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Overview

During the last year ACL research on high-order methods has
been simultaneously directed at

Theory:
Formulation of energy stable schemes for arbitrary order of
accuracy for general elements

Implementation:
Development of new software SD++ for 2D and 3D
problems on mixed meshes written in C++ and also in Cuda
for GPUs.

Applications:
Flows with moving boundaries
Transitional flows
Flow past spinning sphere
Flow past flapping wings
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OVERVIEW OF HIGH-ORDER SCHEMES FOR
LINEAR ADVECTION
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Nodal Discontinuous Galerkin Scheme for Linear Advection
introducing collocation points xj in each element and define the local solution by the
Lagrange polynomial of degree p = n − 1.

uk
h =

n
X

j=1

uj lj(x)

where uk
h is the discrete solution in element k in the interval [-1,1]. The discrete residual

in the element k is written as

Rk
h =

∂uk
h

∂t
+

∂f (uk
h )

∂x

The Galerkin method requires the residual of the equation to be orthogonal to the basis
functions. Apply IBP twice, the nodal DG scheme in strong form is:

Z 1

−1

∂uk
h

∂t
ljdx +

Z 1

−1
lj

∂f (uk
h )

∂x
dx + [̂f − f (uk

h )]lj

˛

˛

˛

˛

1

−1
= 0

where f̂ is the numerical flux at the element interface.
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Nodal Discontinuous Galerkin Scheme for Linear Advection
Alternatively expressed the NDG scheme in matrix form as:

Mk du
dt

+Sk f + l(̂f − f )

˛

˛

˛

˛

xR

xL

= 0 where Mk
ij =

Z 1

−1

(xR − xL)

2
li ljdx and Sk

ij =

Z 1

−1
li l

′

j dx

Follow the flux reconstruction pocedure proposed by Huynh and rewrite the flux at each
boundary as

f̂ (−1) = auh(−1) + fCL, f̂ (1) = auh(1) + fCR

where fCL and fCR are boundary corrections

fCL = f̂ (−1) − auh(−1), fCR = f̂ (1) − auh(1)

With these, and for simplicity assuming upwind flux so there is no correction on the right,
the strong form of the nodal DG scheme can alternatively be expressed as

Mk du
dt

+ Sk f − fCLl(xL) = 0
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Spectral Difference Scheme for Linear Advection
the discrete solution is locally represented by Lagrange polynomial on the solution col-
location points xj as

uh =
n

X

j=1

uj lj(x) ,with uh spans [-1,1]

where for polynomials of degree p, n = p+1.Represent the flux by a separate Lagrange
polynomial, l̂j(x), of degree p + 1, defined by the n + 1 flux collocation points x̂j

fh =
n+1
X

j=1

fj l̂j(x)

The interior values at the flux collocation points fj = f (uh(x̂j )) where uh(x̂j ) is interpolated
from uh(x). The discrete flux can be expanded and rewritten as

fh(x) = fCL l̂1(x) +
n+1
X

j=1

fj l̂j(x) + fCR l̂n+1(x) = fCL l̂1(x) + auh(x) + fCR l̂n+1(x)
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Spectral Difference Scheme for Linear Advection
Differentiating the flux polynomial at the solution collocation to obtain the SD scheme

∂uh

∂t
+

»

a
∂uh(x)

∂x
+ fCL l̂ ′1(x) + fCR l̂ ′n+1(x)

–

= 0

Cast the SD scheme in matrix form

dui

dt
+

»

a
n

X

j=1

Dijuj + fCL
dl̂1
dx

(xi ) + fCR
dl̂n+1

dx
(xi )

–

= 0, where D = M−1S

Multiply the equation by the mass matrix, and assuming upwind flux like before to get

X

j

Mij
dui

dt
+ a

n
X

j=1

Sij uj + fCL

X

j

Mij l̂
′

1(xi ) = 0

Expanding the mass matrix in the last term, this can be further reduced to

X

j

Mij
dui

dt
+ a

n
X

j=1

Sij uj − fCLli(−1) = fCL

Z 1

−1
l ′i (x )̂l1(x)dx
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Flux Reconstruction Scheme for Linear Advection
the discrete solution is locally represented by Lagrange polynomial on the solution col-
location points xj as

uh =
n

X

j=1

uj lj (x)

In the FR scheme, the continous fj (x) is now made up of an interior flux term f D
j and a

correction flux term f C
j .

f D
h =

n+1
X

j=1

f D
j lj(x)

The interfaces f D
h (−1) and f D

h (1) are the interpolated values from f D
h (x). The deviation

from the desired continuous flux fj is

f C
h (−1) = fCL = fh(−1) − f D

h (−1) = f̂ (−1) − f D
h (−1)

Consider a degree k+1 correction function gL = gL(r) and gR = gR(r) that approximate
zero (in some sense) within the element while satisfying

gL(−1) = 1, gL(1) = 0 & gR(−1) = 0, gR(1) = 1
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Flux Reconstruction Scheme for Linear Advection
A suitable expression for f C can now be written in terms of gL and gR as

f C
h = fCL gL + fCR gR

The discrete flux fh that has continuous values across the element can now be con-
structed as follows

fh = f D
h + f C

h

Finally we differentiate the flux at the solution collocation points to obtain

dui

dt
+

» n+1
X

j=1

f D
j

dlj
dx

(xi ) + fCL
dgL

dx
(xi ) + fCR

dgR

dx
(xi )

–

= 0

or for linear advection with f = au, this can be written as

dui

dt
+

»

a
n+1
X

j=1

uj
dlj
dx

(xi ) + fCL
dgL

dx
(xi ) + fCR

dgR

dx
(xi )

–

= 0

This form of Flux Reconstruction scheme resembles the form of the SD scheme.
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Summary: NDG vs SD

NDG

Mk du
dt

+ aSku − fCLl(xL) = 0

SD

M
du
dt

+ aSu − fCLl(−1) = fCL

∫ 1

−1
l ′i (x )̂l1(x)dx
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Summary: SD vs FR

SD
∂uh

∂t
+

[

a
∂uh(x)

∂x
+ fCL l̂ ′1(x) + fCR l̂ ′n+1(x)

]

= 0

FR

dui

dt
+

[

a
n+1
∑

j=1

uj
dlj
dx

(xi ) + fCL
dgL

dx
(xi) + fCR

dgR

dx
(xi)

]

= 0
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OVERVIEW OF ENERGY STABILITY
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Energy Estimate for Linear Advection
Linear advection equation:

∂u

∂t
+ a

∂u

∂x
= 0

Consider the energy estimate for the linear advection by multiplying the linear advection
equation by u and integrate over the domain x that spans [a,b],

Z b

a
u

„

∂u

∂t
+ a

∂u

∂x

«

dx = 0

which, after expansion, shows it satisfies the energy estimate,

d

dt

Z b

a

u2

2
dx =

1

2
a(u2

a − u2
b)
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Energy Stability Proof for Nodal Discontinuous Galerkin
In Hesthaven [?], the stability of the nodal discontinuous Galerkin method has been
proved for the linear advection equation. Taking the strong form of the discretized linear
advection equation, and multiply it with the local solution to obtain

uT Mk du
dt

+ uT Sk f + uT l(̂f − f )

˛

˛

˛

˛

xR

xL

= 0

Since Mk and Sk have been pre-integrated exactly, this is equivalent to

d

dt

Z xR

xL

u2
h

2
dx + a

Z xR

xL

uh
∂uh

∂x
dx + uh (̂f − auh)

˛

˛

˛

˛

xR

xL

= 0

Here the middle term can be integrated and combined with the last term

d

dt

Z xR

xL

u2
h

2
dx = −(uh f̂ − a

u2
h

2
)

˛

˛

˛

˛

xR

xL

It can be shown that there is a negative contribution at every element boundary except
the inflow boundary, which is strictly less than the true boundary contribution.
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Energy Stability Proof Strategy for Spectral Difference

dui

dt
+

»

a
n

X

j=1

Dijuj + fCL
dl̂1
dx

(xi ) + fCR
dl̂n+1

dx
(xi )

–

= 0, where D = M−1S

X

j

Mij
dui

dt
+ a

n
X

j=1

Sij uj + fCL

X

j

Mij l̂
′

1(xi )

=
X

j

Mij
dui

dt
+ a

n
X

j=1

Sij uj − fCLli(−1) − fCL

Z 1

−1
l ′i (x )̂l1(x)dx

A new matrix Q is proposed in place of the mass matrix M so that its introduction leads
the SD scheme to the following form,

X

j

Qij
dui

dt
+ a

n
X

j=1

Sij uj + fCL

X

j

Qij l̂
′

1(xi ) =
X

j

Qij
dui

dt
+ a

n
X

j=1

Sij uj − fCL li(−1) = 0

If a suitable Q can be identified as above so that the basic form is retained while the
term that differentiates DG and SD is removed or absorbed, we can attain an energy
estimate for the SD scheme with the norm uTQu replacing the norm uTMu in the nodal
DG scheme in each element.
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Energy Stability Proof for Spectral Difference
The requirements for Q can be summarized as follows,

1 It has the following form Q = M + C
2 It retains the function of the mass matrix and satisfies QD = S
3 The last two requirements lead to the third requirement that CD = 0
4 The expansion of the follwing term eliminates the term that differentiates the SD

and DG schemes such that fCL
P

j Qij l̂ ′1(xi ) = fCLli (−1)

It is shown by Jameson [?] that the above requirements can indeed be satisfied by
choosing the matrix

Q = M + cddT

where dT is the pth difference operator. The first, second and third requirements are
satisfied, since for any polynomial Rp(x) of degree p, the combined operation by d and
D on Rp(x) leads to (p + 1)th derivative on pth degree polynomial, which is zero.

X

j

di

X

j

DijRp(xj ) = Rp+1
p = 0

This leaves only the parameter c to be determined which can satisfy the last require-
ment.
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Energy Stability Proof for Spectral Difference
It is shown that this is possible by picking c as

c =
2p

2p + 1

1

c2
p

1

p!(p + 1)!
> 0

where cp = 1·3·5...(2p−1)
p!

is the leading coefficients of the Legendre polynomial Lp(x) of

degree p. With this choice of C = cddT and Q = M + C, the SD scheme becomes,

X

j

Qij
dui

dt
+ a

n
X

j=1

Sijuj − fCLli (−1) = 0

and now the same argument that was used to prove the energy stability of the nodal DG
shceme establishes the energy stability of the SD scheme with the norm

||u|| =

Z „

u2 + c
„

∂pu

∂xp

«2«

dx

for the case of solution polynomial of degree p, provided the interior flux collocation
points are the zeros of the Legendre polynomial Lp(x).
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Energy Stability Proof for Flux Reconstruction
From the earlier section, we derived the energy estimate for the SD scheme using
boundary flux corrections in a way very similar to the Flux Reconstruction scheme. The
connection between the two schemes are (to some degree) implied by the similarity
of the final forms of the schemes. Hence it is also plausible to approach the energy
estimate of the FR scheme using a similar norm of the form

||u|| =

Z

u2 + c0

„

∂pu

∂xp

«2

dx

where c0 for FR scheme is to be determined.
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Energy Stability Proof for Flux Reconstruction
From Vincent, Castonguay and Jameson (2010), the first term can be written as

d

dt

Z 1

−1
u2

j dx = −â[u2
R−u2

L ]−2fCL

„

−uL−

Z 1

−1
gL

∂uh

∂x
dx

«

−2fCR

„

uR−

Z 1

−1
gR

∂uh

∂x
dx

«

and for the second term, setting c0 = c
2 ,

1

2

d

dt

Z 1

−1
c

„

∂puh

∂xp

«2

dx = −2cfCL

„

∂puh

∂xp

«„

dp+1gL

dxp+1

«

− 2cfCR

„

∂puh

∂xp

«„

dp+1gR

dxp+1

«

adding the two equations together we obtain the desired explicit expression as

d

dt

Z 1

−1
u2

j +
c

2

„

∂puj

∂xp

«2

dx = + 2(fCLuL − â
u2

L

2
) − 2(fCRuR − â

u2
R

2
)

+ 2fCL

» Z 1

−1
gL

∂uh

∂x
dx − c

„

∂puh

∂xp

«„

dp+1gL

dxp+1

«–

+ 2fCR

» Z 1

−1
gR

∂uh

∂x
dx − c

„

∂puh

∂xp

«„

dp+1gR

dxp+1

«–
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Difference between NDG and FR
Energy Norm of NDG

d

dt

Z xR

xL

u2
h

2
dx = −(uh f̂ − a

u2
h

2
)

˛

˛

˛

˛

xR

xL

Energy Norm of FR

d

dt

Z 1

−1
u2

j +
c

2

„

∂puj

∂xp

«2

dx = + 2(fCLuL − â
u2

L

2
) − 2(fCRuR − â

u2
R

2
)

Energy Stability Proof for Flux Reconstruction
Vincent, Castonguay and Jameson have shown that the FR scheme is energy stable if

1 Condition a:
R 1
−1 gL

∂uh
∂x dx − c

„

∂puh
∂xp

«„

dp+1gL
dxp+1

«

= 0

2 Condition b:
R 1
−1 gR

∂uh
∂x dx − c

„

∂puh
∂xp

«„

dp+1gR
dxp+1

«

= 0

3 Condition c: c0(k) < c < ∞, where c0(k) = −2
(2k+1)(akk !)2

A. Jameson Energy Stable Flux Reconstruction Scheme 22/ 62



Energy Stable FR Scheme for Advection and Diffusion
FR approach on Triangles

Implementation
Applications

Energy Stable Correction Functions
These three equations can be solved and the final expressions for the left and right flux
correction functions in terms of Legendre polynomials are written as

gL =
(−1)k

2

»

Lk − (
ηk Lk−1 + Lk+1

1 + ηk
)

–

gR =
(+1)k

2

»

Lk + (
ηk Lk−1 + Lk+1

1 + ηk
)

–

where ηk =
c(2k+1)(akk !)2

2 . Use of these correction functions leads to energy stable FR
schemes with a suitable c.
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Examples of ESFR Scheme - Nodal DG

gL =
(−1)k

2
(Lk − Lk+1) , gR =

(+1)k

2
(Lk − Lk+1)

which is a result of picking c = 0.

Examples of ESFR Scheme - Spectral Difference

By choosing c = 2k
(2k+1)(k+1)(akk !)2 , the resulting flux correction functions are

gL =
(−1)k

2
(1 − x)Lk , gR =

(+1)k

2
(1 + x)Lk

Examples of ESFR Scheme - Hyuhn Type FR Scheme

If the value of c is set equal to 2(k+1)

(2k+1)k(akk !)2 , the resulting flux correction functions are

gL =
(−1)k

2

»

Lk−(
(k + 1)Lk−1 + kLk+1

2k + 1
)

–

, gR =
(+1)k

2

»

Lk+(
(k + 1)Lk−1 + kLk+1

2k + 1
)

–

These will be referred to as VCJH schemes.
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PROOF OF STABILITY OF VCJH SCHEMES FOR
DIFFUSION EQUATION
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Stability of VCJH Schemes for Diffusion Equation
Consider the heat equation

∂u

∂t
−

∂2u

∂x2
= 0 (1)

which can be written as
∂u

∂t
+

∂f

∂x
= 0 (2)

where f = f (u, ∂u
∂x ) = − ∂u

∂x .
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Stability of VCJH Schemes for Diffusion Equation

Using the flux reconstruction approach, the approximation solution uδ is updated
using

∂uδ

∂t
= −

∂f δD

∂x
−

∂gL

∂x
(f δI

L − f δD
L ) −

∂gR

∂x
(f δI

R − f δD
R ) (3)

where f δD is a polynomial of order p which interpolates the values of the flux at
the solution points, i.e.

f δD(x) =
X

i

f δD
i li(x) (4)

gL and gR are corrections functions associated with the left and right interface,
respectively and f δI

L and f δI
R are common flux values at the interfaces.
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Stability of VCJH Schemes for Diffusion Equation

The values of the discontinuous flux at the solution points (f δD
i ) are computed

based on an approximation to the gradient of the solution, qδ which is
constructed as follows

qδ =
∂uδ

∂x
+

∂hL

∂x
(uδI

L − uδ
L ) +

∂hR

∂x
(uδI

R − uδ
R) (5)

where hL and hR are correction functions, uδI
L and uδI

R are common values of the
solution at the interfaces. Hence,

f δD
i = f (uδ(xi ), qδ(xi )) (6)
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Stability of VCJH Schemes for Diffusion Equation
If the correction functions gL, gR , hL and hR are the VCJH correction functions,
which satisfy

−

Z 1

−1
gL

∂uδ

∂x
dx + c

Z 1

−1

∂p+1gL

∂xp+1

∂puδ

∂xp
dx = 0 (7)

−

Z 1

−1
gR

∂uδ

∂x
dx + c

Z 1

−1

∂p+1gR

∂xp+1

∂puδ

∂xp
dx = 0 (8)

−

Z 1

−1
hL

∂qδ

∂x
dx + κ

Z 1

−1

∂p+1hL

∂xp+1

∂pqδ

∂xp
dx = 0 (9)

−

Z 1

−1
hR

∂qδ

∂x
dx + κ

Z 1

−1

∂p+1hR

∂xp+1

∂pqδ

∂xp
dx = 0 (10)

where c and κ are arbitrary constants, and ...
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Stability of VCJH Schemes for Diffusion Equation

if the common interface values of uδI and f δI are chosen as

f δI =
(f+ + f−)

2
+

γ

2
(f+ − f−) (11)

and

uδI =
(u+ + u−)

2
−

γ

2
(u+ − u−) (12)

then one can show that, for the heat equation,

1

2

∂

∂t
||uδ||2p,c = −||qδ||2p,κ (13)

where the norm || · ||p,c is defined as

||w ||2p =

Z 1

−1

"

w2 + c
„

∂pw

∂xp

«2
#

dx (14)
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FR APPROACH ON TRIANGLES
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Recent research on triangles

The stability of the NDG scheme on triangle is well
estabilished
Numerical experiments have indicated that the SD
schemes for triangles in the form proposed by Liu, Wang
and Vinokur is not stable.
May has shown that introducing Raviart Thomas basis
functions to represent the flux can yield stable schemes
Z.J. Wang has suggested the LCP scheme as a
generalization of FR to triangles
Using the flux reconstruction formulation we have been
able to derive energy stable schemes of all orders of
accuracy for triangles corresponding to the VCJH
schemes.
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FR approach on Triangles

As in 1D, f̂δ is written as the sum of a discontinuous flux and correction flux

f̂δ = f̂δD + f̂δC

Discontinuous flux f̂δD is approximated by:

f̂δ =

Np
X

i=1

f̂δD
i li

where
f̂δD
i = f̂(ûδ

i )
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FR approach on Triangles

Correction flux f̂δC takes the form:

f̂δC =
3

X

f=1

p+1
X

j=1

h

(f̂ · n)δI
f ,j − ((f̂ · n)δD

f ,j

i

hf ,j

(f̂ · n)δD
f ,j is the normal discontinuous flux

value at flux points f , j

(f̂ · n)δI
f ,j is a numerical flux (common for both

cells sharing that flux point)

(f̂ · n)δI
f ,j computed from a Riemann solver

(Roe or Rusanov for example)

Flux points (squares)
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FR approach on Triangles
In 2D, hf ,j is a vector correction function associated with flux point f , j . Correction func-
tions hf ,j satisfy:

1 hf ,j is in Raviart-Thomas space of order p which implies

hf ,j · n̂ is polynomial of order p along each edge
∇ · hf ,j is polynomial of order p

2

hf ,j(rf2,j2) · nf2,j2 =



1 if f = f2 and j = j2
0 if f 6= f2 or j 6= j2

Because of those properties, total flux f̂δ is continuous everywhere along each edge
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FR approach on Triangles
Example of a correction function hf ,j for p = 2:
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FR approach on Triangles
Can recover collocation-based nodal DG scheme if each correction function hf ,j
satisfies

Z

ΩS

hf ,j · ∇rs li dΩS = 0, for i = 1 to Np

Using divergence theorem, can solve for φf ,j = ∇rs · hf ,j directly from
Z

ΩS

φf ,j li dΩS =

Z

ΓS

`

hf ,j · n̂
´

lidΓS, for i = 1 to Np
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VCJH Schemes on Triangles
Linear stability guaranteed if correction functions hf ,j satisfy

κ

p+1
X

m=1

“ p

m − 1

” “

D(m,p)Li

” “

D(m,p)(∇ · hf ,j)
”

=

Z

ΩS

hf ,j∇LidΩS

for 1 ≤ i ≤ Np, where

D(m,p) =
∂p

∂r (m−p+1)∂s(m−1)

Li are members of an orthonormal basis (Dubiner basis)
` p

m−1

´

are binomial coefficients

κ is a scalar which must be greater than 0
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VCJH Schemes on Triangles

The form of each correction fields φf ,j is obtained by solving system of equations
on previous slide

As in 1D, we have a family of linearly stable high-order methods on triangles,
which are parameterized by a single scalar coefficient κ

By setting κ = 0, recover a collocation-based nodal DG scheme

Have yet to verify if other high-order methods can be recovered
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VCJH Schemes on Triangles
Accuracy has been investigated for linear advection equation in 2D on unstructured
triangular grid for κ = 0 and κ = κ+

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Measure of accuracy:

L2 error =

v

u

u

u

t

PN
n=1

PNp
i=1

“

ui,n − ue
i,n

”2

N · Np
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VCJH Schemes on Triangles
Numerical Experiment on advection equation in 2D

p Grid Size κ = 0 κ = κ+

L2 error Order ∆t ′max L2 error Order ∆t ′max
2 5 × 5 × 2 3.922e-02 - 0.288 1.362e-01 - 0.568

10 × 10 × 2 5.336e-03 2.82 0.272 2.131e-02 2.68 0.558
20 × 20 × 2 7.350e-04 2.91 0.262 2.947e-03 2.85 0.554
40 × 40 × 2 8.997e-05 3.03 0.254 3.720e-04 2.99 0.522
80 × 80 × 2 1.107e-05 3.02 0.250 4.660e-05 3.00 0.504

3 5 × 5 × 2 5.690e-03 - 0.190 1.605e-02 - 0.346
10 × 10 × 2 3.094e-04 3.87 0.178 1.211e-03 3.73 0.336
20 × 20 × 2 2.456e-05 3.99 0.168 7.809e-05 3.95 0.324
40 × 40 × 2 1.523e-06 4.01 0.160 4.910e-06 3.99 0.316
80 × 80 × 2 9.519e-08 4.00 0.150 3.069e-07 4.00 0.308

4 5 × 5 × 2 6.801e-04 - 0.136 1.842e-03 - 0.232
10 × 10 × 2 2.066e-05 5.04 0.130 5.424e-05 5.09 0.224
20 × 20 × 2 6.982e-07 4.89 0.124 1.803e-06 4.91 0.216
40 × 40 × 2 2.128e-08 5.04 0.120 5.449e-08 5.05 0.212

Table: Numerical Results obtained on the Irregular GridA. Jameson Energy Stable Flux Reconstruction Scheme 41/ 62
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IMPLEMENTATION
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Overview of Flow Solver Development
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Current Status of Flow Solvers Based on GPUs

A. Jameson Energy Stable Flux Reconstruction Scheme 44/ 62



Energy Stable FR Scheme for Advection and Diffusion
FR approach on Triangles

Implementation
Applications

Current Status of Flow Solvers Based on GPUs
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Current Status of Flow Solvers Based on GPUs
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APPLICATIONS
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Airfoils and Wings
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Airfoils and Wings
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Airfoils and Wings
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Airfoils and Wings
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Airfoils and Wings

Movie of Transitional Flow over a Plunging SD7003

(Video)
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Airfoils and Wings
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Sphere and Torus
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Spinning Sphere

Movie of a Spinning Sphere

(Video)
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Complete Configurations - Flapping Wing Vehicle
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Flapping Wing Vehicle

Movie of a Flapping Wing Vehicle

(Video)
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Complete Configurations - Predator
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CLOSING REMARKS
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Conclusions
CFD has been on a plateau of Raynolds Averaged
Navier-Stokes (RANS) simulaitons for the past 15 years. These
are not adequate for vortex dominated and transitional flows
such as rotorcraft, flapping wing MAV, or high-lift systems

Rapid advances in computer hardware will enable a transition to
large eddy simulation (LES) for industrial applications with
complex geometry within the foreseeable future.

High-order methods for unstructured meshes provide an
essential building block for LES which can capture the bulk of
the turbulent energy.

Advances in subgrid modeling for wall bounded flows will also be
needed. We are performing preliminary tests of SD and FR
simulations with a wall adopted similarity model.

These advances can also provide a basis for aero-accoustic
simulations of airframe noise emanating from landing gear or
high-lift systems.
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QUESTIONS AND ANSWERS
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