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I. Introduction

N AIRPLANE, by its nature of being, is constructed so that it is

as light as possible. The structural design is guided by static and
dynamic factors. The more stringent constraints on the structural
design are due to dynamic loads caused by aeroelastic interactions.
One of the most commonly encountered problems in aeroelasticity is
flutter [1], a term that is used to recognize the transfer of energy from
unsteady aerodynamics associated with the surrounding fluid to the
wing structure, resulting in rapidly divergent behavior. If flutter can
be controlled at cruise speeds, we can design lighter wings and,
consequently, more efficient airplanes. It is therefore in the aircraft
designer’s best interest to design innovative ways in which flutter can
be controlled without making the resulting structure too heavy.

There are three important choices to make while designing active
control strategies for suppressing flutter. The first is the choice of
actuator. In this Note, the actuators we use are jets in the walls
through which there is a small mass flow, either by way of blowing or
suction. The second is to define a clear control objective. Finally, we
need to design a control law that will make suitable state measure-
ments and drive the actuators so that the desired control objective is
achieved.

While different types of actuators can be designed for active flow
control, zero-net-mass-flux (ZNMF) synthetic jets are gaining
popularity as the actuator of choice. A ZNMF synthetic jet is popular
for the main reason that it is formed entirely from the working
medium of the flow. These eject and remove mass from the flow
system through a narrow orifice periodically. This results in altering
the momentum field around the orifice without adding or removing
mass from the flow. The primary considerations in the design of
synthetic jets are the size and positioning of the orifice and the time
frequency of actuation. The design of synthetic jets and the physics of
their interaction with a crossflow are discussed in detail by Glezer
and Amitay [2].

Flow control for aerodynamics using synthetic jets has been
studied experimentally by Amitay et al. [3], Tuck and Soria [4], Abe
et al. [5], and Nishizawa et al. [6]. Numerical investigations were
performed by Nae [7]. It should be noted that in all these experiments,
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the location and frequencies of the actuators were chosen a priori.
The control implemented is therefore open-loop.

The study of closed-loop active flow control techniques is still in
its primitive stages. This is because designing a closed-loop
(feedback) control law requires understanding of the system
dynamics. In spite of the fact that it is possible to obtain numerical
solutions to the Navier—Stokes equations, understanding of the
behavior of a flow-actuator system is extremely limited.

Feedback laws based on reduced-order models have been derived
by Samimy et al. [§], Kumar and Tewari [9], and Cohen et al. [10].
The major drawback of these efforts is that the actuator dynamics are
not modeled as part of the reduced-order description of the system.

All previous attempts at flow control have either involved
designing simplistic controls for complex problems or complex
feedback-based controls for simple problems. Problems like sepa-
ration control, drag reduction, and control of the vortex-shedding
frequency in the flow past a cylinder have all been controlled using
open-loop controllers.

Closed-loop control has been demonstrated only on simplistic
models derived from simulation or experiment.

An ideal flow control law should have the following properties:

1) The control law should be broadly applicable. We are looking
for an algorithmic framework for generating flow control laws for a
variety of problems. The development of such a framework would
enable easy analysis and design of control laws for a variety of flow
control problems.

2) The control law should be scientific and based on a realistic
model of the fluid system.

3) The control law should be robust and account for variability in
measurement, actuation, etc. This would mean that the control u
should be feedback-based:

u=F(x) M)
where x is the current system state.

Our goal is therefore to develop feedback-based control laws that
are derived from a realistic representation of the flow. We try to make
sure that the framework is as generic as possible, lending easy
extension to a variety of situations. We then discuss specific
applications of the control law thus derived, including control of
flutter.

The concept of flow control, as described in this Note, relies
heavily on the adjoint method as developed by Jameson [11]. The
method is well explained in Nadarajah [12]. The control law that is
derived is based on a 2-D model.

II. Flutter Simulation

A. Flow Model: Euler Equations for Fluid Flow with Blowing
at the Walls

In this Note, the fluid flow is modeled using the Euler equations.
The Euler equations model the behavior of inviscid compressible
fluids. They are

aW 3fl
5 T, 2

Here, x; represents the Cartesian coordinate directions, w are the state
variables, and f; are the corresponding flux vectors, given by

w = (p, pu, pv, pw, pE) 3)
and

f; = (pu;, puju + 81 P, pu;v + 8, P, puyw + 8;3P, pu; H)  (4)
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Here, p is the density, and u, v, and w are the velocities in the
respective coordinate directions. The velocities are also described
using Einstein notation as u;. P is the pressure and H is the enthalpy.
The steady-state Euler equations can be written in weak conservation
form as follows:

a T
[ s as= [ 5 fiw e ©
B D 0X;

where ¢ is any test function. If a transformation is made from
physical space x; to computational space ¢;, defined by the mapping
functions

K,.,:[ax’}, J = det(K), K;jl:[ae"] ©6)

de; 0x;

and
S=JK! @)

the Euler equations (5) become

96T
/ "i¢TSijfj (w) ng = %Sijfj (w) dDS ®)
Be D, 05;

The boundary conditions for the case in which we have blowing or
suction at the boundary can then be prescribed in terms of the
blowing velocity as follows:

Fy = (04, pgutt + S P, pq,v + SnP, pg,w + Sy P, pq,H)
&)

where pg,, is the prescribed mass flow at the boundary, initially set to
zero in the design problem. Here, F’, is the flux normal to the wall, as
opposed to f;, which is the flux in the ith coordinate direction.

B. Structural Model

The structural dynamic model is derived from the theory of
elasticity, which relates the deformation and internal stresses of the
structure to the external loads applied. A Lagrangian frame is used to
describe the structure, as contiguous elements of the structure
continue to remain contiguous unless structural failure occurs.

In the present Note we will first investigate the aeroelastic behavior
and control of a 2-D airfoil whose schematics are shown in Fig. 1. A
2-D airfoil model can be shown to be a fair representation for flutter
prediction, as shown by Theodorson and Garrik [13], of a straight
wing of a large span by giving it the geometric and inertial properties
of the cross section three-quarters of the way from the centerline to
the wing tip. The equations of motion of this simple system can be
shown to be as follows:

mh + S, + K,h = —L (10)

S h+ 1,6+ Ko =M,, an

where K, and K, are representative of the bending and torsional
stiffness of the wing about its elastic axis (the elastic axis is the locus
of points about which an applied force will not cause a rotation), m
and /,, are the mass and moment of inertia of the wing section about

Fig. 1 Typical section-wing model geometry.
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the elastic axis, and S, is the coupling term, which depends on the
relative position of the center of gravity and the elastic axis.

For the present Note we assume the structural properties to be fixed
and we have some amount of control of the right-hand sides of the
equations via blowing and suction. The objective is to find a suitable
control law that will modify the aerodynamic terms so as to prevent
flutter.

C. Computational Simulation

The flow is simulated by solving the unsteady Euler equations.
The Euler equations are solved using a dual-time-stepping method,
using a third-order backward difference formula in time, and a
symmetric Gauss Seidel scheme for solving the inner iterations. The
aforementioned flow simulation code is integrated with a two-
degree-of-freedom structural model given for the 2-D simulation.

The aerodynamic and structural solvers are coupled by
exchanging information at regular intervals during the convergence
process. At the start of each iteration, the surface pressures are
translated into nodal forces and the structural solver is called. The
new displacement field is then translated to a movement of the
computational fluid dynamics (CFD) mesh and then flow iterations
are performed. While making the transfer one must make sure that the
transfer of load is consistent and conservative [14].

The coupled aerostructural system is integrated using the
Newmark scheme. The simulation techniques are discussed in detail
in [15].

III. Derivation of Adjoint-Based Control Laws

A. System Linearization and Model Order Reduction

In Eqgs. (10) and (11), the structural parameters are constant. The
lift L and the moment M are complex nonlinear functions of the
system state W, &, &, i, and h. Moreover, o, &, h, and h are themselves
functions of the system state w. Here, the state w is the vector
consisting of all the Euler states at all finite volumes used in the
simulation. Thus,

L=L(w,u) (12)

M = M(w,u) (13)

Linearizing about the nominal operating point, we get
L\T L\T
L= 3_ ow + 8_ Su (14)
ow Ju
oM\T oM\T
M=|—) éw+ |- ou (15)
ow du

It should be noted that for a simulation with one million finite
volumes, the dimension of w is four million for a 2-D simulation and
five million for a 3-D simulation. Thus, evaluating the above
derivatives is a formidable computational challenge. It is also
important to recognize that not all the derivatives are significant in the
above representation. Consider, for example, a cell in the far field.
The value of the state variables there is not going to change by much,
however rapid the oscillations. Therefore, it is of very little use to
evaluate these derivatives in our linearized model.

Instead, we choose to obtain a suitable reduced-order model that
captures the essential physics. The most obvious reduction that we
can obtain is in terms of «, &, h, and h. We therefore work with a
model of the form

. . aL\T
L=L,a+Lyoe+L,h+L;h+ 3 u (16)

. . oM\T
M=Ma0l+MaCl+Mhh+Mhh+ % u (17)
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Equations (16) and (17) assume that the nominal values of «, «, &,
and & and u are zero, respectively. Thus, for the flutter control
problem being studied, the following state vector is used:

x=[a @ h Al (18)

B. System Identification: Evaluation of Sensitivities

In our aerostructural model, the lift L and the moment M depend
on the complete system state w. However, using a full-order state
model to design a controller is not feasible, given the extremely high
dimensionality of the system. We therefore formulate a reduced-
order model of the system. For this model to be complete, we need to
evaluate the sensitivities with respect to the reduced-order state x and
the control variables u.

1. Sensitivities with Respect to the State Variables

The sensitivities of the lift and moment with respect to the state
variables are evaluated in two different ways.

First, we use theoretical results from Theodorsen, as reported in
[1]. Theodorsen theory assumes that the airfoil under consideration is
thin and is oscillating in an incompressible flow. Under these
considerations,

L, = npvi.c, L,= %‘”62
L,=0, L, = mpvyc

M, = npzfocz, M;=0

M,=0. M, :%ﬁcz

Here, p is the freestream density, v, is the freestream velocity, and ¢
is the chord of the airfoil.

In the least-squares method, we evaluate the sensitivities by
studying the unforced response of a pitching airfoil and then
estimating the sensitivities by a least-squares technique. We try to fit
the data thus obtained to functions of the form

L=Lya+ Lya+ Lyh + L;h
M = My + My + Myh + M;h

Our goal is to evaluate the sensitivities L,,, Lg, L, L;, My, My, M},
and M. We do this using a least-squares technique.

It can be seen from the simulation results that both techniques
work quite well. The system identification by the least-squares
technique works slightly better, in the sense that it achieves faster
stabilization. This can be attributed to the fact that this represents the
nonlinear system more closely.

2. Sensitivities with Respect to the Control Variables

We also need to evaluate the sensitivities of L and M with respect
to the control variables u, dL/du, and dM/du, respectively. We do
this are using an adjoint method. In our case, the control variable is
the normal mass flux at the wall pg,,.

Let us assume that we are trying to find the sensitivities due to the
control variables of a function / given by

I= [ M(w,pq,)dB; (19)
Be

Here, M is a function defined on the surface Bg. M is a function of
the state w and the control mass flux at the wall pg,,. For example,
when we are trying to compute dL/du, I is just the lift L. M is then
given by

M = Pik (20)

where 7 is the unit vector normal to the boundary, and k is the unit
vector normal to the freestream. It can be seen that in this case, the
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pressure P is a function of the flow state w, but not the surface mass
flux pgq,.

The next thing to be noted is that w and pg, are not arbitrary but
related to each other by the flow equations used to model the system:
in this case, the Euler equations. Thus, we also have a constraint
given by the Euler equations (8) and (9). Since Eq. (8) is true for any
test function ¢, we can choose ¢ to be the adjoint variable ¥». We can
then add the constraint given by the Euler equations (19) to form the
augmented cost function given by

1= L M(w. pq,) dB; — [g n VS, (0. pay) B,
;3 3

+ S;ifj(w, pq,) dD¢ 20

'
D, 0&;
Taking the first variation of the function /, we have

oM oM
8[:/(—511)—1——8 ,,)dB
5 S 304, (pg,) 3

of of,
_ RV e J
/ s, (G20 + 8004 ) as,

oy’ af; of;
D; 0é; Sij(% v dpq

+ S(pqn)) D (22)

n

We can then choose our costate variable v so that it satisfies the
adjoint equations

of \T oy
Sij(%) %—O, on Ds (23)
and
M O0F,
Pl v B on B; 24)

We also observe that

of;
904q,

=0, onD; (25)

The expression for the adjoint gradient then becomes

o1 = [ (5oe-dtan ) a5
B apqn

- L (wl Yt v+ Y+ U (E + %))&)qn a5, (26)
i3

It should be noted that the adjoint vector has the same number of
dimensions as the flow vector. For a 2-D problem, the adjoint vector
has four dimensions, and for a generic 3-D problem, the adjoint
vector has five dimensions. The gradient is then modified to account
for the fact that the nett mass flow through the boundaries is zero.

C. Flutter Control: Formulation of the Objective Function

We can define the flutter velocity as that point where we have
sustained oscillations of the system. Let us define the state vector x as
follows:

x=[a & h A @27

The control vector u is the vector of blowing/suction velocities at the
wall. The dynamics of the system are represented by the equations
derived in Sec. II. For the purposes of designing a controller, we
model the lift L and the moment M using a reduced-order model as
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presented in Egs. (16) and (17). The system model used to design a
controller is then

.. . aL\T

.. . oM\T
Sah + IO(& + KaO[ = (Maoc + Mad + Mhh + Mhh + (%) u)
This can be rephrased in state-space form as follows:

Mx = Ax + Bu (28)

Here, the matrix B represents the sensitivities of the state vectors with
respect to the control variables. This can be obtained by solving the
adjoint equations. Inverting M, we get a system of the form

x = Ax + Bu (29)

It is possible to design a controller for the system (29) using linear
quadratic regulator (LQR) techniques.

The objective of the problem is to control the system given by
system (29), so that the final value of the state vector is given by

x;=[og 0 h; O (30)

If this is rephrased as an optimization problem, the objective would
be to minimize the following function:

J= %/T((X —x1)"Q(x — x¢) + u’Ru) dr GD
0

where Q is a positive semidefinite weighting matrix and R is a
positive definite matrix. In our case,

0=1, R=c¢l

where / is the identity matrix, and ¢ is a small positive constant. R is
required to be positive definite, to ensure that the control computed is
not of unreasonable magnitudes.

A feedback-control gain matrix can be derived for the flutter
control problem by solving the Riccatti equation [16]. The
magnitude of control required at each actuator location is given by
the control gain matrix K, The results are presented in the next
section. It can be seen that this control law is successful in stabilizing
the system.

IV. Results

The following experiments were conducted on a symmetric
NACA 0012 airfoil at a freestream Mach number of 0.3. A 160 x 32
grid was used for the CFD simulation.

The structural properties were chosen as follows: [, = 60,
M =60, K, =60, K, = 60, and S, = 30. Our nominal rest point is
a=0°and h =0.

As discussed in the last section, the adjoint method is used to find
the gradients of lift and moment with respect to the control variables:
namely, the blowing and suction velocities on the surface. It should
be noted that this is done using a steady-flow assumption about the
nominal rest point of the system.

A. Application of Feedback Control to the Nonlinear Flutter
Problem

The uncontrolled and controlled aerostructural simulations are
represented in Figs. 2 and 3. It should be noted that even though the
feedback law is derived from a linearized model of the system, the
control is applied to a complete nonlinear model. Two different
methods are used to find the aerodynamic derivatives. It can be seen
that the least-squares method does a better job than the Theodorsen
method for flutter control. This is obvious, because this represents the

ENGINEERING NOTES

1.5

Uncontralled
Least Squares
Theodorsen f}-=---

il
i aintiy
MR A AN
| PV

Fig. 2 Variation of angle of attack (degrees) with time: controlled and
uncontrolled cases.

D05 L

rotation (degrees
o
=

-1.5

0.025

) Uncontrolled
Controlled (Least Squages)

0.02 Controlled (Theodoﬁn% wedd|

0.015 /\

001 A L

0.005 : /\
A
|
|
|

\
|
\

plunge (h/c)

-0.005 \ j ‘
-0.01 V

-0.015 . ! V \V V \/

-0.025
0

of) |
|

|
|
.
|

|

l
|

|
|
\V

5 10 15 20 25 30 35
time

Fig. 3 Variation of plunge /2 /c with time: controlled and uncontrolled

cases.

nonlinear system more accurately. It should be noted that in this case,
the actuation is continuous along the surface of the airfoil. The
corresponding blowing/suction velocities are shown in Fig. 4. It
should be noted that the freestream value of pg, in our simulation
was 1. So the values of blowing and suction controls required are
quite small. Moreover, we need zero control input at the equilibrium
point, which is what we desire.

B. Reduction in the Number of Actuators

Our next step is to specialize the control law thus derived to work
when the number of actuators is finite. It was found that flutter could
be controlled with as few as four actuators: one each in the leading
and trailing edges and one each in the middle of the upper and lower
surfaces. The fact that there are only four actuation points is
represented by zeroing-out the gradient everywhere except at these
four locations. (Every location is represented by a small cluster of
CFD cells to prevent numerical instability and damping of the
actuation values.)

The entire procedure outlined in the previous section is then
repeated to derive the feedback gain matrix K. It can be seen that the
matrix has nonzero values only at the desired locations of the
controllers. Consequently, actuation is performed only at these sites.
This is equivalent to controlling the problem with a finite number of
actuators.

It can be seen from Fig. 5 that flutter is controlled successfully,
even with a finite number of actuators. This is an important result, as
it implies that this system can be implemented on a practical
aerodynamic configuration.
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Comparing this to the continuous-actuation case in Fig. 2, we can
see that the damping rate is slower. This is to be expected, as the
control authority is reduced with fewer actuators.

V. Conclusions

In this work, we developed a feedback algorithm for the control of
flutter. We demonstrated the effectiveness of this control law in 2-D
simulations. We also explored possibilities for the reduction in the
number of actuators.

The control methodology described in this Note using blowing
and suction is more flexible than using traditional oscillating trailing-
edge control surfaces. We can choose to have the jets at strategic
locations along the surface of the wing or airfoil. These locations can
be chosen for optimum impact by doing an adjoint analysis.
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The actuation performed using this algorithm is the smallest
amount of actuation required for control purposes (as it is derived
using an LQR algorithm).

Moreover, the actuation performed is based on feedback from the
current flowfield, and an estimate of its future evolution is based on
the reduced-order model derived. This is a scientific way of
determining control input. The feedback nature of control ensures
that control is robust.
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