

!
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Now, multiplying Eq. (7) by J and applying the chain rule,

J
@w

@t
� R�w� � 0 (13)

where

R�w� � Sij
@fj
@�i
� @

@�i
�Sijfj� (14)

using Eq. (12). We can write the transformed fluxes in terms of the
scaled contravariant velocity components

Ui � Sijuj

as

Fi � Sijfj �

�Ui
�Uiu1 � Si1p
�Uiu2 � Si2p
�Uiu3 � Si3p

�UiH

2
66664

3
77775

Assume now that the new computational coordinate system
conforms to the wing in such a way that the wing surface BW is
represented by �2 � 0. Then the flow is determined as the steady-
state solution of Eq. (13) subject to the flow tangency condition

U2 � 0 on BW (15)

At the far-field boundary BF, conditions are specified for incoming
waves, as in the two-dimensional case, whereas outgoing waves are
determined by the solution.

The weak form of the Euler equations for steady flow can be
written as

Z
D

@�T

@�i
Fi dD�

Z
B
ni�

TFi dB (16)

where the test vector � is an arbitrary differentiable function and ni is
the outward normal at the boundary. If a differentiable solution w is
obtained to this equation, it can be integrated by parts to giveZ

D
�T
@Fi
@�i

dD� 0

and because this is true for any �, the differential form can be
recovered. If the solution is discontinuous, Eq. (16) may be
integrated by parts separately on either side of the discontinuity to
recover the shock jump conditions.

Suppose now that it is desired to control the surface pressure by
varying the wing shape. For this purpose, it is convenient to retain a
fixed computational domain. Then variations in the shape result in
corresponding variations in the mapping derivatives defined by K.
As an example, consider the case of an inverse problem, in which we
introduce the cost function

I � 1

2

ZZ
BW

�p � pd�2 d�1 d�3

where pd is the desired pressure. The design problem is now treated
as a control problem in which the control function is the wing shape,
which is to be chosen to minimize I subject to the constraints defined
by the flow equations (13). A variation in the shape will cause a
variation �p in the pressure and, consequently, a variation in the cost
function

�I �
ZZ
BW

�p � pd��p d�1 d�3 �
1

2

Z
B
�p � pt�2 d�S (17)

where typically the second term is negligible and can be dropped.
Becausep depends onw through the equation of state (9) and (10),

the variation �p can be determined from the variation �w. Define the
Jacobian matrices

Ai �
@fi
@w

; Ci � SijAj (18)

The weak form of the equation for �w in the steady state becomesZ
D

@�T

@�i
�Fi dD�

Z
B
�ni�T�Fi� dB

where

�Fi � Ci�w� �Sijfj

which should hold for any differential test function �. This equation
may be added to the variation in the cost function, whichmay now be
written as

�I �
ZZ
BW

�p � pd��p d�1 d�3 �
Z
D

�
@�T

@�i
�Fi

�
dD

�
Z
B
�ni�T�Fi� dB (19)

On the wing surfaceBW , n1 � n3 � 0. Thus, it follows from Eq. (15)
that

�F2 �

0

S21�p
S22�p
S23�p
0

2
66664

3
77775�

0

�S21p
�S22p
�S23p
0

2
66664

3
77775 (20)

Because the weak equation for �w should hold for an arbitrary
choice of the test vector �, we are free to choose � to simplify the
resulting expressions. Therefore, we set ��  , where the costate
vector  is the solution of the adjoint equation
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� 0 in D (21)

At the outer boundary, incoming characteristics for  correspond to
outgoing characteristics for �w. Consequently, one can choose
boundary conditions for  such that

ni 
TCi�w� 0

Then, if the coordinate transformation is such that �S is negligible in
the far field, the only remaining boundary term is

�
ZZ
BW

 T�F2 d�1 d�3

Thus, by letting  satisfy the boundary condition,

S21 2 � S22 3 � S23 4 � �p � pd� on BW (22)

we find finally that

�I ��
Z
D

@ T

@�i
�Sijfj dD

�
ZZ
BW

��S21 2 � �S22 3 � �S23 4�p d�1 d�3 (23)

Here the expression for the cost variation depends on the mesh
variations throughout the domain that appear in the field integral.
However, the true gradient for a shape variation should not depend
on the way in which the mesh is deformed, but only on the true flow
solution. In Sec. IV,we showhow the field integral can be eliminated
to produce a reduced gradient formula that depends only on the
boundary movement.

IV. Reduced Gradient Formulations

Continuous adjoint formulations have generally used a form of the
gradient that depends on the manner in which the mesh is modified
for perturbations in each design variable. To represent all possible
shapes, the control surface should be regarded as a free surface. If the
surface mesh points are used to define the surface, this leaves the
designer with thousands of design variables. On an unstructured
mesh, evaluating the gradient by perturbing each design variable in
turn would be prohibitively expensive because of the need to
determine the corresponding perturbations of the entire mesh. This
would inhibit the use of this design tool in any meaningful design
process.

To avoid this difficulty, an alternate formulation to the gradient
calculation is followed in this study. This idea was developed by
Jameson and Kim [18] and was validated for two- and three-
dimensional problems with structured grids. However, as it is
possible to devise mesh modification routines that are computation-
ally cheap on structured grids, the major benefit of this alternate
gradient formulation is for general three-dimensional unstructured
grids. To complete the formulation of the control theory approach to
shape optimization, the gradient formulations are outlined next. The
formulation for the reduced gradients in the continuous limit is
presented in the context of the transformation between the physical
domain and the computational domain and is easily extended to
unstructured grid methods in which these transformations are not
explicitly used.

The evaluation of the field integral in Eq. (23) requires the
evaluation of the metric variations �Sij throughout the domain.
However, the true gradient should not depend on the way themesh is
modified.

Consider the case of amesh variationwith a fixed boundary. Then,

�I � 0

but there is a variation in the transformed flux,

�Fi � Ci�w� �Sijfj

Here the true solution is unchanged. Thus, the variation �w is due
to the mesh movement �x in a fixed boundary configuration.
Therefore,

�w�rw � �x� @w
@xj

�xj���w��

and because

@

@�i
�Fi � 0

it follows that

@

@�i
��Sijfj� � �

@

@�i
�Ci�w�� (24)

It is verified in Jameson and Kim [18] that this relation holds in the
general case with boundary movement. NowZ

D
 T�R dD�

Z
D
 T

@

@�i
Ci��w � �w�� dD

�
Z
B
 TCi��w � �w�� dB �

Z
D

@ T

@�i
Ci��w � �w�� dD (25)

Here on the wall boundary

C2�w� �F2 � �S2jfj (26)

Thus, by choosing  to satisfy the adjoint equation and the adjoint
boundary condition, we have finally the cost variation that is
reduced to a boundary integral

�I �
Z
BW

 T��S2jfj � C2�w
�� d�1 d�3

�
ZZ
BW

��S21 2 � �S22 3 � �S23 4�p d�1 d�3 (27)

In this reduced formulation, the cost variation depends only on the
boundary shape variations, with the result that the gradient can be
evaluated without any knowledge of the mesh deformation.

Another key issue for the successful implementation of the
continuous adjoint method is the choice of an appropriate inner
product for the definition of the gradient. It turns out that there is an
enormous benefit from the use of a modified Sobolev gradient,
which enables the generation of a sequence of smooth shapes. This
can be illustrated by considering a simple problem in calculus of
variations.

Choose y�x� to minimize

I �
Z
b

a

F�y; y0� dx

with fixed end points y�a� and y�b�. Under a variation �y�x�,

�I �
Z
b

a

�
@F

@y
�y� @F

@y0
�y0
�
dx�

Z
b

a

�
@F

@y
� d

dx

@F

@y0

�
�y dx

Thus, defining the gradient as

g� @F
@y
� d

dx

@F

@y0

and the inner product as

�u; v� �
Z
b

a

uv dx

we find that

�I � �g; �y�

Then, if we set
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�y���g; � > 0

we obtain an improvement,

�I ����g; g� � 0

unless g� 0, the necessary condition for aminimum.Note that g is a
function of y, y0, and y00:

g� g�y; y0; y00�

In the case of the Brachistrone problem, for example,

g�� 1� y02 � 2yy00

2�y�1� y02��3=2

Now each step

yn�1 � yn � �ngn

reduces the smoothness of y by 2 classes. Thus, the computed
trajectory becomes less and less smooth, leading to instability.

To prevent this, we can introduce a modified Sobolev inner
product [19]:

hu; vi �
Z
�uv� �u0v0� dx

where � is a parameter that controls the weight of the derivatives. If
we define a gradient �g such that

�I � h �g; �yi

Then we have

�I �
Z
� �g�y� � �g0�y0� dx�

Z �
�g � @

@x
�
@ �g

@x

�
�y dx� �g; �y�

where

�g � @

@x
�
@ �g

@x
� g

and �g� 0 at the end points. Thus, �g is obtained from g by a
smoothing equation.

Now the step

yn�1 � yn � �n �gn

gives an improvement,

�I ���nh �gn; �gni

but yn�1 has the same smoothness as yn, resulting in a stable process.
In applying control theory for aerodynamic shape optimization,

the use of a Sobolev gradient is equally important for the preservation
of the smoothness class of the redesigned surface; we have employed
it to obtain all the results in this study.

V. Imposing Thickness Constraints on Unstructured
Meshes

To perform meaningful drag reduction computations, it is
necessary to ensure that constraints such as the thickness of the wing
are satisfied during the design process. On an arbitrary unstructured
mesh, there appears to be no straightforwardway to impose thickness
constraints. In our approach, we introduce cutting planes at various
spanwise locations along the wing and transform the airfoil sections
to shallow bumps by a square root mapping. Then we interpolate the
gradients from the nodes on the surface to the airfoil sections on the
cutting planes and impose the thickness constraints on the mapped
sections. The displacements of the points on the surface of the CFD
mesh are obtained by interpolation from the mapped airfoil sections
and transformed back to the physical domain by a reverse mapping.

These surface displacements are finally used as inputs to a mesh
deformation algorithm.

VI. Mesh Deformation

The modifications to the shape of the boundary are transferred to
the volume mesh using the spring method. This approach has been
found to be adequate for the computations performed in this study.

The spring method can be mathematically conceptualized as
solving the following equation:

@�xi
@t
�
XN
j�1

Kij��xi ��xj� � 0

whereKij is the stiffness of the edge connecting node i to node j and
its value is inversely proportional to the length of this edge;�xi is the
displacement of node i; and �xj is the displacement of node j, the

Repeat until design

Mesh deformation

Preprocessor

Generate sequence of
meshes 

criterion is satisfied

thickness constraints
shape modification with

Gradient evaluation,

Adjoint solver

Flow solver

Fig. 1 Flow chart of the overall design process.

1

2

3

4

5

Fig. 2 Evaluation of fluxes in three dimensions.
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opposite end of the edge. The position of static equilibrium of the
mesh is computed using a Jacobian iteration with known initial
values for the surface displacements.

VII. Overview of Design Process

A flow chart describing the overall design process is shown in
Fig. 1.

VIII. Numerical Discretization and Convergence
Acceleration Techniques for the Flow

and Adjoint Equations

The numerical algorithms and convergence acceleration
techniques used in this study to obtain steady-state solutions for
the Euler equations are based on a finite element approximation,
initially reported in Jameson et al. [20]. Themethod is described here
for completeness. Because of the remarkable similarity between the
adjoint system and the flow equations, essentially the same
numerical schemes can be reused to obtain the solution to the adjoint
system.

The finite element approximation can be obtained by directly
approximating the integral equations for the balance of mass,
momentum, and energy in polyhedral control volumes. Each of these
is formed by the union of the tetrahedra meeting at a common vertex
(Fig. 2). It turns out that the flux balance can be broken down into
contributions of fluxes through faces in a very elegant way (Fig. 1).
This decomposition reduces the evaluation of theEuler equations to a
single main loop over the faces. It is shown in Jameson et al. [20] that
the same discretization can also be devised from theweak form of the
equations using linear trial solutions and test functions. Thus, it is
essentially equivalent to a Galerkin method.

Shock waves are captured with the assistance of added artificial
dissipation. These shock capturing schemes are derived from a
general class of schemes that maintain the positivity of the
coefficients, thereby preventing maximas from increasing and
minimas from decreasing. The steady-state solutions are obtained by
integrating the time-dependent equations with a multistage time
stepping scheme. Convergence is accelerated by the use of locally
varying time steps, residual averaging, and enthalpy damping.
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Fig. 4 Initial pressure distribution for the RAE 2822 airfoil.
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Fig. 5 Pressure distribution as a result of drag minimization for the

RAE 2822 airfoil; drag is reduced by 36 counts.

Fig. 3 Control volume for cell-vertex schemes in three dimensions.
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RAE 2822 : INVERSE TO SHOCK FREE SOLUTION
MACH   0.750    ALPHA  0.763

CL    0.6000    CD    0.0025    CM   -0.1242
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Fig. 6 Attained (+, ×) and target (○) pressure distribution for the
RAE 2822 airfoil.

Mach: 0.840    Alpha: 3.060
CL:  0.325    CD: 0.02319    CM: 0.0000
Design:   0    Residual:  0.2763E-02
Grid: 193X 33X 33

Root Section:   9.8% Semi-Span

Cp = -2.0

Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.262    Cd:-0.00437    Cm:-0.0473
Tip Section:  87.8% Semi-Span

Fig. 7 Initial pressure distribution over a NACA 0012 wing.

Mach: 0.840    Alpha: 3.060
CL:  0.314    CD: 0.01592    CM: 0.0000
Design:  50    Residual:  0.1738E+00
Grid: 193X 33X 33

Root Section:   9.8% Semi-Span

Cp = -2.0

Mid Section:  48.8% Semi-Span

Cp = -2.0

Cl:  0.291    Cd:-0.00239    Cm:-0.0489
Tip Section:  87.8% Semi-Span

Fig. 8 Initial (dashed lines) and final (solid lines) pressure distribution

and modified section geometries.

NACA 0012 WING TO ONERA M6 TARGET
MACH   0.840    ALPHA  3.060      Z     0.00
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Fig. 9 Attained (+, ×) and target (○) pressure distributions at 0%of the

wing span.

1232 JAMESON, SHANKARAN, AND MARTINELLI



Multigrid techniques are also used to further improve convergence to
the steady state.

IX. Computational Methodology and Finite Element
Approximation

The Euler equations in integral form can be written as

d

dt

Z
V

wdV �
Z
S

F � dS� 0 (28)

Equation (28) can be approximated on a tetrahedral mesh by first
writing the flux balance for each tetrahedron assuming the fluxes (F)
to vary linearly over each face. Then, at any given mesh point one
considers the rate of change of w for a control volume consisting of
the union of the tetrahedra meeting at a common vertex. This gives

d

dt

�X
k

Vkw

�
�
X
k

Rk � 0 (29)

whereVk is the volume of the kth tetrahedronmeeting at a givenmesh
point and Rk is the flux of that tetrahedron.

When the flux balances of the neighboring tetrahedra are summed,
all contributions across interior faces cancel. Referring to Fig. 3,
which illustrates a portion of a three-dimensional mesh, it may be
seen that with a tetrahedral mesh each face is a common external
boundary of exactly two control volumes. Therefore, each internal
face can be associated with a set of 5 mesh points consisting of its
corners 1, 2, and 3 and the vertices 4 and 5 of the two control volumes
on either side of the common face. It is now possible to generate the

approximation in Eq. (29) by presetting the flux balance at eachmesh
point to zero and then performing a single loop over the faces. For
each face, one first calculates the fluxes of mass, momentum, and
energy across each face, and then one assigns these contributions of
the vertices 4 and 5 with positive and negative signs, respectively.
Because every contribution is transferred from one control volume
into another, all quantities are perfectly conserved. Mesh points on
the inner and outer boundaries lie on the surface of their own control
volumes, and the accumulation of the flux balance in these volumes
has to be correspondingly modified. At a solid surface, it is also
necessary to enforce the boundary condition that there is no
convective flux through the faces contained in the surface.

Although the original formulation of this method used a face-
based loop to accumulate thefluxes, thefirst author latermodified the
loops to go through the edges in the mesh as they were typically
smaller in number than the faces. The earlier arguments for flux
accumulation extend easily to edge-based schemes, and it is this
approach that has been used in the current study.

X. Dissipation

A simple way to introduce dissipation is to add a term generated
from the difference between the value at a given node and its nearest
neighbors. That is, at node 0, we add a term

Do �
X
k

��1�ko �wk � wo� (30)

where the sum is over the nearest neighbors. This contribution is
balanced by a corresponding contribution at node k, with the result
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Fig. 10 Attained (+, ×) and target (○) pressure distributions at 40% of

the wing span.
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Fig. 11 Attained (+, ×) and target (○) pressure distributions at 80% of
the wing span.
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that the scheme remains conservative. The coefficients ��1�ko may
incorporate metric information depending on local cell volumes and
face areas and can also be adapted to gradients of the solution. As
Eq. (30) is only first-order accurate (unless the coefficients are
proportional to the mesh spacing), a more accurate scheme is
obtained by recycling the edge differencing procedure. After setting

Eo �
X
k

�wk � wo� (31)

at every mesh point, one then sets

Do ��
X
k

��2�ok �Ek � Eo� (32)

An effective scheme is produced by blending Eqs. (30) and (32) and

adapting ��1�ko to the local pressure gradient. This scheme has been
found to have good shock capturing properties, and the required
sums can be efficiently assembled by loops over the edges.

Other shock capturing schemes that satisfy the local extremum
diminishing property have also been implemented and have been
found to work equally efficiently. However, due to the robust nature
of the aforementioned simple scalar dissipation model, we have used
it for all of the computations in this study.

XI. Integration to Steady State and Convergence
Acceleration Techniques

The resulting spatial discretizations yield a set of coupled ordinary
differential equations that can be integrated in time to obtain
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Fig. 12 Final computed and target pressure distributions at 100% of

the wing span.

Mach: 0.780    Alpha: 1.400
CL:  0.280    CD: 0.00624    CM: 0.0000
Design:  60    Residual:  0.1528E+00
Grid: 193X 33X 49

Root Section:   6.6% Semi-Span

Cp = -2.0

Mid Section:  49.2% Semi-Span

Cp = -2.0

Cl:  0.280    Cd:-0.01369    Cm:-0.1042
Tip Section:  91.8% Semi-Span

Fig. 13 Initial (dashed lines) and final (solid lines) pressure and section

geometries.

SHARKX6 (JCV:  16 DEC 99)
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Fig. 14 Attained (+, ×) and target (○) pressure distributions at 5% of
the wing span.
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steady-state solutions of the Euler equations. To maximize the
allowable time step, the samemultistage schemes that have proven to
be efficient in rectilinear meshes [21] have been used on unstructured
meshes. These schemes bear close resemblance to Runge–Kutta
schemes withmodifications to the evaluation of the dissipation terms
that enlarge the stability limit of the scheme along the imaginary axis,
thereby allowing convective waves to be resolved.

Convergence to steady state is accelerated by using a variable time
step close to the stability limit of each mesh point. The scheme is
accelerated further by the introduction of residual averaging [22] and
a multigrid procedure [23]. In this study, the coarser grids are either
obtained through an independentmesh generator or through an edge-
collapsing algorithm. In either approach, transfer coefficients
between the various meshes are accumulated in a preprocessing step
and recomputed when the meshes are deformed.

XII. Modifications to Numerical Method to Treat
Adjoint Equations

To adapt the numerical scheme to treat the adjoint equations, three
main modifications are required.

First, because the adjoint equation appears in a nonconservative
quasi-linear form, the convective terms have to be calculated in a

different manner. The derivatives @ 
@xi

are calculated by applying the

Gauss theorem to the polyhedral control volume consisting of the
tetrahedrons that surround each node. Thus, the formula

@ 

@xi
� 1

V

Z
S

 dSxi (33)

is replaced by its discrete analog, and the contributions are
accumulated by edge and face loops in the same manner as the flux
balance of Eq. (28). The transposed Jacobian matrices are simplified
by using a transformation to the symmetrizing variables. Thus, the
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Fig. 15 Attained (+, ×) and target (○) pressure distributions at 50% of

the wing span.
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Fig. 16 Initial and final pressure distributions at 95%of the wing span.

Fig. 17 Density contours for a business jet atM � 0:8, �� 2.
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Jacobian for flux in the x direction is expressed as

A�MÂM�1; AT �M�1ÂMT

where

M�

�
c

0 0 0 � 1
c2

�u
c

� 0 0 � u
c2

�v
c

0 � 0 � v
c2

�w
c

0 0 � � w
c2

�H
c

�u �v �w � q2

2c2

0
BBBB@

1
CCCCA (34)

and

Â�

Q Sxc Syc Syc 0

Sxc Q 0 0 0

Syc 0 Q 0 0

Szc 0 0 Q 0

0 0 0 0 Q

0
BBBB@

1
CCCCA (35)

Second, the direction of time integration to a steady state is
reversed because the directions of wave propagation are reversed.
Third, although the artificial diffusion terms are calculated by the
same subroutines that are used for the flow solution, they are
subtracted instead of added to the convective terms to give a
downwind instead of an upwind bias. Because of the reversed sign of
the time derivatives, the diffusive terms in the time-dependent
equation correspond to the diffusion equation with the proper sign.

XIII. Results

The adjoint method described in the previous sections has been
applied to two- and three-dimensional problems with the flow
modeled by the Euler equations. Both drag reduction and inverse
design problems were used to validate the design procedure and the
gradient formulations. The method was then used to redesign the
shape of the wing of a transonic business jet, where the complete
aircraft configuration was modeled. A flow chart describing the
overall design process is shown in Fig. 1.

A. Airfoil Design

The unstructured adjoint technology was initially validated for
two-dimensional inverse design and drag minimization problems.
Figures 4 and 5 show the result of drag minimization for the
RAE 2822 airfoil in transonic flow (M1 � 0:75). The lift was
constrained to be 0.6 and the angle of attack was perturbed to
maintain the lift. The final geometry is shock free and the drag was
reduced by 36 drag counts. Figures 4 and 6 show the result of an
inverse design for the RAE 2822 airfoil. Here the target pressure
distribution was a shock-free profile obtained from the drag
minimization exercise. As can be seen from these pictures, the final
pressure profile almost exactly matches the target pressure
distribution.

B. Wing Design

The design methodology was then applied to wing shapes in
transonic flow. Inverse design computations were performed to
validate the design process and the gradient calculations. Figures 7
and 8 show the result of an inverse design calculation, in which the
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Fig. 18 Pressure distribution at 66% wing span.
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Fig. 19 Pressure distribution at 77% wing span.
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initial geometry was a wing with NACA 0012 sections and the
target pressure distribution was the pressure distribution over the
Onera M6 wing. Figures 9–12 show the target and computed
pressure distribution at four spanwise sections. It can be seen from

these plots that the target pressure distribution is almost perfectly
recovered in 50 design cycles. The results from this test case show
that the design process is capable of recovering pressure
distributions that are significantly different from the initial
distribution and also capturing shocks and other discontinuities in
the target pressure distribution.

Another test case for the inverse design problem used the wing
from an airplane (SHARK [24]) that was designed for the Reno Air
Races. The initial and target pressure distributions are shown the
Fig. 13. As can be seen from these plots, the initial pressure
distribution has a weak shock in the outboard sections of the wing.
The target pressure distribution is shock free. The computed (after 50
design cycles) and target pressure distributions along three sections
of the wing are shown in Figs. 14–16. Again, the design process
captures the target pressure with good accuracy in about 50 design
cycles.

C. Shape Optimization of Transonic Business Jet

The design method has finally been applied to complete
aircraft configurations. As a representative example, we show the
redesigns of a transonic business jet to improve its lift to drag
ratio during cruise. As shown in Figs. 17–20, the outboard
sections of the wing have a strong shock while flying at cruise
conditions (M1 � 0:80, �� 2 deg). The results of a drag
minimization that aims to remove the shocks on the wing are
shown in Figs. 21–24. The drag has been reduced from 235
counts to 215 counts in about eight design cycles. The lift was
constrained at 0.4 by perturbing the angle of attack. Further, the
original thickness of the wing was maintained during the design

Fig. 21 Density contours for a business jet at M � 0:8, �� 2:3, after
redesign.
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Fig. 20 Pressure distribution at 88% wing span.
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Fig. 22 Pressure distribution at 66%wing span, after redesign (dashed

line: original geometry, solid line: redesigned geometry).
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process to ensure that fuel volume and structural integrity would
be maintained by the redesigned shape. The entire design process
typically takes about 4 h on a 1.7 Ghz Athlon processor with
1 Gb of memory. Parallel implementation of the design procedure
has also been developed that further reduces the computational
cost of this design process.

XIV. Conclusions

The use of gradient formulations that depend only on the surface
mesh allows adjoint-based methods to be used for unstructured
grids in a computationally efficient manner. Hence, it is now
possible to devise a completely automated shape optimization
procedure for complete aircraft configurations. Exploiting the
flexibility of unstructured grids, it is now possible to tackle wing
section and planform optimization, engine integration, and
empennage design with an integrated computational procedure.
Hence, we believe that this approach holds great promise for
airplane design. Extending this approach to viscous flows will
enable us to tackle challenging problems in multi-element airfoil
optimization using gaps, overlap, and deflections in addition to the
shape variables to optimize the geometry. There are two areas of
difficulty in using the approach presented in this study. The first
pertains to the validation of the reduced gradient formulation for the
design variables of interest. The second relates to the robustness of
the mesh deformation process during redesign. Both of these
problems are currently being investigated by the authors in various
contexts, and we hope to present the results of our study in the
future.
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