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Accelerated Iterative Calculation of Transonic
Nacelle Flowfields

D.A. Caughey*
McDonnell Douglas Corporation, St. Louis, Mo.

Antony Jamesont
New York University, New York, N.Y.

A method is presented for the calculation of inviscid, supercritical flowfields about axisymmetric inlet cowls.
A finite-difference calculation is performed in a simple, rectangular domain obtained from the nacelle geometry
by a nearly conformal mapping procedure. Type-dependent finite differences are constructed using a coor-
dinate-independent, ‘‘rotated’’ differencing scheme. Methods of accelerating convergence of the iterative
solution are demonstrated including a hybrid fast-Poisson-solver/relaxation scheme and an extrapolated
relaxation procedure. Calculated pressure distributions are compared with experimental data for a variety of
Mach numbers and mass flow ratios, and show generally good agreement.

Introduction

N recent years, finite-difference methods have been suc-

cessful in predicting the inviscid, supercritical flowfields
about increasingly complex configurations of aerodynamic
interest. Murman and Cole' - originated the idea of type-
dependent differencing for transonic flow  calculations,
applying the technique to the airfoil problem using the
transonic small-disturbance equation. The airfoil problem
was treatéed using the full potential equation by Korn and
Garabedian? and by Jameson,® who also included bodies of
revolution. Ballhaus and Bailey* have treated three-
dimensional wings within the framework of small-disturbance
theory, and Jameson® has treated the same problem using the
full potential equation, introducing a “‘rotated’’ differencing
scheme to allow greater freedom in the choice of coordinate
grids.

We are concerned here with the application of these
iterative, finite-difference techniques to the calculation of the
transonic flowfield about an inlet cowl, or nacelle. This
problem has been treated by Colehour,® who used the in-
compressible streamlines to generate a coordinate system.
This simplifies the construction of a stable iterative scheme
but introduces a singularity that forces the compressible and
incompressible stagnation points to coincide. An analysis also
has been given by Arlinger.” He used a sequence of con-
formal mappings to generate a rectangular computational
domain and a relaxation scheme to solve the system of
equations resulting from a -finite-difference approximation
which an upwind bias which was introduced in the local flow
direction at supersonic points. ‘

Our approach is similar in concept to Arlinger’s; however,
there are two main differences. First, our calculations are
performed in a slighly nonorthogonal coordinate system that
is obtained from the nacelle geometry much more simply by a
slight shearing of a simple, analytically performed conformal

Presented as Paper 76-100 at the. AIAA 14th Aerospace Sciences
Meeting, Washington, D.C., January 26-28, 1976; submitted Feb. 3,
1977; revision received July 7,1977.

Index categories: Transonic Flow; Computational Methods;
Aerodynamics.

*Scientist, Flight Sciences Department, McDonnell Douglas
Research Laboratories; currently Assistant Professor, Sibley School
of Mechanical and Aerospace Engineering, Cornell -University,
Ithaca, N.Y. Member ATAA.

tProfessor of Computer Science, Courant Institute of
Mathematical Sciences. Member AJAA.

mapping. Second, we have demonstrated several methods of
accelerating the convergence of the iterative scheme for
solving the finite-difference equations. These methods are
particularly useful if convergence to very small residuals is
desired. )

The geometry of the problem under consideration is shown
in Fig. 1. The nacelle is treated as a semi-infinite body, ex-
tending to -downstream infinity as a tube of constant wall
thickness. The inside cross-sectional area at infinity is denoted
by Acf; the reference area of the nacelle, taken to be that
defined by the leading-edge radius, is denoted by A4,,, and the
capture area is denoted by A,. The conventionally defined
mass flow ratio is given by A,/A,,. The freestream is assumed
to be uniform at infinity outside the nacelle, having a Mach
number M, and again uniform in the axial direction at
infinity inside the nacelle, with velocity (1+k) that of the
freestream. '

Analysis
Potential Equation

The analysis here is based upon the potential equation for
steady flow, which is accepted as an accurate approximation
to the Euler equations of inviscid flow in the absence of strong
shock waves. Furthermare, our analysis is based upon dif-
ferencing this ‘equation in nonconservative form. This ap-
proach does not yield the proper jump conditions across
shocks appearing in the solution,®® but results obtained from
such calculations generally agree well with experimental data,
probably because the error thus introduced tends to be
cancelled by that resulting from neglect of the shock-
wave/boundary-layer interaction,'® for which no satisfactory
solution yet exists. In the present analysis, no account is taken
of the displacement effect of the boundary layer. When a
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conservation form of the equation is used, it is generally more
important to account for boundary-layer displacement ef-
fects, especially in the vicinity of shock waves.

In cylindrical polar coordinates, the equation for the
velocity potential ¢ describing axisymmetric, steady flow can
be written as

(a2——u‘?)¢xx—2uv¢x,+(az—vz)dJ,, +(12U/"=0 (1)

where u=¢,, v=¢,, and a is the local speed of sound,
determined from the energy equation

@ =al—(y—1) (W’ +v?)/2 2)

where v is the ratio of specific heats for the assumed
calorically perfect gas, and a, is the stagnation speed of
sound. On the axis r=0, Eq. (1) is singular, and we must use
the fact that

v=0+r¢, +0(r?)
to arrive at the special form
(aZ _u2)¢xx +202¢,-,-=0 (3)

The equation is to be solved subject to the boundary con-
ditions that

u—1
s asx?+ri—o (4a)
v—0
outside the nacelle, and that

u—Il+k,v—0 (4b)

inside the nacelle at the compressor face. The parameter £ is

related to the mass flow ratio Q=A,/A, by the implicit
formula

k= (Ap/Ag) QU= (y—1)MZ (2k+Kk?) /2] 7171 =1 (5)
which is obtained using the isentropic relations.

The velocity potential is singular at infinity outside the
nacelle. To remove this singularity, the contribution of the
uniform stream is subtracted out, and a reduced potential G is
defined such that

G=¢—-x ©6)
The boundary condition inside the nacelle, Eq. (4b), is applied

at a finite distance representing the compressor face. The
equation for the reduced potential is thus

(@> —u?)Gy = 2uvG,, + (a° —v?)G,, +a’v/r=0 )
where now u=G, + 1, v=G,, and, on the axis,
(@’ -u’)G +24°G,, =0 8)

On the axis of symmetry, we also must apply the boundary
condition

G,=0 ©

and, at points lying on the body surface, the inviscid bound-
ary condition requires

v/u=tané, 10$)

where 0, is the local body inclination angle relative to the x
axis.
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Geometrical Considerations

The numerical calculation is performed on a rectangular
domain, obtained from the original coordinates in -the
physical plane by a series of transformations. We denote the
variable in the physical plane as z=x+ir, where x,r are the
axial and lateral variables, respectively, in any azimuthal
plane, and the coordinates are scaled such that point (1,7) lies
just inside the leading edge of the nacelle. The region outside
the nacelle surface first is mapped to an infinite strip of slowly

" varying width by the conformal transformation

z=Z—exp(—2) (11)

If we denote the real and imaginary parts of Z by X and Y,
respectively, then the width of the strip in the Y direction is
nearly equal to w, while the limit as X— — o corresponds to
infinity in the physical plane outside the nacelle, and the limit
as X + oo corresponds to infinity in the physical plane inside
the nacelle.

In order to provide a simple, rectangular domain for the
numerical calculation, the width of the strip is next made
constant by the shearing transformation {¢ =X, n=Y/S(X),
where S (X)) is the width of the strip as a function of X, which
can be calculated from the nacelle coordinates and the
transformation according to Eq. (11). Setting T(X)=1/
S(X), the equation for the reduced potential in this coor-
dinate system becomes

(@ = U?) Gy + [2xa® —2UV1Gy, + [a? (nx? +T7)
—V21G,, + [nxx (&> =U?) =2UVT'1G,
+P(U? —V?) +20VQ — [(U? + V) /h] [(R? +P)U

+OV]—[@’h/(Y+Q) ] IQU—(1+P)V]I=0 (12)

where
U=[G:+n(T"/TYG,+1+Pl/h (13a)
V=I[TG,+Ql/h (13b)
and
V=TV+ Uy (13¢)

Here P and Q are the real and imaginary parts of exp (—Z2),
respectively, R =exp(— X), and

dz |2 '
hzz‘ﬁ_zz_ =1+2P+R?

The body boundary condition, Eq. (10) in this coordinate
system, becomes
G - Q—-Sx(G; +1+P)
" T(1+5%)

(14)

to be applied along the line n=1.

Two final transformations are performed before the
equation is cast in finite-difference form for solution. First, to
remove the exponential behavior as X— —o, we define
{=X—exp(— X). Then, to reduce the computational domain
to a finite rectangle, we introduce the stretched coordinate X
according to ’

c=B(X-C)/(1-X")1 15)

whence X — +1 corresponds to X— + oo, i.e., infinity inside
and outside the nacelle, respectively. A uniformly spaced,
finite-difference grid is set up in the (X, 5) plane spanning the
region —1<X=<1, 0<y=1, which corresponds to the entire
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physical plane exterior to the nacelle surface. The constants
A, B, and C are chosen to concentrate the mesh points in
regions of high gradients. The distribution of mesh points in
the vicinity of the nacelle lip is shown for a typical case in Fig.
2 for a grid containing 256 cells.

Finite-Difference Formulation

In the coordinate system developed in the preceding section,
the flow is not always aligned, even approximately, with one
of the coordinate directions. Therefore, a coordinate-
invariant differencing scheme.is required which always adds
the artificial viscosity in a direction parallel to the velocity
vector at supersonic points. Such a scheme has been developed
by Jameson® and is the one we use. At supersonic points, the
principal part of Eq. (12) is rewritten as

aann+ (a2_q2)Gss=0 (16)

where n and s représent derivatives in the directions normal
and parallel to the local velocity vector, and ¢ is the
magnitude of the velocity. In terms of the original coor-
dinates,

& 2, 3
Gnn = GEE + (—]3 (q Mx — UV) Ggy,
1 _
+ 7 (¢° (0% +T?)-V?1G,, (17a)
U? 20V V?
Gss = q2 Ggg + q2 Gfﬂ + qz G’!’/ (l7b)

Upwind difference formulas then are used to represent the
contributions to G, while central difference formulas are
used to evaluate contributions to G,,,.

The resulting difference equations can be solved by
relaxation. In contrast to the simpler upwind difference
schemes that can be used for the small-disturbance equations,
however, the solution in the supersonic zone no longer can be
obtained by marching, and special care is required in the
construction of the iterative scheme to insure convergence.
For this purpose, it is useful to regard the relaxation scheme
as a discrete approximation to a time-dependent process, with
the iterations as time steps. After dividing by @7, the principal
part of the equivalent time-dependent equation can be written
as

G, + (1-M?*)G,; —2aG,, —2BG,, —26G, =0 (18)
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Fig.3 Computational domain, showing schematic streamlines.

where M is the local Mach number g/a, and the values of
a,B3,6 depend upon the particular combinations of old and
updated values of G used in the difference formulas. Then o
should be positive so that the cone of dependence lies up-
stream of the #-t plane and behind the s-n plane. Also, to
insure that s remains the timelike direction in the equivalent
unsteady problem, « should satisfy the compatibility con-
dition® o? >B? (M? —1). Larger values of « lead to a more
stable iteration but generally slower convergence. Finally, a
local von Neumann test indicates that & should be zero at
supersonic points. At subsonic points, however, 6 must be
nonzero to provide the damping required for convergence of
the successive overrelaxation scheme for elliptic operators.
Two alternative line-relaxation schemes incorporating these
ideas were tested. In the first scheme, the equations are in-
verted simultaneously along lines of constant X, sweeping the
field to the right for lines intersecting the inner nacelle surface
and to the left for lines intersecting the outer nacelle surface
(see Fig. 3). This is necessary to avoid sweeping in the up-
stream direction at supersonic points, which are assumed to
lie near the nacelle surface. In the second scheme, the
equations are inverted simultaneously along lines of constant
7, and the field is swept from the axis of symmetry to the
nacelle surface. In general, it was found that the -line scheme
converged somewhat faster than the X-line scheme in the pure
relaxation mode, whereas the X-line scheme seemed
preferable in the hybrid method described in the next section.

Fast Iterative Schemes

The line overrelaxation schemes described in the previous
section have the advantages of being quite stable and rapidly
eliminating large errors in the initial estimates for the
potential field, but their rates of convergence decrease as the
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errors become smaller, with the result that convergence to
very small residuals is excruciatingly slow, especially when the
mesh spacing is small. This problem can be overcome par-
tially by performing initial calculations on rather coarse grids
and using these solutions as initial estimates for solutions on
successively finer grids, as suggested by, e.g., South and
Jameson'! and Jameson.'? Ultimately, however, more ef-
ficient methods are required to obtain highly converged
solutions on fine grids. Two such methods are demonstrated
on the present problem. The first is a hybrid method proposed
by Jameson'® in which a fast Poisson-solver is used in
combination with relaxation; the second is an extrapolated
relaxation scheme that takes advantage of the fact that the
relaxation matrix has a dominant eigenvalue.

Hybrid Method
If Eq. (12) is divided by @’ T2, the linear portion is well
represented by

(1/T?*) Gy +G,, 19
except near the axis, where it takes the form

(1/T?) Gy +2G,, (0)

Let the correction to the potential at the kth iteration be
defined as

CcW =GWw G-

and let R (G % ) denote the residual of the equation evaluated
using values of G from the kth iteration. Then, if the linear
terms dominate the equation, an iterative scheme in which
Ck+1) js determined by solving the equation

(T CED +CYHD = —wR(GP ) /(a’T?) (2D

at each step can be expected to converge for some range of the
parameter w. The finite-difference form of Eq. (21) using
central differences for the terms on the left-hand side can be
solved directly using a fast Poisson-solver, since the grid
spacing is constant in the 5 direction. Thus a very high
computational efficiency can be realized. Unfortunately, the
linear terms do not dominate the equation in the supersonic
zone, and a local von Neumann test indicates that such an
iterative procedure becomes unstable at supersonic points,
even if upwind difference formulas are used in calculating the
residuals R on the right-hand side of Eq. (21). Numerical
experiments confirm this conclusion. The procedure can be
stabilized by desymmetrizing the operator on the left-hand
side of Eq. (21) for cases in which a nonrotated, type-
dependent formulation can be used, e.g., when treating the
transonic . small-disturbance equations.!* When the com-
plexity of the problem requires a rotated scheme, however,
this destroys the regularity of the iteration matrix required for
use of the fast Poisson-solver, and much of the advantage of
the method is lost.

Although this direct inversion scheme is unstable in
supersonic regions, it is possible to use the inherent stability of
the conventional relaxation process to overcome this,
resulting in a scheme that is stable overall. Jameson has
shown that, for the planar potential equation in a conformally
mapped computational plane, if each Poisson step is followed
by sufficient relaxation steps, the process again converges,'3
generally much faster than if the relaxation procedure is used
alone.

Such a procedure is used here, using the Buneman
algorithm® to invert Eq. (21), followed by p relaxation
sweeps of the field. In general, w=10.75 and p=35 seem to give
good rates of convergence for most problems thus far at-
tempted.
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Extrapolated Relaxation

It is well known that the convergence rate of relaxation
schemes suffers as the mesh spacing goes to zero, because the
spectral radius of the relaxation matrix then approaches unity
for most elliptic problems. Suppose that the relaxation matrix
has distinct eigenvalues, ordered such that 1>

N 1> IN I >->IAyl. Then, after many iterations, the
error vector, defined as e®> =G—G ), where G is the exact
solution, approaches the eigenvector corresponding to the
dominant eigenvalue, so that

etD —\ e 2)

Since the spectral radius IA; | is nearly unity for the mesh
spacings typically used, the final rate of convergence is slow.
A procedure using the behavior just described to extrapolate
relaxation solutions to very small residuals apparently was
proposed first by Lyusternik'® (see Forsythe and Wasow!”)
and also has been considered by Hafez and Cheng.'® The idea
is based upon the fact that

e+ _oh) — _ olh+D)

whence the use of Eq. _(22) gives
e =C*+D 7 (1—\;)

In order to remove the error ¢® remaining after k iterations,
this suggests that, in situations where Eq. (22) holds, one
ought to add C*+D /(1 -~ \,) instead of C**+D at the (k+ 1)st
iteration. This corresponds to using a. very large
overrelaxation factor (of the order of hundreds or even
thousands for typical problems).

In nonlinear problems of practical interest, it is difficult, if
not impossible, to estimate A; a priori (or even to predict
whether there will, indeed, be a dominant eigenvalue of the
relaxation matrix). However, assuming that such a dominant
eigenvalue does exist, the fact that

CH+D yCK) =gk fo k=) =), 23)

provides a convenient method of determining its value as the
iteration proceeds. During each relaxation sweep, the
correction at each point is compared with that from the
preceding sweep. If, at the end of the sweep of the entire field,
the standard deviation (or some other statistical measure of
the variance) of the values from the calculated mean X is less
than some fixed value, a dominant eigenvalue is judged to
exist, and a new correction, equal to A/(1 — A) times the most
recent correction, is added to the potential at each point.

Results

Results of calculations performed using the analysis
described in the preceding sections now will be presented.
First, results of calculations will be compared with ex-
perimental data for several nacelle geometries, Mach num-
bers, and mass flow ratios. Second, results illustrating the
advantages of the two types of iterative acceleration will be
presented for a single (typical) test case. For all results
presented, calculations were performed on a grid containing
128 mesh cells in the X direction and 32 mesh cells in the 3
direction. In some cases, preliminary calculations were
performed on 32 x 8 and 64 X 16 grids, and the results of these
solutions were used to provide starting data for the
calculations on finer grids.

The calculations were performed on CDC 6500 and CDC
6600 machines. For the fine grid (128 x 32), a single relaxation
sweep of the field requires typically 0.63 sec CPU time on the
6600 and about six times that amount on the slower 6500. The
Poisson-solver step requires slightly more than twice the time
of one relaxation sweep on the coarse grid and somewhat less
than three times that of one relaxation sweep on the fine grid.
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Comparisons with Experimental Data

Figures 4 and 5 present comparisons of pressure
distributions on the outside surface of a research cowl
designed and tested by the Douglas Aircraft Company, !° the
shape of which is shown in Fig. 2. The two cases are for
approximately the same mass flow ratio of @=0.700 and
show the flow development with increasing Mach number.
Agreement of the calculated results with the measured data is
quite good, even in the absence of corrections for viscous
effects.

Figure 6 presents results for an NACA 1-series cowl tested
by Re.? The comparison presented is for the 1-85-100 cowl
with a 1.046 internal contraction ratio operating at a mass
flow ratio of 0.8073. The pressure distribution predicted by
the present method is compared with that experimentally
measured at a freestream Mach number of 0.99. The plateau
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pressure over most of the nacelle is well predicted, although
the shock location is predicted too far forward. The location
of the shock in the experiment was apparently farther
downstream than the last pressure orifice on the model.

Accelerated Iterative Methods

Figure 7 illustrates the improved convergence rate of the
hybrid method over those of the two conventional successive-
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line-overrelaxation schemes for the case of Fig. 5. The largest
absolute value of the residual is taken as a measure of con-
vergence of the solution and is plotted as a function of
computing time (expressed in terms of equivalent relaxation
sweeps of the field). For residuals less than about 1076, the
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convergence rates of the relaxation schemes decrease rapidly,
whereas that of the hybrid method remains approximately
constant. This convergence rate may reasonably be expected
to continue until roundoff error is encountered (at levels of
about 10 on the CDC machines).

Figures 8 and 9 illustrate the improved convergence rates of
the extrapolated relaxation schemes for the same case (but on
the 64x 16 grid). Figure 8 compares results for the X-line
scheme, and Fig. 9 compares results for the 5-line scheme. In
each case, the extrapolated version of the scheme converges to
small residuals faster than the conventional version for all
fixed values of the overrelaxation factor w used. For each
scheme, calculations were performed for a number of values
of w, gradually increasing them until instability occurred.

The accelerated methods are particularly useful if con-
vergence to very small residuals is desired. In our calculations,
the residuals are normalized by multiplying by (AX)2, so that
they have the same order of magnitude as the corrections in a
line relaxation sweep. With this normalization, the error
resulting from incomplete convergence can be expected to be
of the same order of magnitude as the discretization error
when the residuals are reduced to ~(AX)2**, where « is the
order of accuracy of the difference scheme. Since ¢ is 1 in the
supersonic zone and 2 in the subsonic zone, the required level
of the residual should be less than 10-% on the fine grid. Such
levels can be reached easily with the accelerated methods but
only at great expense by relaxation.

Conclusion

The method presented converges rapidly to solutions of a
finite-difference approximation to the complete potential
equation for the inviscid, supercritical flow about inlet
nacelles, and results agree well with experimentally measured
pressure distributions for a variety of Mach numbers and
mass flow ratios. Methods for accelerating the convergence of
the iterative solution process are particularly useful when
convergence to very small residuals is required.

The use of a nonconservative differencing scheme is
justified on the basis of comparisons with experiment (see also
Ref. 10), but a more rational treatment of the potential
problem must use a conservation form of the equations and
include a treatment of at least the displacement effect of the
boundary layer. Such a conservation form easily might be
incorporated into the present program along the lines of the
analysis of Jameson.® The method also might be extended to
treat symmetric planar inlets and problems in which the
freestream is supersonic. These extensions would involve
modifications of the singularity and the boundary condition
at infinity outside the nacelle.
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field of materials formed in space. :

This book is a pioneer collection of papers describing the first efforts in this new and exciting field. They were brought
together from several different sources: several meetings held in 1975-76 under the auspices of the American Institute of
Aecronautics and Astronautics; an international symposium on space processing of materials held in 1976 by the Committee
on Space Research of the International Council of Scientific Unions; and a number of private company reports and specially
invited papers. The book is recommended to materials scientists who wish to consider new ideas in a novel laboratory en-
vironment and to engineers concerned with advanced technologies of materials processing.

594 pp., 6x9, illus., $20.00 Member 335.00 List

TO ORDER WRITE: Publications Dept., AIAA, 1290 Avenue of the Americas, New York, N.Y. 10019




