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1 Abstract

For the sake of simplicity it is often desirable to restrict the number of feedbacks
in a controller. In this case the optimal feedbacks depend on the disturbance to
which the system is subjected. Using a quadratic error integral as a measure of
the response, three criteria of optimization are considered:

(1) The response to a given initial disturbance.

(2) The worst response to an initial disturbance of given magniitude.

(3) The worst comparison with the unconstrained optimal system.

It is shown that for each of these criteria the gradient with respect to the
feedbacks can be calculated by a uniform method. The solution may then be
found either directly or by a descent procedure. The method is illustrated by
an example.

2 Introduction

There exists a well-developed theory for the optimal regulation of a linear sys-
tem (Kalman 1960). The optimal controller incorporates feedbacks from every
state variable. It thus generates the control signal from the minimum amount
of information necessary to predict the motion of the system. If some of the
state variables cannot be measured they may be reconstructed from the avail-
able measurements by an observer (Luenberger 1964) or, if the measurements
are noisy, by an optimal estimator (Kalman and Bucy 1961). Such systems
are complex. The engineer, however, generally wishes to produce the simplest
acceptable system. In fact it is often possible to produce an acceptable system,
with sufficient stability in all modes, by incorporating just a few feedbacks.
Another reason for eliminating feedbacks is that the linear equations may only
approximately represent a system which is actually nonlinear. If, for example,
the lateral motion of an aircraft is represented by linearized equations, the re-
sulting optimal control includes a feedback from the roll angle. It is evident
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that such a signal should either be excluded, or else limited, when the roll angle
is large. Both because of practical considerations of this kind, and in order to
assess the trade-off between performance and complexity, it is thus often desir-
able to consider the design of a specific optimum controller (Koivuniemi 1967,
Rekasius 1967) with a pre-determined feedback configuration. The solution of
this problem for several different criteria of optimization is the subject of this
paper.

If the performance criterion is a quadratic error integral, the unconstrained
problem; reviewed in 4, has a solution which is optimal for all initial condi-
tions of the system. The required feedbacks vary with time unless the system
is optimized over an infinite interval. When, however, the configuration of the
controller is constrained, a solution which is independent of the initial condi-
tions can no longcr be found, and it is then not fruitful to permit time varying
feedbacks. With constant feedbacks the problem is reduced to an ordinary min-
imum problem in the parameter space of the feedbacks, for which the necessary
condition of optimality is that the gradient with respect to each allowed feed-
back must vanish. It is shown in 5 how to calculate this gradient for a fixed
initial condition. If the system is to operate satisfactorily for a range of ini-
tial disturbances, it may not be clear which is the most suitable to choose for
optimization. This difficulty can be avoided by choosing the worst case as the
critical design case. It then becomes necessary to consider min-max criteria.
Sections 6 and 7 treat optimization for two such criteria, the worst response to
an initial disturbance of given magnitude, and the worst comparison with the
unconstrained optimal system. In each case it is shown that the gradient can
be represented by a suitable specialization of the formulae derived in 5. The
solution for a fixed initial condition and for both the min-max criteria can thus
be computed by a uniform method. This is the principal result of the paper.
A simple example is solved in 8, to illustrate the influence of the performance
criterion, and the application of the results of 5,6,7.

3 Mathematical Formulation

Consider a linear system

ẋ = Ax + Bu , x(0) = x0 , (1)

where the n vector x represents the state, and the m vector u is the control.
Let the output be the p vector:

y = Cx , (2)

and take as a measure of performance the quadratic integral:

J =

∫ T

0

(

yT Qy + uT Ru
)

dt , (3)
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where Q and R are positive definite. Suppose that it is desired to use a feedback
control;

u = Dx , (4)

where there may be restrictions on the allowed feedbacks Dij . Then

ẋ = Fx , x(0) = x0 , (5)

where
F = A + BD . (6)

Also,

J =

∫ T

0

xT Sxdt , (7)

where
S = CT QC + DT RD . (8)

If (5) is integrated and substituted in (7), then J can be expressed as a quadratic
form in the initial conditions:

J = xT
0 P (0)x0 , (9)

where it can be verified by differentiating the performance index measured from
t to T with respect to t and using (5) that:

−Ṗ = FT P + PF + S , P (T ) = 0 . (10)

If the system is constant and is to be optimized over an infinite interval, then
as long as the feedbacks are such that the system is stable, P approaches a
constant value which may be determined by setting

Ṗ = 0

in (10) and solving the resulting Lyapunov matrix equation.

4 Review of results in the absence of constraints

When a small variation δD is made in the feedback matrix, (9) and (10) yield:

δJ = xT
0 δP (0)x0 , (11)

where

−δṖ = FT δP +δPF +δDT (BT P +RD)+(BT P +RD)T δP , δP (T ) = 0 , (12)

δP and δJ can then be determined by integrating (12). Note that if:

D = −R−1BT P , (13)
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then according to (12)
δP = 0

This is Kalman’s (1960) solution for the case where there is no restriction on
the allowed feedbacks. According to (11) it is optimal for all initial conditions.
It may be computed by substituting (13) in (10) and integrating backwards the
resulting matrix Riccati equation:

−Ṗ = AT P + PA + CT QC − PT BR−1BT T , P (T ) = 0 . (14)

It is easily shown that Kalman’s solution is in fact a global minimum. If a
variation ∆D, not necessarily small is made in D, then by comparison of (10)
and (14):

−∆Ṗ = FT ∆P + ∆PF + ∆DT R∆D ,∆P (T ) = 0 . (15)

Combining (15) and (5)

− d

dt

(

xT Px
)

= xT ∆DT R∆Dx .

Since δP vanishes at the upper boundary, it follows on integrating this equation
that:

∆J = xT
0 ∆P (0)x0 =

∫ T

0

xT ∆DT R∆Dxdt ,

and because R is positive definite:

∆J ≥ 0 .

In general the optimal feedback gains vary with time. If, however, the system
is constant and is optimized over an infinite time interval, the elimination of Ṗ
from (10) leads to its elimination from the variational equations. The optimal
feedback gains are then constant, and maybe determined by setting

Ṗ = 0

in (14) and finding the positive definite solution of the resulting matrix equation.
(Kalman 1960)

5 Optimization with given initial condition

When there is a restriction on the allowable feedbacks Kalman’s solution (13)-
(14) is no longer available. Then according to (12) δP will not vanish, but it is
necessary for optimality that:

δJ = xT
0 δP (0)x0 = 0 .

The solution will thus depend on the initial condition.
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Given a particular initial condition x0, the optimal control signal u(t) of
the open-loop system can be determind. If the number of allowed feedbacks is
greater than the dimension of u, and the feedbacks are allowed to vary with
time, then this signal can be generated in infinitely many ways by choosing
some of the feedbacks arbitrarily and solving for the remainder. We therefore,
consider only systems with constant feedbacks. Let G be the gradient matrix
with elements:

Gij =
∂J

∂Dij

.

If the constrained configuration is optimal, then it is necessary that Gij vanish
for each allowed feedback Dij .

To determine G it is convenient to introduce the outer product:

X = xxT .

In terms of X, the system equations (5) become:

Ẋ = FX + XFT ,X(0) = x0x
T
0 (16)

and the expression for the performance index (7) becomes:

J =

∫ T

0

tr(SX)dt . (17)

Thus

δJ =

∫ T

0

{

tr(SδX) + 2tr(δDT RDX)
}

dt . (18)

Also it follows from (16) that:

δẊ = FδX + δXFT + BδDX + XδDT BT , δX(0) = 0 . (19)

Equations (10) and (19) are an adjoint pair. Remembering that:

trAB = trBA ,

for any two matrices A and B, they can be combined to give:

d

dt
tr(PδX) = 2tr(δDT BT PX) − tr(SδX) .

Since PδX vanishes at both boundaries, it follows on integrating this equation
that:

∫ T

0

tr(SδX)dt = 2

∫ T

0

tr(δDT BT PX)dt .

Substituting this result in (18):

δJ = 2

∫ T

0

tr{δDT (BT P + RD)X}dt ,
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whence

G = 2

∫ T

0

(BT P + RD)Xdt . (20)

If the system is constant and is to be optimized over an infinite interval, then
P is constant and

G = 2(BT P + RD)W , (21)

where

W =

∫

∞

0

Xdt .

Integrating (16), it is found that:

FW + WFT + x0x
T
0 = 0 . (22)

For a simple system, the optimal feedbacksmay be found by solving the
equations which are obtained when the gradient with respect to each allowed
feedback is required to vanish. Generally however this is impractical, and one
has to search directly for the minimum in the parameter space of the feedbacks.
The gradient may then be used to determine a favorable direction for each step.
The most effective procedures of this kind seem to be the conjugate gradient
method (Fletcher and Reeves 1964), and the Fletcher-Powell-Davidson method
(Fletcher and Powell 1963).

6 Optimization of worst response to an initial

disturbance of given magnitude

It has been shown that the optimal feedbacks of a constrained configuration
depend on the initial disturbance, and it is not at all certain that a system
optimized for one disturbance will be satisfactory for another. For any choice of
feedbacks there will be a least favorable initial disturbance of given magnitude
which will maximize J. To ensure the zcceptability of the system for all initial
disturbances we can use the response in this worst case as a more stringent cri-
terion of optimization. (Kalman and Bertram 1960, Koivuniemi 1967). Instead
of J we then minimize:

M = max
x0

J

xT
0 x0

= max
x0

xT
0 P (0)x0

xT
0 x0

. (23)

It is well known (Bellman 1960) that this ratio is equal to the maximum char-
acteristic value of P . In fact, since P is symmetric, it has real characterictic
values λ and its characteristic vectors v may be formed as an orthonormal set.
If V is a characteristic matrix with columns vi, then

V T V = I

and
V T PV = Λ ,
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where Λ is a diagonal matrix with elements λi. Suppose that:

x0 = V z .

Then
J

xT
0 x0

=
zT V T PV z

zT V T V z
=

zT Λz

zT z
=

∑

i λiz
2
i

∑

i z2
i

and since
λmin

∑

i

z2
i ≤

∑

i

λiz
2
i ≤ λmax

∑

i

z2
i ,

it can be seen both that:
M = λmax(P ) (24)

and that:

min
x0

J

xT
0 x0

= λmin(P ) .

The gradient of M with respect to the feedbacks can also be easily determined.
Consider first the variation of the characteristic values when P is varied (Bell-
man 1960). If v is a characteristic vector of unit length, then the corresponding
characteristic value is:

λ = vT Pv . (25)

Let v + δv be the new characteristic vector when P is varied. If v + δv is also
of unit length then:

δvT v = 0

and it follows from (25) that:

δλ = δvT Pv + vT δPv + vT Pδv

= λδvT v + vT δPv + λvT δv

= vT δPv .

Thus:
δM = vT δP (0)v ,

where v is a characteristic vector of unit length corresponding to the maximum
characteristic value of P (0). Comparing this formula with (11), it is apparent
that the gradient of M can be determined by (20), where the initial condition
of (16) is now taken as:

X(0) = vvT .

The procedure described in sec. 5 for a solution with fixed initial condition can
thus be carried over to the solution for the min-max criterion (23).
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7 Optimization of worst comparison with the

unconstrained optimal system

The index M is a measure of the response to the worst initial disturbance of
given magnitude. The normalization, and consequently M , will depend on the
system of units used in formulation the system equations. This difficulty may
be avoided by comparing, at the least favorable initial condition, the actual
performance index J and the unrestricted optimal index Jopt obtained from the
Kalman solution, that is, by minimizing (Rekasius 1967):

L = max
x0

J

Jopt

= max
x0

xT
0 P (0)x0

xT
0 Popt(0)x0

, (26)

where Popt is determined from the matrix Ricatti equation (14). If the system
is controllable and observable Popt is positive definite and can be factored as
KT K, where K is non-singular. Setting

L = max
zT (KT )−1PK−1z

zT z
= λmax(KT )−1PK−1 .

But if
(KT )−1PK−1v = λv ,

then, multiplying by K−1:
P−1

optPw = λw ,

where
w = K−1v .

Thus
L = λmax(P−1

optP ) .

By a similar argument:

min
x0

J

Jopt

= λmin(P−1
optP ) .

It is easily verified that these expressions are invariant under a transformation
of state variables.

To obtain the gradient of L with respect to the feedbacks we note that in
this case if v is a characteristic vector of unit length then:

δλ = vT (KT )−1δPK−1v = wT δPw .

Thus (20) can again be used, but now the initial condition of (16) should be:

X(0) = wwT ,

where w is the characteristic vector corresponding to the maximum character-
istic value of P−1

optP , and the length of w is determined by the requirement that
v is of unit length, or

vT v = wT Poptw = 1 .

The method of sec. 5 suffices for the criterion of (26) also.
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8 Example: modification of a harmonic oscilla-

tor

As an example consider the use of feedbacks to modify a harmonic oscillator

ÿ + y = 0 ,

The equations can be formulated as

[

ẋ1

ẋ2

]

=

[

0 −1
1 0

] [

x1

x2

]

+

[

1
0

]

u ,

where
y = x2

and
u = d1x1 + d2x2 = d1ẏ + d2y .

Let the initial conditions be

x0 =

[

a1

a2

]

and consider the minimization of

J =

∫

∞

0

(8y2 + u2)dt .

First suppose that there are no constraints on the configuration. Since the
optimization interval is infinite the matrix Riccati equation reduces to the ma-
trix quadratic equation

[

0 1
−1 0

] [

P11 P12

P21 P22

]

+

[

P11 P12

P21 P22

] [

0 −1
1 0

]

+

[

0 0
0 8

]

−
[

P 2
11 P11P12

P21P11 P 2
12

]

= 0 ,

whence

Popt =

[

2 2
2 6

]

.

The optimal feedbacks are then

d1 = −2 , d2 = −2 .

The natural frequency of the optimal system is thus raised to
√

3 radians per
second and its damping ratio is 1/

√
3.

Suppose now it is desired to optimize the system using rate feedback only,
so that

u = d1ẏ = d1x1 .

The system is stable if
d1 < 0
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and P can be determined from the Lyapunov matrix equation:
[

d1 1
−1 0

] [

P11 P12

P21 P22

]

+

[

P11 P12

P21 P22

] [

d1 −1
1 0

]

+

[

0 0
0 8

]

−
[

d2
1 0
0 0

]

= 0 .

the solution is:

P =





−
(

d1

2
+ 4

d1

)

4

4 −
(

9d1

2
+ 4

d1

)



 .

The gradient matrix is

[

g1 g2

]

= 2

{

[

1 0
]

[

P11 P12

P21 P22

]

+
[

d1 0
]

} [

W11 W12

W21 W22

]

,

where
[

d1 1
−1 0

] [

W11 W12

W21 W22

]

+

[

W11 W12

W21 W22

] [

d1 −1
1 0

]

+

[

a2
1 a1a2

a2a1 a2
2

]

= 0 .

Thus

2W =

[

a2

1
+a2

2

d1

−a2
2

−a2
2

a2

1
+a2

2

d1

− a2
2d

2
1 + 2a1a2

]

and

g1 = 2(P11 + d1)W11 + 2P12W21 =

(

4

d2
1

− 1

2

)

a2
1 +

(

4

d2
1

− 9

2

)

a2
2 .

If d1 is optimal then g1 must vanish, whence

d1 = −2

√

2a2
1 + 2a2

2

a2
1 + 9a2

2

.

If the system has an initial velocity but no initial displacement

a2 = 0 , d1 = −2
√

2 = −2.828 ,

and the damping ratio of the closed loop system is 1.414. If it has an initial
displacement but no initial velocity, then

a1 = 0 , d1 =
−2

√
2

3
= −0.943 ,

and the damping of the closed loop system is 0.471. The optimal closed loop
system thus changes substantially when the initial condition is changed.

To optimize the worst response to an initial disturbance of given magnitude,
or the index M is eq. (23), the characteristic values of P may be determined
from the characteristic equation:

λ2 + λ

(

5d1 +
8

d1

)

+
9d2

1

4
+ 20 +

16

d2
1

= 0 .
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The roots are:

λmax(P ) = −
(

5

2
d1 +

4

d1

)

+ 2
√

(d2
1 + 4) = M ,

and

λmin(P ) = −
(

5

2
d1 +

4

d1

)

− 2
√

(d2
1 + 4) .

The characteristic vector of unit length corresponding to λmax is:

v =
1

√

(c2 + 1)

[

c
1

]

,

where

c =
d1

2
+

√

(

d2
1

4
+ 1

)

.

The gradient of M with respect to d1 is found by substituting v for the initial
condition. Thus

g1 =

(

4

d2

1

− 1

2

)

c2 +
(

4

d2

1

− 9

2

)

c2 + 1
=

4

d2
1

− 5

2
− 2

√

(4/d2
1 + 1)

as may be verified in this case by direct differentiation. Substituting

d1 =
−2

√

(

4

3
+ 7

3
cos θ

)

It is found that the gradient vanishes when

cos 3θ =
89

343

yielding for the optimal rate feedback:

d1 = −1.077 .

The closed loop system then has a damping ratio of 0.539. Also

λmax(P ) = 10.950

and
λmin(P ) = 1.863 .

thus over the range of all initial vectors of unit length:

1.863 ≤ J ≤ 10.950 .

Note that when both feedbacks are allowed:

λmax(Popt) = 4 + 2
√

2 = 6.828
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and
λmin(Popt) = 4 − 2

√
2 = 1.172

so that over the same range:

1.172 ≤ Jopt ≤ 6.828 .

The worst comparison with the unconstrained optimal system is represented
by the index L (26), or the maximum characteristic value of:

P−1
optP =

[

3

4
− 1

4

− 1

4

1

4

]





−
(

d1

2
+ 4

d1

)

4

4 −
(

9d1

2
+ 4

d1

)





=





−
(

3d1

8
+ 1 + 3

d1

) (

9d1

8
+ 3 + 1

d1

)

(

d1

8
+ 1 + 1

d1

)

−
(

9d1

8
+ 1 + 1

d1

)





The characteristic equation is then:

λ2 + λ

(

3d1

2
+ 2 +

4

d1

)

+
9d2

1

32
+

1

2
+

2

d2
1

= 0 ,

with roots:

λmax

(

P−1
optP

)

= −
(

2 +
√

2
)

(

3d1

8
+

1√
2

+
1

d1

)

= L

and

λmin

(

P−1
optP

)

= −
(

2 −
√

2
)

(

3d1

8
− 1√

2
+

1

d1

)

the characteristic vector w corresponding to λmax with length such that:

wT Poptw = 1 ,

is

w =
1

√

(2c2 + 4c + 6)

[

c
1

]

,

where

c = −(
√

2 − 1)
3d1 + 4 + 2

√
2

d1 + 4 − 2
√

2
.

Substituting w for the initial condition, the gradient with respect to d1 is found
to be:

g1 =

(

4

d2

1

− 1

2

)

c2 +
(

4

d2

1

− 9

2

)

2c2 + 4c + 6
= (2 +

√
2)

(

1

d2
1

− 3

8

)

.

The optimal rate feedback according to this criterion is:

d1 = −2

√

2

3
= −1.633
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and the corresponding damping ratio is 0.816. Also then:

λmax

(

P−1
optP

)

= (
√

2 + 1)(
√

3 − 1) = 1.767

and
λmin

(

P−1
optP

)

= (
√

2 − 1)(
√

3 − 1) = 1.132

so that as the initial condition is varied

1.132 ≤ J

Jopt

≤ 1.767 .

The figure shows the variation of J over the range of initial vectors of unit
length when the system is optimized for different criteria. The unconstrained
optimal solution sets the lower limit of J throughout the range. It can be seen
that if the system is allowed to use only a rate feedback, and it is optimized for
a unit initial velocity, then J becomes quite large for other initial disturbances.

Figure 1: Variation of J over the range of intial vectors of unit length

The high level of damping which limits the effect of an initial velocity in fact
causes a slow return to equilibrium after an initial displacement. The optimal
systems for the min-max criteria have a better balanced response over the range

13



of initial disturbances. Comparing the two, it can be seen that the slightly higher
level of damping of the system which optimizes the worst comparison with the
unconstrained optimal system results in a better response to an initial velocity,
but a worse response to an initial displacement.

9 Conclusion

If there are restrictions on the feedback configuration the feedbacks which min-
imize a quadratic error integral depend on the initial state of the system. It
is then better to optimize the worst response to an initial disturbance of given
magnitude, or else the worst comparison with the unconstrained optimal system.
If the error integral is represented as a quadratic form in the initial conditions
with matrix P , then these measures can be computed as the maximum char-
acteristic values of P and P−1

optP . The gradient of any of these measures with
respect to the feedbacks can be represented in terms of P and the outer product
xxT . The solution for a simple system may then be found by equating to zero
the gradient with respect to each allowed feedback. For more complex systems
it is necessary to resort to a descent method using the gradient. It remains an
open question whether any of these measures may possess local minima as well
as a global minimum in the feedback space.
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