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Abstract

Reliable but slow methods for calculating transonic flows
have been developed in recent years. These use central differ-
ence formulas in the subsonic (elliptic) zone, and upwind
difference formulas in the supersonic (hyperbolic) zone.

This report describes an improved iterative method for solving
the resulting difference equations. Each iteration consists
of two stages: in the first stage a direct method.is used.,

to solve Poisson's equation with the nonlinear fﬁerms treated
as a forcing function; in the second stage the relaxation
method is used to sweep out the errors in the supersonic zone.
The combined method gives fast convergence, whereas the

Poisson method by itself diverges when there is a region of

supersonic flow, and relaxation by itself is very slow.



l. Introduction.

This report describes an improved iterative method for
solving nonlinear partial differential equations of mixed type
which appear in the calculation of transonic flows. 1In
particular the equations to be considered are the transonic
potential flow equation and the transonic small disturbance
equation.

The potential flow equation can be derived from the Euler
equations for’compréssible fluid flow by introdu@;ng the
assumption that the flow is irrotational, so thég‘we can
define a‘potential ¢. -Then we find that in smooth regions of
flow ¢ satisfies the quasilinear equation

(1.1) ¢7 v

- 1,2 2
by T 2 (Wl 2uve  + Vi)
In this equation u and v are the velocity components

(1.2) us=¢_ , v =9

and a is the local speed of sound. Given the ratio of
specific heats vy, and the stagnation speed of sound ag

a can be determined from the energy equation

(1.3) a2 = a2 - xz1 q2

in which g is the speed



Equation (1.1) is elliptic when the local Mach number g/a < 1,
and hyperbolic when M > 1. The boundary conditions are that

the normal velocity vanishes at the body,

(1.4) %% =0 on a given curve

and that the flow is uniform with a preséribed speed at infinity.

Smooth transonic solutions are known to exist only in special
cases [l]. We must thereﬁére admit weak solutions with appropriate
discontinuities [2]. Since an irrotational flow is isentrspic

e

the discontinuities are not true shock waves buﬁaﬁsentropic
jumps. If the normal component of mass flow and the tangential
component of velocity afe conserved across the discontinuities,
and we also exclude discontinuous expansions, then they will
be fairly good approximations to shock waves of moderate strength.
The momentum deficiency across the discontinuities then provides
an approximation to the wave drag [3].

- We can ensure satisfaction of these jump conditions by

treating .the equation in the conservation form

3 9 _
(1.5) 3% (Po,) + 5y (p¢y) =0
where p is the density. If M_ is the Mach number of the
free stream at infinity, then p can be determined from the

local speed of sound by the relation

(1.6) pY_1 == Mozoa2

The form (1.5) also corresponds to the Bateman variational

principle that



I=- ff p dx dy

is stationary, where p is the pressure
_ oY
p = 2
Y M,

If the profile is given in the form

y = 1 £(x)

s

where T is a sufficiently small parameter, we can expect,the
disturbances to be small. If we expand the solution in powers
fob

2/3, and retain

of 1T under the assumption that 1 - Mi noT
only the leading term, we can then obtain the transonic small

disturbance equation [4]. A typical form is

(1.7) by ¥ O, = A O

XX vy XX

where A is an approximation to the square of the local Mach

number given by

¢

(1.8) | A=M(1+ (y+D) o)

In this equation ¢ 1is the disturbance potential, so that the
velocity components are 1+q>x and ¢Y. The boundary condition

at the body is transferred to the x axis, becoming
(1.9) ¢, === at y=0.

Thus we have the double simplification that the upwind direction
is known to be the x direction, and that the Neumann boundary

condition no longer has to be satisfied on a curved profile.



In order to ensure satisfaction of the proper jump conditions
we can also write the small disturbance equation in conservation

form as

3 - 2 +1 2 2
(1.10) s 1Mo, - 5= Miel) + byy = O

Reliable but slow methods have been developed in the last

few years for solving both the transonic small disturbance

equation and the transonic potential flow equation.These methods
N

are based on the idea, first introduced by Murman and Cole [5], .

of using central difference formulas in the éubéghic zone and

upwind difference formulas in the supersonic zone. As an illus-

tration consider the small disturbance equation in conservation

form (1.10). Let pij be a central difference approximation

to the terms containing the X derivatives:

1-m2
Pij = 7,2 (0541,57 20547 51,50
) (Y+1)M°2°,{ _ 2 2}
= _——ZAX3 (¢i+1,j ¢lj) = (¢lj ¢i—l,j)
1-a, .
= ‘Z‘El (05401, 2054% ¢5.0, 50
X
where
— 2 Y+l -
Big = Mol * g3y (040,57 951,50

Also let qij be a central difference approximation to ¢yy

= 1 -
%37 32 {¢i,j+1 2055 ¥ ¢i,j—1} y



Define a switching function with the value unity at

Uij

supersonic points and zero at subsonic points

0 if A,. <1
= 1]
uij =
1 if aA.,. > 1
1J —

Then we approximate (1.10) by

(1.11) P P =0

Tou i-lrj

i3 7 93 7 MigPig T Mi-a, g

This gives the standard central difference approximation f0r an
R
elliptic equation at subsonic points. At supersopic points pij

is replaced by the upwind formula p. ¢+ giving a scheme

1_1'j
similar to the usual implicit scheme for the wave equation.
Supersonié points immediately after entering the supersonic zone

are treated as 'parabolic' points, since p is cancelled but

ij
Hio1,5 = 0. Subsonic points immediately after leaving the
14
supersonic zone are treated as shock points [6] at which pij
and pi71,j are summed.

The added terms are an approximation

Hi5Pij T Mi-1,3Pi-1,3
to 9P/%x where

_ 3 w2y - YFl 2.2
P=uAx o {(-M)e - 5= mie7) .

Thus the conserved quantity is modified by a term of order Ax.
The scheme satisfies Lax's conditions for a difference scheme
in conservation form [2], and in the limit as Ax > 0 it can
be shown that the correct conservation law is satisfied across

discontinuities [6]. We can regard 3P/39x as an artificial



Viscosity introduced by the numerical scheme to give the correct
directional property that the region of dependence is upwind,
and to enforce satisfaction of a proper entropy condition by
excluding the appearance of expansion shocks.

The usual methoq for solving the nonlinear difference
equation (1.11) is a generalization of the relaxation method
for elliptic equations. At each point we first calculate Aij
using values of ¢ij frgﬁ the previous iteration, and hence
determine the appropriate form of the difference equationsf
Then with the coefficients Aij frozen we solvéﬁé set of
linear equations for the correction to the potential on each
successive vertical line, marching downstream. In forming these
equations we add in the correction at adjacent upstream lines
to make use of the latest available information, and at
elliptic points we use an over-relaxation factor to increase
the magnitude of the correction.

.Let Rij be the residual multiplied by sz, evaluated at

each point using values of ¢ij from the last cycle,

R.. = sz (p

1] P

i3 ¥ 95 7 Hi5Pij * Mi-1,5 Pi-1,3)

Then the equations to be solved for the correction Cij which

must be added to ¢ij are
Ax, 2, _ _ _ 2
3y (Ci, 3417 2Ci5% Ci,5-1) TAuy A (- 5 CigF Cig, )
(1.12)
*Hio1,5 Bi-1,5 ©iy 7 %Cie1,5 Y Ci-2,5) T 7 Ry



where w 1is the overrelaxation factor for subsonic points.
Each cYcle is equivalent, after the calculation of the
coefficients Aij r to a line relaxation scheme in the subsonic
zone, and a marching scheme in the.supersonic zone. Since the
supersonic difference scheme is implicit there is no limit on
the step length Ax. With an explicit scheme Ax wbuld have
to be reduced at points near the sonic line where Aij approaches
zero, in order to satisfy'the Courant Friedrichs Lewy stability
condition. On evary line we have to solve a tridiagonal set of
equations. The tridiagonal matrix is diagonallgxdominant and
can be safely factorized as the product of upper and lower
bidiagonal matrices. Thus the total number of operations in
a cycle is directly proportional to the number of points.
Generalizations of this approach have been used for the
transonic potential flow equation [7,8,9]. 1In this case the
upwind direction is no longer necessarily aligned with the x
coordinate, and it may be necessary to use a 'rotated' upwind
diffeéence scheme in the supersonic zone [9]. The use of one-
sided differencing corresponds to an essential property of
transonic flow, that the solution for a profile with fore and
aft symmetry is not symmetric. Instead there is a smooth
acceleration over the front half of the body followed by 4
discontinuous recompression through a shock wave. If a
completely symmetric numerical scheme were used, any solution
that could be computed for such a profile would be symmetric,

and must therefore exhibit improper discontinuities in the flow.



The effectiveness of these methods is by now well established,
at least for two dimensional and axisymmetric calculations [10,
11,12)]. It is a common practice for aircraft to cruise at a
high subsonic speed just below the point at which the appearance
of strong shock waves causes the onset of drag rise. 1In this
regime the approximation of potential flow does not lead to
serious error. In fact, if a correction is made for the dis-
placement effect of the Yiscous boundary layer, the agreement
with experimental data is often excellent [12,13].’ Their main
shortcoming is the slow rate of convergence of ﬁﬁé iterative
method, requiring hundreds or even thousands of cycles. As a
result it is a common practice to terminate calculations at a
point where it is not clear that the result has fully convergea.
A faster rate of convergence would alleviate this difficulty.
It is also extremely desirable if calculations are to be

attempted for more complex geometric configurations.



2. Construction of a Fast Iterative Scheme for the Small

Disturbance Equation

Denoting by L the finite difference operator which approxi-
mates the partial differential operator, let the discrete form

of (1.7) be written as

(2.1) L =0

1

where ¢ is now regarded as a vector. To set up an iterative

(k)vdenote the potential before'éhe start of

bl
the kth iteration. Then consider a scheme of the form

procedure let ¢

(k+1) (k)

(2f2) N¢ (N-L) ¢

where N is a finite difference operator which should be as

close to L as possible. If we denote the correction by

(k+1) _ (k)

C=29¢ ¢

and the residual by

R = 16

L¢
it is useful to allow generalizations of the form
(2.3) NC=-wR

where w is a relaxation factor.
As a guide to the convergence of such a scheme we can

consider the linearized equation which is obtained by freezing



the nonlinear coefficients Aij’ Let L be the cdrresponding

linearized operator and let ¢ be the solution of

Also let e(k) be the error at the kth step

(x)

e = ¢ - ¢

Then ‘
N(e(k+l)'— e(k)) w £ e(k) )

or » .

e(k) = M e(k) N
where M is the iteration operator

_1 ~

(2.4) M=N (N -w L)

A necessary condition for convergence is

lim 1M1 = 0 .

ko

kﬂ >> 1, then

If this condition is satisfied, but for some k, M
the round off error introduced k steps previously will be
amplified. Thus it is safer to use a scheme for which IMI < 1.

The relaxation method is derived by first linearizing L at

each iteration, and then choosing N as the lower triangular

part of the corresponding matrix operator £(k). By choosing
for N a closer approximation to £§k) we can expect to obtain

a faster rate of convergence. We are constrained, however, by
the need to find an economical method of performing the computa-

tions for each iteration.



In recent years fast direct methods have been developed
for solving finite difference approximations to Poisson's

equation on a rectangle
(2.5) Q ¢=R

Here the matrix Q representing the discrete Laplacian operator

has the block structure

[T -I ]

_I T _I ’:~
(2.6) Q = -I T -I
-I T -I

L—

where I is the identity matrix, and for equal mesh spacings

in the x and y directions T has the form

4 -1
-1 4 -1
(2.7) T = -1 4 -1
-1 4 -1
R -1 4]

By taking advantage both of the sparse structure of Q, and of
its regularity, it is possible to solve the discrete Poisson
equation on a square with n cells on each side with a
number of operations proportional to n2 log n. This operation

count is obtained by matrix decomposition methods



using the fast Fourier transform [14,15] and also by the
method of odd-even reduction, a numerically stable variant of
which was developed by Buneman [16,17].

The form (1.7) of the small disturbance equation suggests
that the discrete Laplacian Q¢ is a fair approximation to L¢,
at least for small Mach numbers. Considering the favorable
operation count for solv?hg Poisson's equation, a natural
choice for the iterative scheme is to take N = Q.’ A scheme
of this type was proposed by Martin and Lomax [i%]. A similar
procedure has also been used by Periaux for subsonic flow
calculations using the finite element.method [19]. In order
.to estimate the rate of convergence that might be expected
consider the Prandt Glauert equation, which is obtained by

replacing A by Mi in (1.7). Then if H and V are non-negative

2 2

finite difference operators representing - —» and - — we

ax )Y
have
or

H1/2 ¢(k+1) - MiK Hl/2¢(k)
where
K = 5% @sv) " gl/?

Thus

1gl/2,y (k+1)y < MiHKﬂ 1gl/24 (k)

and since K is Hermitian, if we use a Euclidean norm



Ikl = Amax(K)

(x,Kx)

= max
(x, x)

(y,Hy)
(y,Hy)+(y,Vy)

max

where

Thus 0Kl < 1 and

/2, (n+1)y 172, (n)y

< Man - s
— (o]

This estimate serves to indicate that for subsonic flows the
scheme should converge at a rate independent of the mesh size.
The above analysis also suggests that it is doubtful whether
such a scheme would converge for a flow with a substantial
supersonic zone. To get an idea of what can be expected consider

the case of linearized supersonic flow with

Using the Murman difference scheme (1.11), the residual is then

2
- 2 - Ax -
Rij = (1 Mw)(¢ij 2¢i—l,j+ ¢i-2,j) + (Ay) (¢i,j+l 2¢ij+ ¢i,j—l)
and the equation for the correction Cij is
(2.8) C - 2C,.+ C + (éi)z(c -2C, .+C ) = -R

Taking the case of periodic boundary conditions for simplicity,



suppose that

(k) k olmx _iny

(2.9) ¢;5 =€

where G is the amplification factor, and in the exponentials

i denotes v-1. Let

E =mAx , n = n Ay

Then we find that

2 2

(- 4 sin® £ - 4 (2—;‘)2 sin

= - 4 (Mz—l) e_lg sin2 % - 4

whence

{(M°-1) eig + 1} sin2 %

2
, 2k Ax. 2 . 2
sin” 3 + (Zi) sin

NS

For a harmonic with a low frequency in y and a moderate
fréquency in %, |G| exceeds unity, indicating divergence.
This conclusion is confirmed by an analysis which includes
the proper boundary conditions (see Appendix 1).

It thus appears that the simple Poisson iteration is unprom-
ising for transonic flow calculations. Some kind of stabiliza-
tion scheme is required if it is to be used as the basis of a
fast iterative scheme. One possibility is to apply the
Poisson iteration only in the subsonic zone, and to use a
marching method in the supersonic zone. This would require the

solution of Poisson's equation on an irregular region with a



boundary which is altered after each iteration. The
capacitance matrix method [20] ﬁight be used, but since the
capicatance matrix would have to be recalculated at each
iteration, the operation count would be very large. It is
more attractive, therefore, to retain the rectangular
region and try to stabilize the method either by
(1) using some operator other than the Laplacian which

can still be so%&ed by a fast method or

(2) introducting a separate stabilization scheme to bév

o

applied after each Poisson iteration. -]

If we use the first approach we may be guided by the
fact that the operator L is not symmetric when there is a
supersonic zone. It is natural therefore to consider a
desymmetrized operator N. We can still use fast direct
methods such as odd even reduction or reduction by fast
Fourier transform if N has the same block structure as Q
' (eguation (2.6)), with a matrix T repeated in every diagonal
block, but with T having a general tridiagonal form. This
condition is satisfied by a discrete approximation to the

operator

2 2y, 52
Tix T2

ax 3y

(o34

N
>
L)

®1
where ay and o, are independent of y. Then equation (2.8)

for the correction is replaced by

0y (Ci41,57 2C34% Cioq,5) * @2(C557 Cg,5)

(2.10) A2 , .
* G Ch,5417 4T Ci,5-1) T T Ryy



Considering the case of periodic boundary conditions, and
making the substitution (2.9), we now find that
2

' 2
g - (M2 2 Ax .
("CXIO'O' - Q50 = r) (G-1) = (Mm-l)O' + 4 (E sin

Nofs

where
6 =1, Re(o) >0.
Thus

- 2 2
0,00 + 050 -‘(Mm—l)o

2 L
P

A
1

.,l:
Since the real parts of all terms of the denominator are

N

= Ax. 2 .
alcc + 0n0 + 4 (Z§ sin

nonnegative, the worst case is when n =+ 0. Then G approaches

- 2
a2+alc - (Mw-l)o

Oy + 0,0
Also

=2 - 2 2
|a2+a10| -lay, + a0 = (M -1)0|” = 2(1-cos &) (a,-B-20;co0s ).

It follows that |G| < 1 if

0y > 2al + Mi -1

Thus we can expect the iteration to converge for supersonic
flow if we add a sufficiently large non-symmetric term. A
similar analysis indicates that the desymmetrized iteration
would also converge for supersonic flow, but at a lower rate
than the symﬁetric Poisson iteration. Unfortunately it is

not possible to vary the coefficients 0q and a, to suit the

local flow conditions without destroying the regular structure



rYequired for a fast direct method of solution. This leads
to difficulties in treating the full transonic potential
equation, for which the direction of desymmetrization should
be the local upwind direction, which is no longer fixed.

The second approach of using a separate stabilization scheme
is more flexible. For this purpose we can use one or more
steps of an alternative iteration scheme after each Poisson
iteration. The alternat%&e scheme should be designed to give
fast convergence in the supersonic zone to overbaiance the *
divergence of the Poisson iteration. The usuali%élaxation
method described in the introduction is just such a scheme,
since a marching procedure is used in the supersonic zone.

Thus an exact solution could be obtained in one step if correct
values of the nonlinear coefficients and correct data at
the sonic line could be inserted.

The following scheme is fherefore proposed: use a two stage
1teratlon in which the first stage is a Poisson step with the
dlscrete Laplacian on the left-hand side, and the second stage
consists of a fixed number p of relaxation steps to sweep
out the errors from the supersonic zone. Considering the
linearized equation at any stage, we should expect the scheme

to converge if

P
I!Ml lel <1

where M1 and M2 are the iteration operators of the two schemes,
defined as in equation (2.4). The complexity of the equations

is such that it is easier to resort to numerical experiments



to test the convergence. These confirm that for the small
disturbance equation a fast rate of convergence is obtained

by using one relaxation step after each Poisson step.

o



3. Application to the Transonic Potential Flow Equation

The small disturbance approximation is not valid near the
stagnation point on a blunt leading edge. To treat blunt
nosed profiles with reasonable accuracy it is necessary to
bunch the mesh points near the body by using stretched coordi-
nates £ = §(x) and n = n(y). The linear part of the équation
is then no longer so we;i approximated by the Laplacian in the

new coordinates & and n. There is also a difficulty in tréating

N
exterior flows, for which the domain is infinite; If we

truncate the domain to a finite rectangle to allow the use of
a fast Poisson solver we must provide appropriate data at the
boundary by some other means. For example, we can use an
analytic solution of the Prandtl Glauert equation as an
approximation to the proper boundary values [18].

In the analysis of the flow over an airfoil these difficul-
ties can be circumvented by treating the full transonic potential
flow ;quation, and mapping the exterior of the profile onto
the interior of a circle by a conformal transformation. Since
the Laplacian is invariant under a conformal transformation,
we can now use a fast solver for Poisson's equation in polar
coordinates r and 6 for the first stage of the iteration. For
this purpose a scheme using the Buneman algorithm in the 6 direc-
tion has been programmed.

If 2mE is the circulation it is convenient to use a reduced

pdtential G defined by



(3.1) ¢=G+M—Ee

Then G is finite and single valued. The quasilinear form (1.1)

of the potential equation becomes

2 2 2 2 )
(a"-u )Gee - 2uerer + (a"=-v)r ey (rGr)
(3.2)
2 2 2, 2. u _
- 2uV(Ge E) + (u -v )rGr+ (u +v )(; H6+ VHr) =0,

where H is the modulus of the transformation onto.'the exterior

*

of the circle, and u and v are the velocity components in the

0 and r directions

r(Ge-E) - sin © r Gr - cos 6
(3-3) u = a v v = g

The boundary condition at the profile becomes

(3.4) Gr = cos 6 at r =1

and in the far field it reduces to
(3.5) G = E{o6 - tan-l(/l-Mi tan 9)}

The circulation is determined by the Kutta condition, which

requires that u is finite at the trailing edge, and hence that

(3.6) E = Ge'- sin 6 at r=1, 6 =0 .

In conservation form the potential equation becomes
(3.7) 2 (pu) +r = (pv) =0
. 26 ‘P ar 'P

where



Im
Hic

(3.8) U = _ sin 6 _ Hv _ cos @
: r

and p 1is evaluated by equation (1.6).
Within either form of the equation the Poisson step
consists of calculating a correction Cij at each point by

solving the discrete approximation to

Cee +r=-(rcC) =-2Q

where Q is a suitably scaled residual. With the quasilinéar
form we set 'ﬂé
Q=%

a
where R is the residual of equation (3.2), and with the

conservation form we set

where R is the residual of equation (3.7). In evaluating the
rgsidual an appropriate upwind difference scheme must be used

in the supersonic zone. At each point Gi' is then replaced by

J
'Gij + wCij, where w is a relaxation parameter. After the
Poisson step we use one or more relaxation steps with the same
difference scheme to correct the supersonic zone.

When the supersonic flow is confined to a pocket over the
forward part of the profile, the upwind direction is almost
coincident with the 6 coordinate direction in the supersonic
zone. It is then possible to use a simple difference scheme

with retarded difference formulas restricted to the 6 direc-

tion. This has the advantage that the relaxation method becomes



a marching scheme in the supersonic zone. As the free stream
Mach number is increased towards unity the supersonic zone
extends rearward until finally there is a shock wave at the
trailing edge. Then the upwind direction can no longer be
assumed to be the 6 coordinate direction, and it becomes
necessary to use a rotated difference scheme [9]. In this case
the relaxation method ceases to be a marching scheme in the
supersonic zone, and we pén expect to need several relaxation
steps after each Poisson step to assure convergenée. ¢
While the conservation form gives a better ééﬁroximation to
shock waves, it has the disadvantage of exhibiting larger
discretization errors in smooth compressive regions of super-
sonic flow. Such regions appear over shock;free supercritical
airfoils. Also, when the effect of the boundary layer is
representéd by a simple correction for the displacement thick-
ness, better agreement with the experimental data is often
obtai?ed with the quasilinear form. Since no single scheme gives

the best results in all cases, the composite iterative method

has been tested in four variants:

(1) Simple quasilinear écheme
(2) Rotated quasilinear scheme
(3) Simple conservative scheme
(4) Rotated conservative scheme

In all four schemes the circulation constant E is adjusted
to satisfy equation (3.6) after each Poisson step and after

each relaxation step. Thus the correction due to the change



in circulation is immediately spread throughout the flow.
The details of the four schemes are giVen in Appendix 2.

A listing of the computer program used for the numerical

experiments is given in Appendix 3. A description of the

program's input and output is also included in Appendix 4.

S
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