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I. Introduction

T HE life cycle of engineering design involves innovating to
introduce a product, and when that is done, looking for ways to

make itwork better. Supersonic aerodynamics can be looked atwith a
similar perspective. Man has always wanted to fly faster. While the
basicmechanics of supersonic flightwas laid out in the 1950s, people
are yet to find ways in which to make Supersonic flight more
efficient.

One of the classic research problems in supersonic flight has been
that of finding two-dimensional and axisymmetric profiles that have
minimum pressure drag in supersonic flow. The two-dimensional
sections are used as wing-profile sections, and the axisymmetric
profiles are useful in that the distribution of the cross-sectional area is
made to follow the optimumdistribution (the area rule). This problem
becomes redundant without suitable constraints. The minimum drag
shape is a flat plate in two-dimensional flow and a needle-like profile
in axisymmetric flow. This, however, is not a meaningful result. To
make the problem more meaningful, the enclosed area/volume
should be kept constant. The ends should also be kept pointed. This is
to anchor the shocks firmly to the leading and trailing edges.

This problem has been solved in the fifties using a linear flow
model. However, recent advances in computational fluid dynamics
and aerodynamic shape optimization have made it possible for this
problem to be analyzed using a nonlinear flow model. The results of
this exercise are discussed in this paper.

II. Results from Classical Theory

Analytical solutions for the problem being studied have been
obtained, assuming a linearized flow model. For the 2 � d case the
optimum profile is parabolic
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where A is the area enclosed and � is the thickness-chord ratio. The
drag coefficient is given by
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For the axisymmetric case, the profile shapes that solve this
problem are the well-known Sears–Haack profiles, discovered
independently by Sears (1947) [1] and Haack (1947). The derivation
of the Sears–Haack profiles is outlined in the book by Ashley and
Landahl [2] and also in an article by Ferrari [3]. The Sears–Haack
profile is given by
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where V is the enclosed volume and � is the fineness ratio. The drag
coefficient is given by

CD � 24V (4)

As can be observed, these profile shapes have some interesting
properties. Firstly, they are unique solutions to the optimization
problem. Moreover, they are just a function of the enclosed area/
volume and not the Mach number.

III. Nonlinear Optimization via Control Theory

In this work, the adjoint method developed by Jameson and his
associates during the last 15 years [4–7] is used. The aerodynamic
shape optimization problem involves minimizing (or maximizing) a
given cost function, with parameters that define the shape of the body
as the design variables, usually of the form
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where w is the vector of flow state variables and Sij are the
coefficients of the Jacobian matrix of the transformation from
physical space to computational space. M�w; S� in this case is just
Cp, the pressure coefficient. There is also the constraint that the state
variables at the computational points have to satisfy the flow
equations, irrespective of the shape of the boundary
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or, when transformed to computational space
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where � is any arbitrary test function.
BecauseEq. (7) is true for any test function�,� can be chosen to be

the adjoint variable  . Adding Eq. (7) to the cost function defined in
Eq. (5) gives the following augmented cost function:
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Taking a variation of the cost function described in Eq. (8)
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 is chosen such that the variation in the cost function �I does not
depend on the variation of the solution �w; is then a solution of the
adjoint equations
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One thus obtains an expression for the change in the cost function of
the form

�I �
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G�FdB� (11)

where F ��� is a function defining the shape and G is the required
gradient.

The gradient with respect to the design variables is obtained from
the solutions to the adjoint equations by a reduced gradient
formulation [6]. This is modified to account for the area/volume
constraints. To preserve the smoothness of the profile, the gradient is
smoothed by an implicit smoothing formula. This corresponds to
redefining the gradient with respect to a weighted Sobolev inner
product [5]. The optimum is then found by a sequential procedure in
which the shape is modified in a descent direction defined by the
smoothed gradient at each step, and theflow solution and the gradient
are recalculated after each shape change.

IV. Results and Discussions

Convergence from Different Initial Conditions: The main test of
the correctness of the optimization algorithm is to see if it converges
to the same optimum profile regardless of what the initial profile is.
Figures 1 and 2 show the optimization history from two different

initial profile shapes for two-dimensionalflow. They both enclose the
same area. It can be seen that they converge to the same optimum
profile. This helps to build confidence in the correctness of the
optimization setup.

Optimum Profile Shapes: The results of the 2-D optimization can
be seen in Fig. 3 and the results of the axisymmetric optimization can
be seen in Fig. 4. As can be observed, the nonlinear optimum profiles
are slightly different from the classical optimumprofiles. Theyhave a
more rearward point of maximum thickness. The primary difference
between a linearized flow model and a nonlinear model is the
appearance of shocks at the leading edge in the case of the nonlinear
flow model. Reducing the included angle at the leading edge and
moving the point of maximum thickness backward is consistent with
reducing the magnitude of the leading-edge shock. This results in a
lower drag and at the same time brings the flow closer to the linear
regime.

The difference is hardly noticeable for small thickness-chord/
fineness ratios. This is simply an indicator of the fact that linear
theory is a very good approximation for small fineness ratios.
Moreover, the nonlinear optimum profiles for axisymmetric flow are
a lot closer to their corresponding classical profiles than for 2-D flow.
This is because of the three-dimensional relieving effect experienced
in axisymmetric flow.

Variation with Mach Number: The optimum profile for 2-D flow
changes with Mach number. The optimum shape for 2 M numbers is
shown in Fig. 5. It is seen that the point of maximum thickness is
farther rearward for the higherMach number. This again is consistent
with our earlier argument that the main goal of the nonlinear
optimization is to reduce the magnitude of the leading-edge shock.
Such a variation is not observed for axisymmetric optimum profiles.
This is due to the fact that the drag coefficient is not sensitive to
changes in Mach number in this case. This can also be seen from
Eq. (4).

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0  0.2  0.4  0.6  0.8  1

y

x

Parabolic Profile

Fig. 1 Convergence of the optimization algorithm from a parabolic

initial profile.
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Fig. 2 Convergence of the optimization algorithm from a Sears–Haack

initial profile.
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Fig. 3 Classical and nonlinear optimum profiles for 2-D flow.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 0.2 0.4 0.6 0.8 1

y

x

Classical Theory
Nonlinear Optimum

Fig. 4 Classical and nonlinear optimumprofiles for axisymmetric flow.
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Discussion of Results: The main assumptions of linear theory are
that the flow is isentropic, irrotational, and the perturbation velocities
in the axial and normal directions are very small compared with the
freestream velocity. These assumptions are valid everywhere except
in the vicinity of the leading and the trailing edges, where there are
stagnation points. Here, shocks cause entropy jumps. Moreover, the
perturbation velocities are no longer small. Thus, the biggest change
in the optimumprofile shape is expected at these points. This is found
to be true.

V. Conclusions

Theminimumpressure drag problemwas set up and solvedusing a
nonlinear flowmodel. Optimization was carried out using the adjoint
method. In both the two-dimensional case and the axisymmetric
case, the resulting optimum profiles were compared with the
optimum profiles obtained from linear theory. It was seen that they
were different, though not vastly so. The optimum profiles are
different for different Mach numbers in the case of two-dimensional

flow. There is no Mach number dependence for axisymmetric flow.
The optimal shapes become closer to their linear theory counterparts
at low Mach numbers and small fineness ratios. Moreover, the
differences are more obvious for two-dimensional sections than for
axisymmetric profiles.

The main conclusion that is made is that the results from linear
theory are very good as far as the optimum drag shapes are
concerned. In this respect, it makes very good engineering sense to
use results from linear theory for any preliminary design.
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Fig. 5 Variation of 2-D optimum profiles with Mach number.
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