
Seventh International Conference on
Computational Fluid Dynamics (ICCFD7),
Big Island, Hawaii, July 9-13, 2012

ICCFD7-2201

LES modeling with high-order flux reconstruction and
spectral difference schemes

G. Lodato and A. Jameson
Corresponding author: glodato@stanford.edu

Department of Aeronautics and Astronautics,
Stanford University, Stanford, CA 94305, USA.

Abstract: The combination of the high-order unstructured flux reconstruction and spectral dif-
ference spatial discretization schemes with sub-grid scale modeling for large-eddy simulation is
investigated with particular focus on the consistent implementation of a structural mixed model
based on the scale similarity hypothesis. The difficult task of deriving a consistent formulation for
the discrete filter within hexahedral elements of arbitrary order led to the development of a new
class of three-dimensional constrained discrete filters. Results from different canonical tests cases,
including turbulent channel flows and turbulent wakes behind bluff bodies at various Reynolds
numbers, are presented. The numerical experiments suggest that the results are sensitive to the
use of an sub-grid scale closure, even when a high-order numerical scheme is used, especially when
the grid resolution is kept relatively low. The use of the similarity mixed formulation proved to
be particularly accurate in reproducing sub-grid scale interactions, confirming that its well-known
potential can be realized in conjunction with state-of-the-art high-order numerical schemes.
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1 Introduction
Notwithstanding the considerable effort which has been devoted to the development of accurate and relatively
reliable Sub-Grid Scale (SGS) models for Large-Eddy Simulation (LES), the underlying numerical methods,
which are available within the framework of industrial computational fluid dynamics applications generally
rely upon highly dissipative schemes. The inherent numerical dissipation introduced by such numerical
schemes limits their ability to correctly represent the whole spectrum resolved in LES.

Hence it is necessary to combine high order numerical schemes with advanced SGS modeling techniques in
order for LES to become a valuable and reliable tool for fundamental flow physics and industrial applications.
Unfortunately, most of the available high-order numerical schemes are designed to be used on cartesian or
very smooth structured curvilinear meshes and therefore they are inadequate to simulate turbulent flows
over complex geometries. In the current work, a high-order unstructured solver is combined with an explicit
filtering LES method, thus allowing highly accurate turbulent flow computations on realistic geometries that
were previously only possible with low-order schemes.

High-order numerical schemes for solving the compressible Navier-Stokes equations on unstructured grids
have been widely studied during the last decade. By far the most mature and widely used of these schemes are
based on the Discontinuous Galerkin (DG) method [1, 2]. However, several alternative high-order methods
have been recently proposed, including Spectral Difference (SD) type schemes [3–9], which potentially offer
increased efficiency compared with DG methods (as well as being simpler to implement). The SD method has
been successfully applied to viscous compressible flows with shocks [10], implicit LES of turbulent channel
flow [11], and flow around circular cylinders [12, 13], as well as, transitional flows over an SD7003 airfoil [14].
The combination of the SD method with SGS modeling techniques for explicit LES, on the other hand, has
not been widely studied. Parsani et al. [15] obtained encouraging results using the Wall-Adapting Local
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Eddy-viscosity (WALE) model [16] but their analysis was restricted to two-dimensional flows. A three-
dimensional computation of turbulent flow in a muffler at Re = 46 650 was also reported [17].

In the context of the SD method for three-dimensional unstructured hexahedral grids, the present study
addresses the implementation of a structural SGS model based on the scale similarity assumption [18], namely,
the WALE Similarity Mixed model (WSM) proposed by Lodato et al. [19]. To the authors’ knowledge, this
represents the first implementation of a structural SGS model in a three-dimensional solver that uses the SD
method. Moreover, the proposed implementation of a constrained discrete filter of arbitrary order for the
SD method will be suitable for a broad class of numerical schemes based on the discontinuous finite element
representation of the solution, such as the family of energy stable schemes that can be obtained within the
unifying Flux Reconstruction (FR) framework [4, 20–28].

2 Mathematical formulation

2.1 The numerical scheme
In the present work, the Navier-Stokes equations are solved using the high-order unstructured SD method
for spatial discretization, which is here adopted as representative of the more general family of energy stable
FR schemes. Note that, as mentioned in the introduction, all the results reported below can be extended to
the FR methodology (as well as to other discontinuous finite element schemes) in a straightforward way. The
formulation of the equations on hexahedral grids is similar to the formulation by Sun et al. [7], which will be
summarized below for completeness. After introducing the bar filter operator and the density-weighted Favre
filter operator tilde, the unsteady compressible Navier-Stokes equations in conservative form are written as

∂U

∂t
+
∂F

k

∂xk
= 0, (1)

where U =
(
ρ ρu1 ρu2 ρu3 ρe

)T is the vector of conservative variables, and F
k

= FI
k −Dk

accounts
for the inviscid and viscous flux vectors, which are defined as

FI
k

=


ρuk

ρu1ũk + δ1k$
ρu2ũk + δ2k$
ρu3ũk + δ3k$

(ρe+$)ũk

 , D
k

=


0

2µÃ1k + τd1k
2µÃ2k + τd2k
2µÃ3k + τd3k

2µũjÃkj +
µcp
Pr

∂ϑ̃
∂xk

+ qk

 , (2)

where ρ is the fluid’s density, uk is the velocity vector, e is the total energy (internal + kinetic), µ is the
dynamic viscosity, Aij is the deviator of the deformation tensor, cp is the specific heat capacity at constant
pressure and Pr is the Prandtl number. In particular, $ and ϑ̃ are the filtered macro-pressure and macro-
temperature [19, 29], these quantities being related by the usual equation of state, i.e., $ = ρRϑ̃. τij and qk
in Eq. (2) represent the usual unclosed SGS terms (note that the superscript ‘d’ refers to the deviatoric part
of the relevant tensor).

To achieve an efficient implementation, all elements in the physical domain are transformed to a standard
cubic element described by local coordinates ξ = (ξ1, ξ2, ξ3), with ξ ∈ [0 : 1]3. The governing equations in
the physical domain are then transferred into the computational domain, and they take the form

∂U
∂t

+
∂Fk

∂ξk
= 0, (3)

where
U = |det(J)|U and Fk

= |det(J)|∂ξk
∂xj

F
j
, (4)

and det(J) represents the determinant of the Jacobian matrix J ij = ∂xi/∂ξj .
Within each standard element, two sets of points are defined, namely the solution points and the flux
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Figure 1: Schematic representation of the one dimensional distribution of solution and flux points within the
SD element for N = 4.

points, as schematically illustrated in figure 1 for a one-dimensional element. In order to construct a degree
(N − 1) polynomial for each coordinate direction, solution at N points are required. These N points in
1D are chosen to be the Gauss-Legendre quadrature points, whereas the flux points were selected to be the
Gauss-Legendre quadrature points of order N − 1 plus the two end points 0 and 1. Using the N solution
points and the N + 1 flux points, polynomials of degree N − 1 and N , respectively, can be built using
Lagrange bases defined as

hi(ξ) =

N∏
s=1,s6=i

(
ξ − ξs
ξi − ξs

)
, and li+1/2(ξ) =

N∏
s=0,s6=i

(
ξ − ξs+1/2

ξi+1/2 − ξs+1/2

)
. (5)

The reconstructed solution for the conserved variables in the standard element is then obtained as the tensor
product of the three one-dimensional polynomials,

U(ξ) =

N∑
k=1

N∑
j=1

N∑
i=1

U i,j,k

|Ji,j,k|
hi(ξ1)hj(ξ2)hk(ξ3), (6)

where i, j and k are the indices of the solution points within each standard element. A similar reconstruction
is adopted for the resolved fluxes Fk

.
The reconstructed fluxes are only element-wise continuous, but discontinuous across cell interfaces. For

the inviscid flux, a Riemann solver is employed to compute a common flux at cell interfaces to ensure
conservation and stability. In the current implementation, the Roe solver [30] with entropy fix [31] was used.
The left and right states here represent the solution on both sides of the shared edge flux point. The viscous
flux is a function of both the conserved variables and their gradients, therefore, the solution gradients have
to be calculated at the flux points. The average approach described by Sun et al. [7] is used to compute the
viscous fluxes.

2.2 LES modeling approach
In order to close the SGS terms a structural model based on the scale similarity assumption [18, 32, 33]
is adopted. In the perspective of developing a similarity mixed formulation [33–40] with correct near-wall
scaling, a WALE formulation [16] for the eddy-viscosity term was recently proposed by Lodato et al. [19]:

τdij = 2ρνsgsÃij − ρ
(̂̃uiũj − ̂̃uî̃uj)d, (7)

qk = γρκsgs
∂ẽI
∂xk
− γρ

(̂̃eI ũk − ̂̃eI ̂̃uk), (8)

where ẽI is the resolved internal energy and the hat operator represents filtering at cutoff length α∆g, with
α ≥ 1 and sufficient localization in physical space [32]. the SGS kinematic viscosity, νsgs, and thermal
diffusivity, κsgs, are computed as [16]

νsgs = C2
w∆2

g

(s̃dij s̃
d
ij)

3/2

(ÃijÃij)5/2 + (s̃dij s̃
d
ij)

5/4
, and κsgs =

νsgs
Prsgs

, (9)
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where Cw = 0.5, and s̃dij is the traceless symmetric part of the square of the resolved velocity gradient tensor
g̃ij = ∂ũi/∂xj . The sub-grid scale Prandtl number, Prsgs, is assumed constant and equal to 0.5 [38, 40].
In particular, assuming that the actual resolution of the SD element in computational space is equal to
∆ = 1/N , the cutoff length ∆g can be evaluated as [15]

∆g(ξ) ∼
[
|det(J(ξ))|

N3

]1/3
= ∆|det(J(ξ))|1/3. (10)

2.3 Constrained discrete filters for the SD method
When using similarity mixed SGS models, such as the WSM model used in this study, explicit filtering
represents a key ingredient to approximate sub-grid scale interactions. This is done by assuming similarity
within a narrow band of frequencies in the vicinity of the cutoff frequency characteristic of the mesh. As
already mentioned in section 2.2, similarity is assumed between the SGS scales and the smallest resolved
scales, which are evaluated as the difference between the filtered and the twice-filtered field. Hence, the
explicit filter should be designed (a) to have sufficient localization in physical space; (b) to ensure a certain
selected cutoff length-scale. For instance, the box filter in physical space is generally used due to its locality
and easy of implementation [19, 37]. Lodato et al. [19], in particular, used a discrete approximation with
cutoff length-scale ∆c = 4/3∆ according to what was proposed by Akhavan et al. [33], this filter width being
an optimal size in order to sufficiently isolate the smallest resolved scales. In the present study, a slightly
higher—yet providing sufficient localization in physical space—value of 1.5∆ is adopted.

In order to develop a mixed similarity formulation to be applied with the SD method, the above ideas
need to be generalized in a way which is numerically consistent with the use of SD elements. In particular,
since the SGS model terms are evaluated at the flux points, the filtered quantities needs to be evaluated
at the same flux points starting from the discrete solution at the solution points. This can be achieved by
filtering the solution at the solution points first, and then extrapolating the filtered quantities at the flux
points using the same Lagrange polynomials used to reconstruct the fluxes (cf. Eq. (5)).

Considering for simplicity the one-dimensional SD element depicted schematically in figure 1, a par-
ticularly desirable feature in building discrete filters is that the filter stencil does not lie across elements.
Moreover, the non-uniform spacing of the solution points should be taken into account. The above consid-
erations lead to the particularly challenging task of designing asymmetric non-uniform discrete filters with
a fixed cutoff length-scale.

For the SD element depicted in figure 1, the discrete filter for a generic quantity φ is defined as [41]

φs =

N∑
i=1

wsiφi, (s = 1, . . . , N), (11)

where the s index refers to a quantity at the N solution points. For the case of hexahedral elements as in the
present study, the generalization to three dimensions follows immediately by tensor product of 1D filtering
operators.

The spectral signature of the above discrete filter is characterized by its associated transfer function in
Fourier space [42], which is readily obtained as

Ĝs(k) =

N∑
i=1

wsi exp(−jβsi k∆), with βsi =
ξi − ξs

∆
, (12)

where k is the wavenumber and j =
√
−1; ξs represents the location of the solution points, whereas ∆ = 1/N

is assumed to be the actual resolution within the SD element (cf. Eq. (10)).
A possible strategy to build discrete filters can be devised by exploiting the resolution properties of

polynomials of different order, thus performing the explicit filtering operation by applying the Restriction-
Prolongation (RP) technique in each computational cell [10, 43]. Based on Eq. (12), for instance, the real
part of the Fourier transform of the discrete filters constructed using the Restriction-Prolongation (RP)
technique [10] for N = 3 and 4 is plotted in figure 2(a, b), where the Gaussian filter, with cutoff length
equal to 1.5∆, is also represented for reference. As it is immediately evident, the cutoff frequency, viz.,
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(d) CD filter, N = 4

Figure 2: Real part of the transfer function Ĝ(k∆/π) of RP [10] and CD filters for different SD discretization
orders N ( , analytical Gaussian filter; vertical line: cutoff length-scale at 1.5∆).

the frequency at which Ĝs(k) ' 0.5, for each solution point is different and thus the overall effective cutoff
frequency is unpredictable. Furthermore, for N = 4, the most asymmetric filters, i.e., those represented with
solid lines, have a relatively pronounced over-shoot in the low frequency range, a feature which may lead to
non-physical growth of energy. [41]

In order to overcome these problems, a Constrained Discrete (CD) filter satisfying a selected set of
conditions, were developed for the SD method. The method used to derive these CD filters is based on the
work of Vasilyev et al. [41]. In particular, starting from Eq. (12), the N filter weights wsi for the s-th solution
point can be determined by providing N constraints. More precisely, a first obvious condition is related
to the preservation of a constant variable, namely

∑N
i=1 w

s
i = 1. Then, starting from the idea of building

filters whose kernels are as close as possible to that characterizing the Gaussian filter of width ∆c = α∆, the
condition

Re[Ĝs(kc)] =

N∑
i=1

wsi cos(βsi kc∆) = exp

(
−∆2

ck
2

4γ

)∣∣∣∣
k=kc

= exp(−π2/24), (13)

is enforced, with kc = π/∆c, therefore constraining the relevant cutoff length-scale. The remaining conditions
are obtained by constraining the discrete filter to have N − 2 vanishing moments, thus achieving formal
commutation with difference operators. [41]

The real part of the kernels of these CD filters for SD elements of order 3 and 4 are plotted in figure 2(c,
d). As it can be observed, these CD filters approximate the reference filter much more accurately than the
RP filters in the low frequency range, showing more pronounced deviations only at length-scales close to
∆ (i.e. k∆/π → 1). However, recalling that ∆ ∼ O(1/N), these small scales are not expected to play a
significant role as they are supposedly not supported by the actual resolution of the SD element. The actual
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Reτ Rec Lx × Ly × Lz nx × ny × nz N DoF ∆+
x ∆+

y ∆+
z

CHN1 180 3 440 4πδ × 2δ × 2πδ 15× 15× 15 4 216 000 38 2.0–10 19
CHN2 180 3 440 4πδ × 2δ × 2πδ 12× 12× 12 5 216 000 38 2.0–10 19
CHN3 395 8 106 2πδ × 2δ × 1πδ 16× 12× 12 4 147 456 39 1.2–43 26
CHN4 395 8 106 2πδ × 2δ × 1πδ 13× 9× 9 5 131 625 38 2.1–33 28

Table 1: Grid size and resolution for channel flow computations (resolution is estimated as the element size
divided by the number of solution points). DoF = (nx × ny × nz) × N3 is the total number of degrees of
freedom.

Figure 3: Lateral view of the computational mesh for the circular cylinder in crossflow: 18 470 elements
(5 × 105 DoF @ N = 3); −12D to 36D streamwise, −5D to 5D vertical, −1.6D to 1.6D spanwise; the
cylinder, of diameter D, is centered at the origin.

cutoff frequency is also more predictable throughout the SD element. Moreover, the over-shoots observed
in the asymmetric filters constructed by the RP method, are now completely suppressed, hence a better
numerical behavior in terms of stability is expected.

3 Results and discussion
In this section, the results obtained with the actual implementation WSM model are presented. Compu-
tations on three different geometries are reported: (a) channel flow at Reynolds numbers of 180 and 395
(based on the friction velocity and channel half-width); (b) flow past a confined circular cylinder at Reynolds
number 2 580 (based on the upstream bulk velocity and cylinder diameter); (c) flow past a square cylinder at
Reynolds number 21 400 (based on the upstream bulk velocity and cylinder side). For comparison, implicit
LES computations without the SGS model were performed for the first two geometries.

3.1 Turbulent channel flow
Two channel flow computations were performed at different orders (N = 4 and 5) at Reτ = 180 and 395
(based on the friction velocity uτ and channel half-width δ), and Mach number 0.3. Grid dimensions and
resolutions for the computations are summarized in table 1. Note that the resolution of the computation
was estimated as the actual element size divided by the number of solution points used within the element;
in a Finite Volume (FV) context, this is equivalent to assuming that each element is filled with N3 control
volumes.

All the computations were performed with periodic boundary conditions in the streamwise and spanwise
directions and no-slip isothermal walls were used on the top and bottom planes. In order to drive the flow,
a source term S was added to the x1 component of momentum. Given the compressible nature of the
solver, in particular, S was determined at each time-step in order to equilibrate the instantaneous resultant
shear at the wall, plus a relaxation term toward the expected mass flow rate to accelerate convergence. For
consistency, another source term, computed using the bulk velocity as ubS, was also added to the energy
equation (isothermal walls were used to prevent the energy from increasing without bounds).
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Figure 4: Lateral view of the computational mesh for the square cylinder in crossflow: 35 760 elements
(2.3 × 106 DoF @ N = 4); −6D to 15D streamwise, −6D to 6D vertical, −1.6D to 1.6D spanwise; the
cylinder, of side D, is centered at the origin.

The computations were initialized with a uniform streamwise 4th-order velocity profile

u1(x) = 15
8 u0

[
1− (x2/δ)

2
]2

(u0 is the reference velocity) and a perturbed vertical velocity component [44, 45]. After the flow field was
fully developed and established, time averaging was performed for a period corresponding to about 20 flow-
through times; further ensemble averaging in the streamwise and spanwise directions was also performed.

First- and second-order statistical moments are plotted in figures 5–7, where the the results from the
explicit LES with the WSM model and the implicit LES are compared to the results from the Direct
Numerical Simulations (DNS) performed by Moser et al. [46]. Note that the extremely small density variation
(∼ 1.4% increase from centerline to the wall) did not make it necessary to use the Van Driest correction [47].

The behavior of the WSM model in reproducing the statistical features of the flow is quite satisfactory for
each test case. With regards to the mean velocity profiles, the slope of the log law is correctly represented,
whereas its intercept is slightly overestimated with respect to the DNS value. The higher order computation
gives results in better agreement with the DNS data, even if the DoF and spatial resolution are the same.
Overall, the use of the SGS model determines an improvement in the results obtained by implicit LES, which
is more evident for the computations with four solution points per element. Reynolds stresses (cf. figure 6)
are more sensitive to the use of the SGS model.

With regards to the root mean square (RMS) of the resolved velocity fluctuations, in particular, the
profiles obtained with the use of the WSM model are in good agreement with the DNS data, regardless
of the spatial discretization order, whereas the implicit LES shows some dependence to the order of the
computation. The location and intensity of the peak of streamwise velocity fluctuation is correctly captured.
Spanwise and vertical fluctuations tends to be slightly underestimated. Also shown in figures 6 and 7 for
the case CHN3 is the curve obtained when the model term is computed using the RP filter. The results in
this case show a marked oscillatory behavior with spurious peaks at the location of the element interfaces.
This behavior is probably due to the over-shoots observed in the asymmetric filters constructed by the RP
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Figure 5: Mean streamwise velocity profile U+: , WSM model; , no SGS model; ◦ , DNS
data [46].

method for N = 4 (cf. figure 2(b), solid line curve).
The resolved turbulent shear stresses from the LES are always below the DNS curves, whereas the results

from implicit LES are much closer (cf. figure 7). Given the close connection between the mean streamwise
velocity profile and the turbulent shear stress across the channel—the two quantities are strictly related
through the steady Reynolds averaged x1 momentum equation—and given the good agreement observed for
the former quantity, it is here argued that the actual global turbulent shear from LES, viz. resolved + SGS
modeled contribution, is in good agreement with its DNS counterpart. This is readily confirmed by collecting
the mean SGS shear stress 〈τ12〉 during the computation and by comparing the exact turbulent shear from
DNS with the approximate global (resolved + SGS) turbulent shear from LES, viz. 〈u′1u′2〉+ 〈τ12〉 [48]. As it
can be observed in figure 7, the approximate global turbulent shear matches almost perfectly the DNS data,
thus confirming that the model is correctly compensating the insufficient shear from the resolved flow field.

3.2 Flow past a circular cylinder
The simulations, an implicit LES and an explicit LES with the WSM model and the new discrete filter, were
performed at Reynolds and Mach numbers of 2 580 and 0.25, respectively, based on the bulk velocity at the
inlet Ub and the cylinder diameter D. The equations were integrated over an unstructured computational
mesh of dimension 48D× 10D× 3.2D (L×H×W) with 18 470 unstructured hexahedral elements, and N = 3
(cf. figure 3). Therefore, the number of DoF was equal to 498 690. Note that, compared to the resolution
of the structured coarse mesh used by Mohammad et al. [12] for a similar LES computation, the resolution
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Figure 6: RMS of velocity fluctuations: , WSM model (CD filter); , WSM model (RP filter);
, no SGS model; symbols, DNS data [46]. ◦ , u+rms; , v+rms; 4 , w+

rms.

adopted here is about 5 times lower. Such a low resolution was used to assess the performances of the SGS
model and the relevant discrete filters in a case in which the implicit LES is almost certainly expected to fail.
The boundary conditions were periodic in the spanwise direction and no-slip adiabatic conditions were used
on the top and bottom planes; the cylinder wall was set as no-slip adiabatic as well and the inflow/outflow
conditions were imposed fixing the inlet density and velocity and the outlet pressure, respectively. After
the flow field was fully developed and established, statistics were performed averaging in time for about
300 shedding periods, which, according to Parnaudeau et al. [51], represents a long enough sample in order
for statistics to be fully converged; in view of the statistical two-dimensionality of the flow field, further
ensemble averaging in the spanwise direction was also performed. Results were compared against Particle
Image Velocimetry (PIV) experimental measurements [49, 50].

First- and second-order statistical moments at different locations behind the cylinder, and along the
wake, are plotted in figures 8 and 9. Despite the extremely low resolution adopted, average profiles obtained
using the SGS model are in very good agreement with the experimental data. The recirculation length,
an extremely sensitive parameter for this kind of flow configuration, is well captured as well (cf. the mean
velocity inversion point in figure 9). The computation without the SGS model, as expected, does not perform
well. Significant deviations from the experimental data are observed, and the recirculation length is over
predicted of about 20%.

With regards to the second-order statistical moments, results are not fully satisfactory even when the
SGS model is used. Even though some improvement over the implicit LES is observed for x/D ≥ 2, it is

9



 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1
x2/

(CHN1) Reτ = 180, N = 4

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8  1
x2/

(CHN2) Reτ = 180, N = 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x2/

(CHN3) Reτ = 395, N = 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
x2/

(CHN4) Reτ = 395, N = 5

Figure 7: Reynolds shear stresses: , WSM model with CD filter (resolved + SGS); , WSM model
with RP filter; , no SGS model; , 〈τ12〉 from LES; resolved shear stress from LES (CD
filter); symbols, DNS data [46]. ◦ , −〈u+v+〉; , −〈u+w+〉; 4 , −〈v+w+〉.

difficult to judge which computation is performing better. Grid resolution is clearly too low for the model
used to be able to correctly reproduce also the Reynolds stresses. Further tests are under way using more
suitable resolutions of 1.2× 106 and 2.3× 106 DoF (i.e. N = 4 and 5, respectively).

3.3 Flow past a square cylinder
An explicit LES with the WSM model and the new discrete filter was performed at Reynolds and Mach
numbers of 21 400 and 0.3, respectively, based on the bulk velocity at the inlet Ub and the cylinder di-
ameter D. The computation was set up in order to replicate the experiment described in Refs. [52, 53],
for which Laser-Doppler Velocimetry (LDV) experimental measurements are available. The equations were
integrated over an unstructured computational mesh of dimension 21D×12D×3.2D (L×H×W) with 35 760
unstructured hexahedral elements, and N = 4 (cf. figure 4). Therefore, the number of DoF was equal to
2.3×106. Overall grid resolution for the selected Reynolds numbers can be considered as relatively low, as is
substantiated by the high values measured for the instantaneous normalized SGS energy transfer coefficient
νratio = τdijÃij/2µÃijÃij [19] in figure 10. For such values of νratio, the sub-grid activity parameter [54] can
be reasonably expected to be in the range 0.5–1. The boundary conditions were periodic in the spanwise
direction and no-slip isothermal conditions were used on the cylinder walls; the inflow/outflow conditions
were imposed fixing the inlet density and velocity and the outlet pressure, respectively. After the flow field
was fully developed and established, statistics were performed averaging in time for about 16 shedding pe-
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Figure 8: First- and second-order statistical moments of the resolved velocity field at different locations
downstream of the cylinder: , WSM model; , no SGS model; ◦ , experimental PIV measure-
ments [49, 50] (every two points represented). Light dotted lines represent the zero location of the shifted
curves.

riods, which for this Reynolds number provided relatively well converged statistical samples; in view of the
statistical two-dimensionality of the flow field, further ensemble averaging in the spanwise direction was also
performed.

First- and second-order statistical moments at different locations behind the cylinder are plotted in
figure 11. Both the average profiles and the Reynolds stresses obtained using the implemented WSM model
using the new filter are in extremely good agreement with the experimental data. As a further validation
of the computation, the discrete Fourier transform of the time history of the lift coefficient (see figure 12)
returned a shedding Strouhal number of 0.130, which is in very good agreement with the experimental
counterpart, i.e., St = 0.132± 0.004 [53].

4 Concluding remarks
Overall, the performance of the actual WSM model implementation in conjunction with the SD method and
the new discrete filters is extremely satisfactory. In all the flow configurations studied, statistical moments
extracted from LES were in very good agreement with DNS and experimental data. For the test cases where
a comparison was done with results from implicit LES (i.e., turbulent channel flow and flow past a circular
cylinder), results were generally improved when the SGS model was active.
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measurements [49, 50] (every two points represented).

Figure 10: Instantaneous contours of the normalized SGS energy transfer coefficient νratio.

Depending on the grid resolution, the benefits resulting from using the SGS model are of different nature.
First-order statistical moments are significantly improved, the improvement being especially evident in the
case of relatively under-resolved LES computations, where the implicit LES cannot be expected to give
satisfactory results. More challenging is, of course, to reproduce second-order statistical moments which, in
order to be correctly captured, still need the grid to resolve enough turbulent kinetic energy. For sufficiently
resolved computations, improvements in the Reynolds stresses were observed when the WSM model was
turned on, whereas in the case of coarse LES computations, the improvements were more subtle. In any
case, turbulent shear stresses are generally well captured by the proposed implementation of the WSM model.

The proposed constrained discrete filters of arbitrary order, in particular, proved to be numerically stable
at any tested order (up to N = 7 in other tests not included here) and allow a relatively straightforward
implementation into high-order SD schemes (or any other discontinuous finite element numerical method)

12



-3

-2

-1

 0

 1

 2

 3

 0  1  2  3  4

y/
D

(a) 〈u〉/Ub

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2

y/
D

(b) 〈v〉/Ub

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0  0.4  0.8  1.2  1.6

y/
D

(c) 〈u′u′〉/U2
b

-5
-4
-3
-2
-1
 0
 1
 2
 3
 4
 5

 0  0.2  0.4  0.6  0.8

y/
D

(d) 〈u′v′〉/U2
b

Figure 11: First- and second-order statistical moments of the resolved velocity field at different locations
downstream of the square cylinder: , WSM model; ◦ , experimental LDV measurements [52, 53]. Light
dotted lines represent the zero location of the shifted curves.
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Figure 12: Discrete Fourier transform of the time history of the lift coefficient.

of any SGS model which relies upon the use of explicit filtering or dynamic procedures [55, 56]. For the
similarity mixed formulation used in the present study, in particular, existing filtering approaches based on
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solution projection over low-order polynomial bases proved to be inadequate, and keen to develop spurious
numerical artifacts at the elements interfaces. In the tests performed, the newly developed discrete filters did
not lead to any similar unexpected and unphysical behavior throughout the computational domain. Further
development of wall modeling procedures and the unstructured nature of the high-order SD scheme will also
allow relatively affordable high fidelity LES computations in complex geometries.
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