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Energy Stable FR Scheme for Ac on and Diffusion

onTr

Applications

During the last year ACL research on high-order methods has
been simultaneously directed at
@ Theory:
o Formulation of energy stable schemes for arbitrary order of
accuracy for general elements
o Implementation:

o Development of new software SD++ for 2D and 3D
problems on mixed meshes written in C++ and also in Cuda
for GPUs.

o Applications:

o Flows with moving boundaries

o Transitional flows

o Flow past spinning sphere

o Flow past flapping wings
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OVERVIEW OF HIGH-ORDER SCHEMES FOR
LINEAR ADVECTION
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Energy Stable FR Scheme for Advection and Diffusion

Nodal Discontinuous Galerkin Scheme for Linear Advection

introducing collocation points x; in each element and define the local solution by the
Lagrange polynomial of degreep = n — 1.

n
u,'j = Z uj Ij(x)
j=1

where u,‘j is the discrete solution in element k in the interval [-1,1]. The discrete residual
in the element k is written as

auk o (u)
ot (024

k
Ry =

The Galerkin method requires the residual of the equation to be orthogonal to the basis
functions. Apply IBP twice, the nodal DG scheme in strong form is:

1 duk /1 Of(uf)

1
h 2 k

—ldx + | dx + [f — f(ud)]l =0
_1 ot ! ,1J OX [ (h)]J 1

where f is the numerical flux at the element interface.
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Energy Stable FR Scheme for Advection and Diffusion

Nodal Discontinuous Galerkin Scheme for Linear Advection

Alternatively expressed the NDG scheme in matrix form as:

MkdiLl +Skf+|(f—f) — 0 where Mkij :/ Mliljdx and Skij =/ |i|j/dx
dt XL -1 2 =4

Follow the flux reconstruction pocedure proposed by Huynh and rewrite the flux at each

boundary as
f(=1) = aup(-1) +fer, (1) =aun(l) +fer

where fc and fcg are boundary corrections
foo =f(—1) —aun(-1), fer =f(1) —aup(1)

With these, and for simplicity assuming upwind flux so there is no correction on the right,
the strong form of the nodal DG scheme can alternatively be expressed as

du
Mka + Sk —fo l(x ) =0

neson



Energy Stable FR Scheme for Advection and Diffusion
FR approach on Triangle

Implerr ation
Applications

the discrete solution is locally represented by Lagrange polynomial on the solution col-
location points x; as

n
Un = »_ ujli(x) ,with up, spans [-1,1]
=1

where for polynomials of degree p, n = p+ 1.Represent the flux by a separate Lagrange
polynomial, Tj(x), of degree p + 1, defined by the n 4 1 flux collocation points X;

The interior values at the flux collocation points f; = f(up, (%j)) where un (X;) is interpolated
from un(x). The discrete flux can be expanded and rewritten as

n+1
fo(x) = fer fa(x) + ijfj(x) + ferlni1(x) = feli(x) + aun(x) + ferlna (x)
i=1

meson
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FR approach on Triang!

Implement:
Applications

Differentiating the flux polynomial at the solution collocation to obtain the SD scheme

Oy [aauh(x)

ot X + ferlf (x) +fCR|A|;+1(X)} =0

Cast the SD scheme in matrix form

du, { ZD|JUJ+fCL lxl(xi)-l-fc:Rd:;;l( )} =0, where D=M"1S

Multiply the equation by the mass matrix, and assuming upwind flux like before to get

d
ZM” Ui +aZS”uJ +fCLZM”I1

Expanding the mass matrix in the last term, this can be further reduced to

du; n 1 .
Sy +ad ] Sy —folk(—1) =fo _[1 100l (x)dx
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Impler ation
Applications

the discrete solution is locally represented by Lagrange polynomial on the solution col-
location points x; as

n
Uy = Z Ujlj (X)
j=1

In the FR scheme, the continous f;(x) is now made up of an interior flux term ij and a

correction flux term fjc.
n+1

Y = f24(x)
j=1

The interfaces fP(—1) and fP(1) are the interpolated values from fP(x). The deviation
from the desired continuous flux f; is

fif (1) = for = f(=1) = (1) = F(-1) - {2 (-1)

Consider a degree k+1 correction function g, = g (r) and ggr = gr(r) that approximate
zero (in some sense) within the element while satisfying

g(=1)=1, g (1)=0 & gr(-1) =0, gr(1l) =1

eson
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A suitable expression for f¢ can now be written in terms of g, and gg as

¢ = foL oL+ fer OR

The discrete flux f,, that has continuous values across the element can now be con-
structed as follows
fy = P + £

Finally we differentiate the flux at the solution collocation points to obtain

(x.)+fCR—<x.)] ~0

ZfD +fC|_

dU, |: n+1 dgL

or for linear advection with f = au, this can be written as

x)}:o

du n+1 d
e [ ZUJdJ(Xu +fC|_ (X|)+fCR ngR(

This form of Flux Reconstruction scheme resembles the form of the SD scheme.

meson



Energy Stable FR Scheme for Advection and Diffusion

Summary: NDG vs SD

NDG

MKC;“ +asku —fol(x) =
SD

1
M(:j_t +aSu — fCLI( ) fCL/ |i/(X)|1(X)dX
1

A. Jameson



Energy Stable FR Scheme for Advection and Diffusion

Summary: SD vs FR

SD
ou ou A
8—th+ |:a 8h( )—I—fCLl ( )+fCRII{1+l(X):| =0
FR
du; 2 dy dg. dgr
S [Zu,d (0] + o1 Goe(x) + fon g ()] =0

A. Jameson
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OVERVIEW OF ENERGY STABILITY




Energy Stable FR Scheme for Advection and Diffusion

Energy Estimate for Linear Advection

Linear advection equation:

ou AF a@ =0

at - ox
Consider the energy estimate for the linear advection by multiplying the linear advection
equation by u and integrate over the domain x that spans [a,b],

b
/ u(a—u +a8—u)dx =0
& ot (524

which, after expansion, shows it satisfies the energy estimate,

d [Pu? 1
el ~dx = = 2 _ 2
| o= jaei-uw)

2




Energy Stable FR Scheme for Advection and Diffusion

Energy Stability Proof for Nodal Discontinuous Galerkin

In Hesthaven [?], the stability of the nodal discontinuous Galerkin method has been
proved for the linear advection equation. Taking the strong form of the discretized linear
advection equation, and multiply it with the local solution to obtain

XR

d .
uTMkd—ltJ FuTskuTIF—f)| =0

WL
Since M and Sk have been pre-integrated exactly, this is equivalent to

XR

d R uZ R Qup
— —dx+a/ u—dx+u f—au =0
dt/xL - . " Bx h( h)

XL

Here the middle term can be integrated and combined with the last term

d /R uﬁ u2
dx = —(upf —a=
dt/ 2 &= —(nf—azy)

XR

XL

It can be shown that there is a negative contribution at every element boundary except
the inflow boundary, which is strictly less than the true boundary contribution.

eson
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duI

di
{ ZD.JUJHCL (x.)+fCR d”“( )} —0, where D=M"1s

Z My - d“' ¥ aZ Sjuj + for Z M (%)

du;

fZMu

A new matrix Q is proposed in place of the mass matrix M so that its introduction leads
the SD scheme to the following form,

1
+aZsUuJ fCLIi(—l)—fCL/_lli’(x)Tl(x)dx

du;
! +aZS”UJ fCLI ) 0

n
Z Qu dUI +a Z Siju; + fer Z Qijq(xl Z Qu
=1 i

If a suitable Q can be identified as above so that the basic form is retained while the
term that differentiates DG and SD is removed or absorbed, we can attain an energy
estimate for the SD scheme with the norm uTQu replacing the norm uTMu in the nodal
DG scheme in each element.
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FR apy 0 a

Energy Stability Proof for Spectral Difference

The requirements for Q can be summarized as follows,
O It has the following form Q =M + C
O It retains the function of the mass matrix and satisfies QD = S
O The last two requirements lead to the third requirement that CD = 0
O The expansion of the follwing term eIirpinates the term that differentiates the SD
and DG schemes such that fc| Zj Qjj Ii(xi) = feoLli(—1)

It is shown by Jameson [?] that the above requirements can indeed be satisfied by
choosing the matrix
Q=M+cdd"

where d7 is the p" difference operator. The first, second and third requirements are
satisfied, since for any polynomial Rp(x) of degree p, the combined operation by d and
D on Rp(x) leads to (p + 1)1 derivative on p" degree polynomial, which is zero.

pOLDSLERIRLERY
i i

This leaves only the parameter c to be determined which can satisfy the last require-
ment.

neson
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Energy Stability Proof for Spectral Difference

It is shown that this is possible by picking c as

_m 11
~ 2p+1cZp!(p+1)

where ¢p = L(z"l) is the leading coefficients of the Legendre polynomial Lp(x) of

degree p. With th|s choice of C = cdd" and Q = M + C, the SD scheme becomes,

dy;
ZQ,, '+aZs”uJ foli(=1) =0

and now the same argument that was used to prove the energy stability of the nodal DG
shceme establishes the energy stability of the SD scheme with the norm

= (o(22) o

for the case of solution polynomial of degree p, provided the interior flux collocation
points are the zeros of the Legendre polynomial Lp(x).

A. Jameson




Energy Stable FR Scheme for Advection and Diffusion

Energy Stability Proof for Flux Reconstruction

From the earlier section, we derived the energy estimate for the SD scheme using
boundary flux corrections in a way very similar to the Flux Reconstruction scheme. The
connection between the two schemes are (to some degree) implied by the similarity
of the final forms of the schemes. Hence it is also plausible to approach the energy
estimate of the FR scheme using a similar norm of the form

oPu\?
_ 2
||u||_/u +Co<8xp) dx

where cq for FR scheme is to be determined.




Energy Stable FR Scheme for Advect on a1d Dn‘f sion

Energy Stability Proof for Flux Reconstruction

From Vincent, Castonguay and Jameson (2010), the first term can be written as

d ! ou ou
a/lujzdx— a[uR—uL]—ZfCL< u — / g,_—hdx) 2fCR(uR / ORrR hdx)

and for the second term, setting co = £,

1d 1 /oPup\2 Pup /dPtig, APup [ dPtigg
2dt /_1C< OxP ) dx = —ZCfCL<‘8Xp ) ( dxpP+1 ) — 2Cfcr ( OxP )< dxp+1 )

adding the two equations together we obtain the desired explicit expression as

d c /8Pu N\ 2 P U3
—/ U2+ Z (== dx :+2(fCLuL—a—L)—2(fCRuR —a—R)
412 2 2

dt OxP
Uh 8puh dp+lgL
+ 2fcL |:/ g|_ dx — ( OxP ) ( dxp L
uh APup [ dPtlgg
+ 2fcr V gr "o — ( " ) ( o




Energy Stable FR Scheme for Advection and Diffusion

Difference between NDG and FR

Energy Norm of NDG

d =l
dx = —(unf
dt/ 2 = —(un

Energy Norm of FR
d 1, c/oPu)\? L u? _u2
— u?+ = (=) dx =+ 2(fqLu. —a—+) — 2(fcrUg — AR
dt/ J+2(8Xp) + 2(feLuL 2) (fcrUR 2)
.

Energy Stability Proof for Flux Reconstruction

Vincent, Castonguay and Jameson have shown that the FR scheme is energy stable if
i
Q conditiona: [*; TR a“h dx — c(%px“ph) (ddi:ff) =0

Q condition b: [*; gr Xndx — C(aapxuph) (d;:i’l*gﬁ) =0

@ condition ¢: co(k) < ¢ < oo, where co(k) = m

A. Jameson
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FR approach on Tri
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These three equations can be solved and the final expressions for the left and right flux
correction functions in terms of Legendre polynomials are written as

—1)k bk —1 + Lk
gL:(2) |:|—k_( 11 +1}
+ Mk

+1)K Lx_1 + L
R ( )|:Lk+(77kk 1 k+1)}

2 1+

c(2k+1)(ak!)?
2

where n = . Use of these correction functions leads to energy stable FR

schemes with a suitable c.




Energy Stable FR Scheme for Advection and Diffusion

Examples of ESFR Scheme - Nodal DG

—il k +1 k
oL = %(Lk —Lky1) s OR = %(Lk — Lky1)

which is a result of picking ¢ = 0.

1
| \

Examples of ESFR Scheme - Spectral Difference

2k

Rk LDk the resulting flux correction functions are
(k!

By choosing ¢ =

_1)k k
gL:( 21) (1-x)k , 9r = (+) — (1 +x)Lg

2k +1) >, the resulting flux correction functions are

If the value of c is set equal to [CEEOTOR

(1)
2

A. Jameson

K 4+ 1)Lg_7 + kL +1)K K4+ 1)Lg_1 + KLyqq ]
g = ( Jhi—1 k+1)} ,gR:( ) |:|-k (( M1 S=

L, —
{k ( 2k +1 2 2k +1 )_




PROOF OF STABILITY OF VCJH SCHEMES FOR
DIFFUSION EQUATION
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O Consider the heat equation

ou 92
ot ox2
which can be written as
ou of
ot | ox

where f = f(u

__ _0u
’8x)_ ax "

@

@)
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@ Using the flux reconstruction approach, the approximation solution u? is updated

using

au’ ool Hg, a9

_:____fél_féD __Rfél_fED 3

ot Ox 8x(" L) (‘)X(R R ®)
where 4P is a polynomial of order p which interpolates the values of the flux at
the solution points, i.e.

FOP(x) = D _7h(x) @
i

g, and gg are corrections functions associated with the left and right interface,
respectively and f’' and f3' are common flux values at the interfaces.
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FR approach on Triangles

Applications

@ The values of the discontinuous flux at the solution points (fi5D) are computed

based on an approximation to the gradient of the solution, q° which is
constructed as follows

du’  oh oh
5 _ o a—XL(uﬁSI —ud)+ Z)XR ud —ud) (5)

q

where h; and hg are correction functions, ul‘f' and ug' are common values of the
solution at the interfaces. Hence,

0 = f(u’ (x), a° () ©
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FR approach on Triang!
Imple 0
Applications

O If the correction functions g, , gr, h. and hr are the VCJH correction functions,

which satisfy
1 oul 1 aerlgL oPud
- —d [ dx =0 7
/_19L ax X T et axp @
i aud 1 0p+lgR oPud
— —dx +c ——dx =0 8
/_19R ox + _q1 OxPt+l 9xp ®
Y S PO X N o
_1  OX _1 OxPtl 9xp

1 5 1 gp+1 oo
_/ hR‘l)id>(_~_,.i FThe 8P’ (10)
_1 OX _1 OxP+l 9xP

where ¢ and « are arbitrary constants, and ...

eson
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if the common interface values of u®' and f9' are chosen as

f(5| (f+ +f-

2
and

ut +u—
u5|:( +

2

then one can show that, for the heat equation,

10

)+%(f+7f’)
) 2w )

5 1120 = =18l «

where the norm || - ||p,c is defined as

2 1
wliz = |
P -1

meson
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FR APPROACH ON TRIANGLES




Energy Stable FR Scheme fo

@ The stability of the NDG scheme on triangle is well
estabilished

@ Numerical experiments have indicated that the SD
schemes for triangles in the form proposed by Liu, Wang
and Vinokur is not stable.

@ May has shown that introducing Raviart Thomas basis
functions to represent the flux can yield stable schemes

9 Z.J. Wang has suggested the LCP scheme as a
generalization of FR to triangles

o Using the flux reconstruction formulation we have been
able to derive energy stable schemes of all orders of
accuracy for triangles corresponding to the VCJH
schemes.

A. Jameson
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@ Asin 1D, f is written as the sum of a discontinuous flux and correction flux
§6 _ oD | sC
O Discontinuous flux 0 is approximated by:
Np
=3 0
i=1

where

e =t@)
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Correction flux f€ takes the form:

3 p+i

e =3 S [ m)h = (@)

f=1 j=1

Q (f. n)f‘;’? is the normal discontinuous flux
value at flux points f, j

Q (f. n)f‘s"j is a numerical flux (common for both
cells sharing that flux point)

Q (f. n);!, computed from a Riemann solver
(Roe or Rusanov for example)




Energy Stable FR Scheme for Advection and Diffusion
FR approach on Tri

In 2D, hy ; is a vector correction function associated with flux point f, j. Correction func-
tions hy ; satisfy:

O h¢ j is in Raviart-Thomas space of order p which implies
o htj-h i; polynomigl of order p along each edge
o V- hy is polynomial of order p

o

1 iff=fhandj=j,
hej(rey i) - Nty jp = { 0 iff £ 00 #jo

Because of those properties, total flux ¢ is continuous everywhere along each edge
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FR approach on Triangles

Im| nt;
Applications

O Can recover collocation-based nodal DG scheme if each correction function hy
satisfies

/ hfl 'VrSIi dQS :0, fori=1to Np
Qs
@ Using divergence theorem, can solve for ¢; ; = Vs - hy ; directly from

/ ¢f,j|idszs:/ (hy, - A) kdrs, fori = 1to Np
QS rS
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FR approach on Triangles

Impl
Applications

Linear stability guaranteed if correction functions hy ; satisfy

p+1

P ™oL (DMP) (v . )) = VL.
ﬁmZ:l (.0 ) (e™PL) (D™P(V -hey)) = T
for 1 <i < Np, where

o P

p(m.p) — d—p
Or(m—p+1) Hg(m—1)
@ L; are members of an orthonormal basis (Dubiner basis)
9 (" ,) are binomial coefficients

Q k is a scalar which must be greater than 0

meson



Energy Stable FR Scheme for Advection and Diffusion
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© The form of each correction fields ¢ j is obtained by solving system of equations
on previous slide

@ Asin 1D, we have a family of linearly stable high-order methods on triangles,
which are parameterized by a single scalar coefficient x

@ By setting x = 0, recover a collocation-based nodal DG scheme

O Have yet to verify if other high-order methods can be recovered
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Accuracy has been investigated for linear advection equation in 2D on unstructured
triangular grid for k = 0 and k = x4

Measure of accuracy:

L, error =

mes!
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Numerical Experiment on advection equation in 2D

p Grid Size k=20 K= Ky
L, error Order  Atpax | Lo error Order Aty
2 5x5x2 3.922e-02 - 0.288 | 1.362e-01 - 0.568
10 x 10 x 2 | 5.336e-03 2.82 0.272 | 2.131e-02 2.68 0.558
20x 20 x 2 | 7.350e-04 291 0.262 | 2.947e-03 2.85 0.554
40 x 40 x 2 | 8.997e-05 3.03 0.254 | 3.720e-04 2.99 0.522
80 x80x2 | 1.107e-05 3.02 0.250 | 4.660e-05 3.00 0.504
3 5x5x2 5.690e-03 - 0.190 1.605e-02 - 0.346
10 x 10 x 2 | 3.094e-04 3.87 0.178 | 1.211e-03 3.73 0.336
20 x 20 x 2 | 2.456e-05 3.99 0.168 | 7.809e-05 3.95 0.324
40 x 40 x 2 | 1.523e-06 4.01 0.160 | 4.910e-06 3.99 0.316
80 x80x 2 | 9.519e-08 4.00 0.150 | 3.069e-07 4.00 0.308
4 5x5x2 6.801e-04 - 0.136 | 1.842e-03 - 0.232
10 x 10 x 2 | 2.066e-05 5.04 0.130 | 5.424e-05 5.09 0.224
20 x 20 x 2 | 6.982e-07 4.89 0.124 | 1.803e-06 4.91 0.216
40 x 40 x 2 | 2.128e-08 5.04 0.120 | 5.449e-08 5.05 0.212

eson
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SD ESFR

2D/3D Navier-
Stokes Solver
Y

- )
CPU GPU
Unstructured Unstructured
Quad/Hex Tri/Tetra
_ Meshes
Deforming Adaptive

Meshes Capturing Refinement




CPU: Xeon X5670
o6 cores

02.93 Ghz

032 GB/s bandwidth

GPU: Tesla C2050
014 SM’s x 1536 threads
01.15 Ghz, 448 cores
0144 GB/s bandwidth
oPeak performance
(double): 515 Gflops

Implementation

Desktop cluster of 3 Tesla C2050 GPUs
oSpeed equivalent to 240 Intel Xeon 5670
2.93GHz CPU cores




Implementation

80
70 97.13 Gflops 98.54 Gflops
88.94 Gflops
85.18 Gflops

60 79.71 Gflops
e b
=

40
©
g)) 49.82 Gflops
S 30
(%]

20

10

0 T T
1 2 3 4 5 6

Order of Accuracy
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14 1.2 Teraflops
o
20000 cells Double Precision! | >,

=12
%_ & 40000 cells
— 10 80000 cells
2 & 160000 cells
2 s 320000 cells
i
o
Ote
o
3
S 4
Q
)
04

L O N N S

2 4 8 12 16

Number of GPUs
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Energy Stable FR Scheme for

Eppler61 Airfoil at Re=46,000 at 6°, 8°, 10°, 12°, and
14° angle of attacks
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Vorticity Contour
—

8 degree

10 degree

12 degree

14 degree

nesol
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Movie of Transitional Flow over a Plunging SD7003

(Video)




plungesd7003.avi
Media File (video/avi)
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Movie of a Spinning Sphere

(Video)




spinsphere.avi
Media File (video/avi)
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Movie of a Flapping Wing Vehicle

(Video)




flappingwing.avi
Media File (video/avi)
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O CFD has been on a plateau of Raynolds Averaged
Navier-Stokes (RANS) simulaitons for the past 15 years. These
are not adequate for vortex dominated and transitional flows
such as rotorcraft, flapping wing MAV, or high-lift systems

O Rapid advances in computer hardware will enable a transition to
large eddy simulation (LES) for industrial applications with
complex geometry within the foreseeable future.

O High-order methods for unstructured meshes provide an
essential building block for LES which can capture the bulk of
the turbulent energy.

O Advances in subgrid modeling for wall bounded flows will also be
needed. We are performing preliminary tests of SD and FR
simulations with a wall adopted similarity model.

O These advances can also provide a basis for aero-accoustic
simulations of airframe noise emanating from landing gear or
high-lift systems.

A. Jameson
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QUESTIONS AND ANSWERS
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