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Various methods are explored in the computation of time-periodic solutions for au-
tonomous systems. The purpose of the work is to illuminate the capabilities and limitations
of methods, including a new method developed as part of the work, not based on time inte-
gration for the fast computation of limit-cycle oscillations (LCO). Discussion will focus on
methodology, robustness, accuracy, and frequency prediction. Results for a model problem
are shown in which temporal discetization errors during LCO are taken to machine zero.
Treatment of sharp transients during LCO is also discussed.

I. INTRODUCTION

A number of engineering problems fall into the category of time-periodic systems. Some of these appli-
cations are, stator-rotor combinations in turbomachinery, helicopter blades in forward flight, wind turbines,
flapping flight, flow control using synthetic jets and limit-cycle oscillations. The numerical prediction of
limit-cycle oscillations will be the focus of this paper.

Limit-cycle oscillation (LCO) is a limited-amplitude, self-sustaining oscillation produced by an aero-
structural interaction. LCO results in an undesirable airframe vibration and limits the performance of the
flight vehicle.

The prediction and alleviation of LCOs in air vehicles continues to be a challenge. State-of-the-art
computational techniques for predicting LCO responses in aeroelastic systems still use time-integration
methods which require a great deal of computational effort which translates into long turn-around times.
These features make these methods not suitable for design optimization or routine use in the test and
evaluation environment. The goal of the current work is to determine the range of applicability of models
of varying fidelity to the numerical prediction of LCOs and the development of fast spectral methods for
evaluating the dependence of LCOs on stochastic system parameters.

A cyclic method was developed to compute limit-cycle oscillations for potentially large, nonlinear, multi-
disciplinary systems of equations.1 To improve on this 2nd-order cyclic/finite difference method, two spectral
based techniques are implemented. One is the time spectral method2 developed at Stanford University which
is along the lines of the harmonic balance method3 developed at Duke University. These are algorithms that
use a Fourier representation in time. The second method is the spectral element method4, 5 implemented
here in a novel way for periodic systems in time.
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This paper will compare and contrast the three methodologies, their robustness, accuracy and frequency
prediction capabilities. A simple model of an aeroelastic airfoil with nonlinear structural coupling will be
used to demonstrate the efficacy of the procedure. In the final paper, a two-dimensional nonlinear panel will
be considered.

II. Formulation

In this section, the mathematical formulation of the problem will be described. The cyclic method in
combination with the finite difference method for the time discretization has been described in previous
work.1 The cyclic method will again be described here for clarity. Two other computational techniques, the
Time Spectral method and the Spectral Element method will be used in conjunction with the cyclic method
in place of the finite difference discretization.

A. Cyclic Method

Time-periodic solutions of the autonomous system

dx

dt
= f(x, λ)

are sought, where t is time, x(t) is an Nf -dimensional array of real variables, and f is an array of Nf

nonlinear functions, dependent on x and a free parameter λ. The period of the response is denoted by T ,
such that

x(t) = x(t+ T ).

The time variable is scaled, s ≡ t/T , leading to an equation in which the period appears explicitly,

dx

ds
= T f(x, λ). (1)

A set of points on the periodic orbit atNt uniformly distributed time levels is selected, leading to an expanded
set of NtNf unknowns,

X ≡ (X1,X2, ...XNt
)T = (x(s1),x(s2), ...,x(sNt

))T ,

where the subscript specifies the time level(i.e., sj+1 = sj + ∆s; ∆s = 1/Nt).
Using the trapezoidal rule, (1) is descretized to yield an expanded collection of equations:

Gj ≡
T

2
(Fj+1 + Fj) − (

dX

ds
)j = 0 (j = 1, ..., Nt), (2)

where Fj ≡ f(x(sj)). The time derivative term dX
ds

will be discretized using three different strategies and
will be described in the later sections.

A closed set of equations,

G ≡ (G1,G2, ...,GNt
,GNt+1,GNt+2)

T = 0,

is obtained by adding a pair of scalar constraints to (2) that prevent the solution from being trivial (i.e.
X = 0 for all j):

GNt+1 ≡ (Xj)k1 − β1 = 0, (3)

GNt+2 ≡ (Xj)k2 − β2 = 0, (4)

where j is an arbitrary point on the cycle, usually taken to be 1, and k1 and k2 are indices corresponding
to two different variables at that time instant. Constraint (3) is used to identify the ”starting” point of the
cycle, such that β1 = 0 (assuming an oscillation approximately centered about 0 for the selected variable).
Likewise, (4) is used to set the amplitude of the cycle, such that β2 6= 0. For the problem investigated herein,
k1 = 1 and k2 = 2.

The addition of two equations is accompanied by an increase in the number of unknowns by 2. These
unknowns are XNt+1 ≡ λ and XNt+2 ≡ T . Thus, a total of NtNf + 2 equations are solved for not only the
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LCO solution, but also the period of the oscillation and the value of the free parameter λ at which the LCO
meets the amplitude constraint (4).

In symbolic form, the complete system of ”cyclic” equations is expressed as

G(X) = 0, (5)

where this system is solved for expanded form of X,

X = (X1,X2, ...XNt
, λ, T )T .

System (5) is solved with Newton’s method, and IMSL routines are used to carry out the matrix calculations.
Typically, about 10 Newton iterates are required to satisfy G = 0 to machine precision.

The Jacobian, J of the system is formulated numerically about some current solution approximation,
Xν , through one-sided approximations (εJ is set to 10−6):

[J(Xν)]i,j ≡
1

εJ
(Gi(X

ν
j + εJ) −Gi(X

ν
j )). (6)

1. Finite Difference Formulation

The time derivative term is discretized using finite differences, so that,

(DsX)j ≡ (
dX

ds
)j =

Xj+1 −Xj

∆s

.

Periodicity must be enforced in closing (5) at the end points. For the form of discretization described above,
the last equation will take the form,

(DsX)Nt
≡ (

dX

ds
)Nt

=
X1 −XNt

∆s

.

With this modification, the time derivative operator takes the shape of a periodic-banded structure, i.e. a
banded matrix with a wrap-around term.

2. The Time Spectral Method

The Time Spectral Method was originally proposed and validated in.2 This method falls into the same
category of algorithms called Harmonic Balance methods developed by K. Hall3 from Duke University and
Nonlinear Frequency Domain methods developed by McMullen et.al.6, 7 from Stanford University. This class
of algorithms take advantage of the periodic nature of the problem, and use a Fourier representation in time.
Whereas Harmonic Balance techniques use Fast Fourier Transforms(FFTs), the Time Spectral method works
in the time domain by expressing the time-derivative operator as a matrix operator.

Recall that
X = (X1,X2, ...XNt

, λ, T )T

where
X1 = (x1, x2, x3, ..., xNf

)1,

i.e., X1 is an array of all points in the Nf -dimensional array at time level 1. Construct an array w which
consists of one variable at all time levels.
The discrete fourier transform of w, for a time period ”1” (scaled time s has a period of 1), is given by

ŵk =
1

Nt

Nt−1
∑

n=0

wne−ik2πn∆s

and its inverse transform,

wn =

Nt
2

−1
∑

k=−

Nt
2

ŵke
ikn2π∆s , (7)
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where the time period is divided into Nt time intervals(Nt even), ∆s = 1/Nt.
From Eq.(7), the time discretization operator Ds can be written as

Dsw
n = 2π

Nt
2

−1
∑

k=−

Nt
2

ikŵke
ik2πn∆s .

This summation involving the fourier modes ŵk, can be rewritten in terms of w in the time domain, both
for even and odd Nt as,2, 8, 9

Deven
s wn =

Nt
2

−1
∑

m=−

Nt
2

+1

devenm wn+m,

and

Dodd
s wn =

Nt−1

2
∑

m=
1−Nt

2

doddm wn+m,

where

devenm =

{

π(−1)m+1 cot(πm
Nt

) : m 6= 0

0 : m = 0

and

doddm =

{

π(−1)m+1cosec(πm
Nt

) : m 6= 0

0 : m = 0

Note that d
−m = −dm for both even and odd Nt. Hence Ds takes the form of a central difference operator

connecting all the time levels, yielding an integrated space-time formulation which requires the simultaneous
solution of the equations for all time levels.

Since the computation of Ds involves terms at all the time levels (i.e., full stencil), the time derivative
matrix operator is full, which is typical of spectral methods. And since spectral methods use global basis
functions in the form of sines and cosines, periodicity need not be explicitly imposed.

3. Spectral Element Formulation

Polynomial nodal expansions are based upon the Lagrange polynomials which are associated with a set of
nodal points. The location of these nodal points in the domain play an important part in the stability
of the approximation and the conditioning of the system. Using nodal points at the zeros of the Gauss-
Legendre-Lobatto integration rule produces an efficient expansion which does not exhibit the oscillations
seen when equi-spaced points are chosen. This class of nodal p-type elements are called spectral elements
due to Patera.4

In this section, the formulation of the spectral element method for the system (1) will be presented. First,
multiply equation (1) by the test function v(s) and integrate over the orbit,

∮

v(s)
dw

ds
ds =

∮

v(s)Tf(w(s))ds.

Using periodicity and the chain rule, rewrite as,

−

∮

w(s)
dv

ds
ds = T

∮

v(s)f(w(s))ds.

Since the entire orbit/domain is divided into a number of elements, consider the integral in each element,

−

∫

Ωj

wj(s)
dvj
ds

ds = T

∫

Ωj

vj(s)fj(w(sj))ds,
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using vj(s) = φj

T

∫

Ωj

φpjfj(w(sj))ds+

∫

Ωj

wj(s)
∂φpj
ds

ds = 0.

Using a change of variables, s = sj + ψ+1

2
(sj+1 − sj), rewrite as

T

1
∫

−1

φpj (ψ)fj(w(ψ))
ds

dψ
dψ +

1
∫

−1

wj(ψ)
dφpj
dψ

dψ = 0

This equation is integrated using Gauss quadrature. Since the orbit is divided into sub-intervals, the time
derivative in each sub-interval is directly dependent only on the points in its own sub-interval. In this way,
some level of sparsity is retained, at the same time, high accuracy is ensured by using high-order polynomials
within each sub-interval. Periodicity is enforced during global assembly by wrapping around the first and
last elements.

III. Current Results

A. The Airfoil Problem

The aeroelastic system studied here is a nonlinear symmetric airfoil in low-speed flow, described by two
physical DOFs: pitch and plunge.In the current study, a fifth-order element is added to the pitch restoring
force, in addition to the third-order stiffness investigated previously.10 The plunge DOF has linear stiffness
but the pitch DOF includes a third-order and fifth-order stiffness terms in addition to the linear component.
Hence, the restoring force associated with the torsional spring is expressed as Kα(α+k3α

3+k5α
5), where Kα

is the dimensional linear stiffness and k3 and k5 are the dimensionless parameters governing the third- and
fifth- order nonlinearities respectively. The free parameter λ, is defined to be a nondimensional parameter
proportional to flight speed (“reduced velocity”), which when sufficiently large, leads to flutter or LCO
responses of the system. The airfoil dynamics are represented by a system of eight ODEs, obtained through
linear modeling of the aerodynamics.10 The final form of the 8-DOF system is given in .11 The details of
the Hopf bifurcation can be found in.1 A typical LCO branch is shown Figure 1.
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Figure 1. An LCO branch showing subcritical Hopf bifurcation

The computation of cyclic solutions requires the specification of initial conditions for the iterative process.
Time integrations of system response in pitch and plunge revealed a clock-wise rotation of the phase portrait
in these two parameters (pitch plotted on the abscissa). An initial approximation to the LCO dynamics was
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imposed by assuming a circular trajectory in pitch and plunge, using the target cross-over value of plunge
(β2) to set the LCO amplitude.

The parameters governing the LCO are a specified plunge value (β2) at a vanishing angle of attack (β1).
Plunge values are reported in nondimensional form, using airfoil chord as a scale factor. The torsional spring
parameters k3 and k5 are specified to be -3 and 20, respectively, to produce a subcritical Hopf bifurcation.12

Figure 2(a) and (b) show comparisons of LCO branches in terms of specified values of β2 for selected
number of scaled time intervals per cycle (Nt) using finite difference method and time spectral method
respectively. Note that as β2 decreases, the LCO response weakens. The selection of Nt=100 leads to LCOs
well converged in time step over most of the range in β2 for the finite difference case. Whereas the time
spectral method captures the LCO branch over the entire range of β2 with just 40 scaled time intervals, to
plotting accuracy.
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(a) Finite Difference
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(b) Time Spectral method

Figure 2. Comparison of LCO branches in terms of specified β2 for selected numbers of scaled time steps per
cycle(Nt) using Finite Difference and Time Spectral methods

A strong nonlinear response is observed beyond the subcritical Hopf bifurcation point computed at about
λ = 6.29. This is further illustrated in Figure 3 and 4. Figure 3(a) shows the LCO(pitch vs. plunge), (b)
shows the initial and final solution of variation of pitch as a function of scaled time and (c) the initial and
final solution of plunge, computed at β2 = 0.3 and λ = 6.9351.

Similarly, the phase-plane plots for β2 = 0.015, a point close to the cyclic fold, are shown in Figure 4.
This point shows a weaker response and hence requires fewer time intervals for high accuracy. The pitch
and plunge also show a “sine”-like behavior which can be captured with fewer frequencies. Whereas for the
strong nonlinear response point, the pitch curve shows a marked asymmetry and a variation unlike a “sine”
function. These also transform into sharp-transients in the LCO plots, moving away from the ”ellipse”-
like structure. These characteristics require larger number of time intervals or DOF to be captured to high
accuracy. Spectral based techniques with their high-order polynomial formulation have the ability to capture
these features with smaller DOFs.

Figure 5 shows the log-log error (T − Tc) plot with refinement in Nt computed with the 3 different
computational techniques for the strong nonlinear response point, β2 = 0.3. Here Tc is the time period
computed with 200 time intervals per cycle with the time spectral method. The convergence of the cyclic/FD
method is verified to be second-order(algebraic convergence). Convergence of the cyclic/time spectral method
using odd number of Nt shows near exponential convergence. Cyclic/time spectral algorithm shows machine
precision accuracy with just 70 DOFs. Cyclic/spectral element h-extension (increasing number of elements,
keeping P fixed, P=2) also shows algebraic convergence. A p-extension (increasing order of polynomial P,
keeping number of elements fixed, Nt = 2), shows close to exponential convergence.

Similarly, Figure 6 shows the log-log error plot for a weaker LCO point, β2 = 0.15. Convergence rates are
very similar to the strong response point, but the cyclic/time spectral method converges to machine precision
using only 40 DOFs. As explained earlier, this is attributable to the fact that the frequency content in this
case is lower, as shown in Fig 4. Also, for small number of DOF (Nt < 10), this case shows smaller error
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(a) LCOs
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(c) Time history of plunge

Figure 3. Phase-plane plots computed for β2 = 0.3(initial and final iterate of pitch and plunge shown)
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(b) Time history of pitch

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Scaled Time (s)

P
lu

ng
e 

(c
ho

rd
s)

(c) Time history of plunge

Figure 4. Phase-plane plots computed for β2 = 0.15(initial and final iterate of pitch and plunge shown)

compared to the β2 = 0.3 case.

IV. Conclusions and Future Work

Two spectral based computational techniques were implemented in combination with the cyclic method
for the numerical prediction of LCOs. As expected, the finite difference method showed algebraic convergence.
The time spectral method based on global basis functions captured rapid-transients with few DOF, but could
prove to be prohibitive for big systems since it produces full matrices. On the other hand, the spectral element
method showed good promise with respect to accuracy and has the potential for hp convergence. It produces
sparse matrices and uses high-order polynomials to ensure high accuracy.

We propose to include the following attributes in the final paper:

• The cyclic/spectral element method has the capability to be made adaptive in regions of steep-transients
where higher resolution might be required. Implement a strategy for defining spectral elements of
unequal sub-intervals in time.

• A simple aeroelastic model of an airfoil with nonlinear structural coupling was used to show the efficacy
of the procedure in this abstract. Use a more challenging problem like a 2D nonlinear panel in high
speed flow and study the capabilities and limitations of the various techniques.

• Improve the efficiency of the numerical formulations, especially the iterative process which currently
takes up most of the CPU time.
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Figure 5. Computed time period error plot using the three different computational methods for β2 = 0.3
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Figure 6. Computed time period error plot using the three different computational methods for β2 = 0.15
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