Theoretical Background for Aerodynamic Shape Optimization

John C. Vassberg
Boeing Technical Fellow
Advanced Concepts Design Center
Boeing Commercial Airplanes
Long Beach, CA 90846, USA

Antony Jameson
T. V. Jones Professor of Engineering
Dept. Aeronautics & Astronautics
Stanford University
Stanford, CA 94305-3030, USA

Von Karman Institute
Brussels, Belgium
7 April, 2014
LECTURE OUTLINE

• INTRODUCTION

• THEORETICAL BACKGROUND
 – SPIDER & FLY
 – BRACHISTOCHRONE

• SAMPLE APPLICATIONS
 – MARS AIRCRAFT
 – RENO RACER
 – GENERIC 747 WING/BODY

• DESIGN-SPACE INFLUENCE
THE SPIDER & THE FLY

- PROBLEM STATEMENT
- PROBLEM SET-UP
 - COST FUNCTION
 - DESIGN SPACE
 - GRADIENT & HESSIAN
- SEARCH METHODS
 - STEEPEST DESCENT
 - NEWTON ITERATION
 - NASH EQUILIBRIUM
- EXACT SOLUTION
THE SPIDER & THE FLY

Block Size
4" x 4" x 12"

Path Length
16.00"

Obvious Local-Minimum Path between Spider and Fly.
THE SPIDER & THE FLY

Block Size
4" x 4" x 12"

Path Length
$\sqrt{250.0}"$
$\sim 15.81"$

Non-Obvious Global-Minimum Path between Spider and Fly.
Path type to optimize is partitioned into four segments. Path described as the piecewise linear curve that connects:

\[(2, 0, 3), (X, 0, 4), (4, Y, 4), (4, 12, Z), (2, 12, 1)\].

Three design variables \((X, Y, Z)\), constrained by:

\[
\begin{align*}
0 & \leq X \leq 4, \\
0 & \leq Y \leq 12, \\
0 & \leq Z \leq 4.
\end{align*}
\]
SPIDER-FLY COST FUNCTION

Segment Lengths:

\[S_1 = \left[1 + (X - 2)^2 \right]^\frac{1}{2}, \]
\[S_2 = \left[(X - 4)^2 + Y^2 \right]^\frac{1}{2}, \]
\[S_3 = \left[(Y - 12)^2 + (Z - 4)^2 \right]^\frac{1}{2}, \]
\[S_4 = \left[(Z - 1)^2 + 4 \right]^\frac{1}{2}. \]

Total Path Length:

\[I \equiv S = S_1 + S_2 + S_3 + S_4. \]

Minimize \(I \) Subject to Constraints.
First Variation of Cost Function:

\[\delta I = I_X \delta X + I_Y \delta Y + I_Z \delta Z \equiv G \delta \chi \]

\[I_X = \frac{(X-2)}{S_1} + \frac{(X-4)}{S_2} \]

\[I_Y = \frac{Y}{S_2} + \frac{(Y-12)}{S_3} \]

\[G \equiv \text{Gradient Vector} \]

\[\chi \equiv \text{Design Space Vector} \]

\[I_Z = \frac{(Z-4)}{S_3} + \frac{(Z-1)}{S_4} \]
SPIDER-FLY HESSIAN MATRIX

\[
A = \begin{bmatrix}
I_{XX} & I_{YX} & I_{ZX} \\
I_{XY} & I_{YY} & I_{ZY} \\
I_{XZ} & I_{YZ} & I_{ZZ}
\end{bmatrix},
\]

\[
\begin{align*}
I_{XX} &= \frac{1}{S_1^3} + \frac{Y^2}{S_2^3} \\
I_{XY} &= I_{YX} = \frac{(4-X)Y}{S_2^3} \\
I_{XZ} &= I_{ZX} = 0 \\
I_{YY} &= \frac{(X-4)^2}{S_2^3} + \frac{(Z-4)^2}{S_3^3} \\
I_{YZ} &= I_{ZY} = \frac{(Y-12)(4-Z)}{S_3^3} \\
I_{ZZ} &= \frac{(Y-12)^2}{S_3^3} + \frac{4}{S_4^3}
\end{align*}
\]
Consider the Taylor series expansion of a function f.

\[f(x + \Delta x) = f(x) + \Delta x f_x(x) + \frac{\Delta x^2}{2} f_{xx}(x) + \ldots + \frac{\Delta x^n}{n!} f_n(x) + \ldots \]

A first-order accurate approximation of $f_x(x)$ can be determined with the forward differencing formula

\[f_x(x) \approx \frac{f(x + \Delta x) - f(x)}{\Delta x}. \]

Here Δx is a small perturbation of the X coordinate.
In the case of the spider-fly, let's approximate I_X.

$$I_X \simeq \frac{I(X + h, Y, Z) - I(X, Y, Z)}{h}$$

For example, using $h = 10^{-3}$ at $(X, Y, Z) = (2, 6, 2)$ gives:

$$I_X \simeq -0.31565661, \text{ an error of about 0.1\%.}$$

The exact value of I_X at this location is $-\frac{2}{\sqrt{40}} \simeq -0.31622777$.
Consider the Taylor series expansion of a complex function \(f \).

\[
f(x + \Delta x) = f(x) + \Delta x \ f_x(x) + \frac{\Delta x^2}{2} f_{xx}(x) + \ldots + \frac{\Delta x^n}{n!} f_n(x) + \ldots
\]

A second-order accurate approximation of \(f_x(x) \) can be found with the complex-variable formula

\[
f_x(x) \simeq \frac{Im[f(x + ih)]}{h}.
\]

Here \(\Delta x = ih \) is an imaginary perturbation of \(X \).
In the case of the spider-fly, let’s approximate I_X.

$$I_X \simeq \frac{Im[I(X + ih, Y, Z)]}{h}$$

For all $h \leq 10^{-3}$ at $(X, Y, Z) = (2, 6, 2)$, we get:

$$I_X \simeq -0.31622777.$$

This is identical to the exact value to 8 significant digits.
GRADIENT APPROXIMATION

\[\log_{10}(\text{Error } I_X) \]

<table>
<thead>
<tr>
<th>(\log_{10}(h))</th>
<th>Finite Difference</th>
<th>Complex Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1.244</td>
<td>-4.449</td>
</tr>
<tr>
<td>-2</td>
<td>-2.243</td>
<td>-6.449</td>
</tr>
<tr>
<td>-3</td>
<td>-3.243</td>
<td>-8.449</td>
</tr>
<tr>
<td>-4</td>
<td>-4.243</td>
<td>-10.449</td>
</tr>
<tr>
<td>-5</td>
<td>-5.243</td>
<td>-12.449</td>
</tr>
<tr>
<td>-6</td>
<td>-6.244</td>
<td>-14.449</td>
</tr>
<tr>
<td>-7</td>
<td>-7.192</td>
<td>-16.256</td>
</tr>
<tr>
<td>-8</td>
<td>-6.778</td>
<td>-16.256</td>
</tr>
<tr>
<td>-9</td>
<td>-5.977</td>
<td>-16.256</td>
</tr>
<tr>
<td>-10</td>
<td>-4.768</td>
<td>-16.256</td>
</tr>
</tbody>
</table>

Stability of Finite-Difference and Complex-Variable Methods
Finite Difference vs Complex Variables

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{gradient_approximation}
\caption{Comparison of Finite Difference and Complex Variables methods for gradient approximation.}
\end{figure}
SPIDER-FLY SEARCH METHODS

Trajectory:

\[\mathbf{x}^{n+1} = \mathbf{x}^n + \delta \mathbf{x}^n \]

Steepest Descent:

\[\delta \mathbf{x}^n = -\lambda G, \quad \lambda > 0 \]
\[\delta I^n = G \delta \mathbf{x}^n = -\lambda G^2 \leq 0 \]

Newton Iteration:

\[\delta \mathbf{x}^n = -A^{-1}G = -HG \]
Rank-1 quasi-Newton:

\[H^{n+1} = H^n + \frac{(\mathcal{P}^n)(\mathcal{P}^n)^T}{(\mathcal{P}^n)^T \delta G^n}, \]

where

\[\delta G^n = G^{n+1} - G^n \]

and

\[\mathcal{P}^n = \delta \chi^n - H^n \delta G^n. \]
Nash Equilibrium:

\[
\begin{align*}
\text{minimize } I(X^*, Y^n, Z^n) & \implies I_x(X^*, Y^n, Z^n) = 0 \implies X^*, \\
\text{minimize } I(X^n, Y^*, Z^n) & \implies I_x(X^n, Y^*, Z^n) = 0 \implies Y^*, \\
\text{minimize } I(X^n, Y^n, Z^*) & \implies I_x(X^n, Y^n, Z^*) = 0 \implies Z^*.
\end{align*}
\]

These reduce to:

\[
\begin{align*}
X^* &= \frac{2(2 + Y^n)}{1 + Y^n}, & Y^* &= \frac{12(4 - X^n)}{8 - X^n - Z^n}, & Z^* &= 4 - \frac{3(12 - Y^n)}{14 - Y^n}.
\end{align*}
\]

Update design vector:

\[
[X_n^{n+1}, Y_n^{n+1}, Z_n^{n+1}]^T = [X^*, Y^*, Z^*]^T
\]
SPIDER-FLY INITIAL PATH

\[
\chi^0 = \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix}, \quad G^0 = \begin{bmatrix} \frac{-2}{\sqrt{40}} \\ 0.0 \\ \left(\frac{-3}{\sqrt{40}} + \frac{1}{\sqrt{5}}\right) \end{bmatrix} \approx \begin{bmatrix} -0.31623 \\ 0.0 \\ -0.02713 \end{bmatrix},
\]

\[
A^0 \approx \begin{bmatrix} 1.14230 & 0.04743 & 0.0 \\ 0.04743 & 0.03162 & -0.04743 \\ 0.0 & -0.04743 & 0.50007 \end{bmatrix},
\]

\[
I^0 = (1 + 2\sqrt{40} + \sqrt{5}) \approx 15.88518
\]
Initial Path between Spider and Fly.
Convergence of Gradient for Steepest Descent.
Steepest-Descent Trajectory through Design Space.
Convergence of Gradient for Newton Iteration.

Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014
Newton-Iteration Trajectory through Design Space.
Convergence of Newton Iteration on the Spider-Fly Problem.

<table>
<thead>
<tr>
<th>n</th>
<th>X^n</th>
<th>Y^n</th>
<th>Z^n</th>
<th>I^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.000000</td>
<td>6.000000</td>
<td>2.000000</td>
<td>15.88518</td>
</tr>
<tr>
<td>1</td>
<td>2.319023</td>
<td>4.984009</td>
<td>1.641696</td>
<td>15.81167</td>
</tr>
<tr>
<td>2</td>
<td>2.333268</td>
<td>4.999744</td>
<td>1.666556</td>
<td>15.81139</td>
</tr>
<tr>
<td>3</td>
<td>2.333333</td>
<td>5.000000</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
</tbody>
</table>
Convergence of Gradient for Rank-1 quasi-Newton Iteration.
Rank-1 quasi-Newton Trajectory through the Design Space.
SPIDER-FLY RANK-1 QUASI-NEWTON

<table>
<thead>
<tr>
<th>n</th>
<th>X^n</th>
<th>Y^n</th>
<th>Z^n</th>
<th>I^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.000000</td>
<td>6.000000</td>
<td>2.000000</td>
<td>15.88518</td>
</tr>
<tr>
<td>1</td>
<td>2.316228</td>
<td>6.000000</td>
<td>1.869014</td>
<td>15.82842</td>
</tr>
<tr>
<td>2</td>
<td>2.309340</td>
<td>5.995497</td>
<td>1.854977</td>
<td>15.82729</td>
</tr>
<tr>
<td>3</td>
<td>2.283594</td>
<td>5.931327</td>
<td>1.731183</td>
<td>15.82250</td>
</tr>
<tr>
<td>4</td>
<td>2.268113</td>
<td>6.064459</td>
<td>1.736156</td>
<td>15.82602</td>
</tr>
<tr>
<td>5</td>
<td>2.329076</td>
<td>5.002280</td>
<td>1.654099</td>
<td>15.81144</td>
</tr>
<tr>
<td>6</td>
<td>2.325976</td>
<td>4.997523</td>
<td>1.643056</td>
<td>15.81157</td>
</tr>
<tr>
<td>7</td>
<td>2.333299</td>
<td>4.999719</td>
<td>1.666628</td>
<td>15.81139</td>
</tr>
<tr>
<td>8</td>
<td>2.333331</td>
<td>5.000017</td>
<td>1.666668</td>
<td>15.81139</td>
</tr>
<tr>
<td>9</td>
<td>2.333333</td>
<td>5.000002</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
<tr>
<td>10</td>
<td>2.333333</td>
<td>5.000000</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
</tbody>
</table>

Convergence of Rank-1 quasi-Newton on Spider-Fly.
SPIDER-FLY RANK-1 QUASI-NEWTON

<table>
<thead>
<tr>
<th>n</th>
<th>G^m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.3162278 0.0000000 0.1309858</td>
</tr>
<tr>
<td>1</td>
<td>0.0313201 0.0204757 0.0638312</td>
</tr>
<tr>
<td>2</td>
<td>0.0241196 0.0207513 0.0566640</td>
</tr>
<tr>
<td>3</td>
<td>-0.0051403 0.0239077 -0.0068202</td>
</tr>
<tr>
<td>4</td>
<td>-0.0156349 0.0272111 -0.0109428</td>
</tr>
<tr>
<td>5</td>
<td>-0.0042385 0.0003440 -0.0070051</td>
</tr>
<tr>
<td>6</td>
<td>-0.0076998 0.0004624 -0.0129071</td>
</tr>
<tr>
<td>7</td>
<td>-0.0000509 -0.0000095 -0.0000100</td>
</tr>
<tr>
<td>8</td>
<td>-0.0000014 0.0000003 0.0000003</td>
</tr>
<tr>
<td>9</td>
<td>-0.0000003 0.0000000 0.0000001</td>
</tr>
<tr>
<td>10</td>
<td>0.0000000 0.0000000 0.0000000</td>
</tr>
</tbody>
</table>

Convergence of Rank-1 quasi-Newton on Spider-Fly.
SPIDER-FLY RANK-1 QUASI-NEWTON

<table>
<thead>
<tr>
<th>n</th>
<th>p^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-0.0313201</td>
</tr>
<tr>
<td>1</td>
<td>-0.0027101</td>
</tr>
<tr>
<td>2</td>
<td>0.0032314</td>
</tr>
<tr>
<td>3</td>
<td>-0.0092369</td>
</tr>
<tr>
<td>4</td>
<td>0.0038082</td>
</tr>
<tr>
<td>5</td>
<td>-0.0061541</td>
</tr>
<tr>
<td>6</td>
<td>0.0000316</td>
</tr>
<tr>
<td>7</td>
<td>0.0000021</td>
</tr>
<tr>
<td>8</td>
<td>0.0000003</td>
</tr>
<tr>
<td>9</td>
<td>0.0000000</td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Convergence of Rank-1 quasi-Newton on Spider-Fly.
Convergence of Rank-1 quasi-Newton on Spider-Fly.

Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014
SPIDER-FLY RANK-1 QUASI-NEWTON

<table>
<thead>
<tr>
<th>n</th>
<th>H^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1.0178515, -2.0173360, -0.1120774</td>
</tr>
<tr>
<td></td>
<td>-2.0173360, 39.0361115, 2.7720896</td>
</tr>
<tr>
<td></td>
<td>-0.1120774, 2.7720896, 1.9924568</td>
</tr>
<tr>
<td>7</td>
<td>1.0194495, -2.0023937, -0.1100296</td>
</tr>
<tr>
<td></td>
<td>-2.0023937, 39.1758307, 2.7912373</td>
</tr>
<tr>
<td></td>
<td>-0.1100296, 2.7912373, 1.9950809</td>
</tr>
<tr>
<td>8</td>
<td>0.9628110, -1.5479228, -0.0640429</td>
</tr>
<tr>
<td></td>
<td>-1.5479228, 35.5291298, 2.4222374</td>
</tr>
<tr>
<td></td>
<td>-0.0640429, 2.4222374, 1.9577428</td>
</tr>
<tr>
<td>9</td>
<td>1.0930870, -2.1085463, -0.1558491</td>
</tr>
<tr>
<td></td>
<td>-2.1085463, 37.9416902, 2.8173117</td>
</tr>
<tr>
<td></td>
<td>-0.1558491, 2.8173117, 2.0224391</td>
</tr>
<tr>
<td>10</td>
<td>1.0931086, -2.1081974, -0.1562477</td>
</tr>
<tr>
<td></td>
<td>-2.1081974, 37.9473320, 2.8108673</td>
</tr>
<tr>
<td></td>
<td>-0.1562477, 2.8108673, 2.0298003</td>
</tr>
<tr>
<td>∞</td>
<td>1.0931330, -2.1081851, -0.1561619</td>
</tr>
<tr>
<td></td>
<td>-2.1081851, 37.9473319, 2.8109135</td>
</tr>
<tr>
<td></td>
<td>-0.1561619, 2.8109135, 2.0301042</td>
</tr>
</tbody>
</table>

Convergence of Rank-1 quasi-Newton on Spider-Fly.
SPIDER-FLY NASH EQUILIBRIUM

Convergence of Error for Nash Equilibrium.
Convergence of Gradient for Nash Equilibrium.
Nash Equilibrium Trajectory through the Design Space.
Convergence of Nash Equilibrium on Spider-Fly.

<table>
<thead>
<tr>
<th>n</th>
<th>X^n</th>
<th>Y^n</th>
<th>Z^n</th>
<th>I^n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.000000</td>
<td>6.000000</td>
<td>2.000000</td>
<td>15.88518</td>
</tr>
<tr>
<td>1</td>
<td>2.285714</td>
<td>6.000000</td>
<td>1.750000</td>
<td>15.82411</td>
</tr>
<tr>
<td>2</td>
<td>2.285714</td>
<td>5.189189</td>
<td>1.750000</td>
<td>15.81388</td>
</tr>
<tr>
<td>3</td>
<td>2.323144</td>
<td>5.189189</td>
<td>1.680982</td>
<td>15.81186</td>
</tr>
<tr>
<td>4</td>
<td>2.323144</td>
<td>5.035762</td>
<td>1.680982</td>
<td>15.81148</td>
</tr>
<tr>
<td>5</td>
<td>2.331358</td>
<td>5.035762</td>
<td>1.669326</td>
<td>15.81141</td>
</tr>
<tr>
<td>6</td>
<td>2.331358</td>
<td>5.006782</td>
<td>1.669326</td>
<td>15.81139</td>
</tr>
<tr>
<td>7</td>
<td>2.332957</td>
<td>5.006782</td>
<td>1.667169</td>
<td>15.81139</td>
</tr>
<tr>
<td>8</td>
<td>2.332957</td>
<td>5.001287</td>
<td>1.667169</td>
<td>15.81139</td>
</tr>
<tr>
<td>9</td>
<td>2.333262</td>
<td>5.001287</td>
<td>1.666685</td>
<td>15.81139</td>
</tr>
<tr>
<td>10</td>
<td>2.333262</td>
<td>5.000244</td>
<td>1.666685</td>
<td>15.81139</td>
</tr>
<tr>
<td>11</td>
<td>2.333320</td>
<td>5.000244</td>
<td>1.666685</td>
<td>15.81139</td>
</tr>
<tr>
<td>12</td>
<td>2.333320</td>
<td>5.000046</td>
<td>1.666685</td>
<td>15.81139</td>
</tr>
<tr>
<td>13</td>
<td>2.333331</td>
<td>5.000046</td>
<td>1.666670</td>
<td>15.81139</td>
</tr>
<tr>
<td>14</td>
<td>2.333331</td>
<td>5.000009</td>
<td>1.666670</td>
<td>15.81139</td>
</tr>
<tr>
<td>15</td>
<td>2.333333</td>
<td>5.000009</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
<tr>
<td>16</td>
<td>2.333333</td>
<td>5.000002</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
<tr>
<td>17</td>
<td>2.333333</td>
<td>5.000002</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
<tr>
<td>18</td>
<td>2.333333</td>
<td>5.000000</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
<tr>
<td>19</td>
<td>2.333333</td>
<td>5.000000</td>
<td>1.666667</td>
<td>15.81139</td>
</tr>
</tbody>
</table>
SPIDER-FLY GEODESIC

Super Ellipsoid Surface:

\[
\left(\frac{|x-2|}{2}\right)^p + \left(\frac{|y-6|}{6}\right)^p + \left(\frac{|z-2|}{2}\right)^p = 1, \quad p \geq 2
\]

Spider Initial Position: \hspace{1cm} Trapped Fly Position:

\[
\begin{align*}
XS &= 2 \\
YS &= 6 \left[1 - \left[1 - \frac{1}{2^p} \right]^{\frac{1}{p}} \right] \\
ZS &= 3
\end{align*}
\hspace{1cm}
\begin{align*}
XF &= 2 \\
YF &= 12 - YS \\
ZF &= 1
\end{align*}
\]
SPIDER-FLY OBSERVATIONS

- **CHOICE OF PATH**
 - WOODEN BLOCK vs SUPER ELLIPSOID
 - DEFINES COST FUNCTION & DESIGN SPACE
 - DISCRETE vs CONTINUUM

- **CHOICE OF SEARCH METHOD**
 - N.I. 3(1 + 3) << 295 S.D. → GOOD TRADE
 - HESSIAN COST = $O(N) \times \text{GRADIENT COST}$
 - LARGE N → AVOID NEWTON ITERATION
Obvious Local-Minimum Path between Spider and Fly.
Obvious Local-Minimum Path on Flattened Box.
SPIDER-FLY EXACT SOLUTION

Non-Obvious Global-Minimum on Flattened Box.

Block Size
4" x 4" x 12"

Path Length
$\sqrt{250.0}$"
~ 15.81"
Non-Obvious Global-Minimum Path between Spider and Fly.
BRACHISTOCHRONE PROBLEM

• GRADIENT & HESSIAN
• BRACHISTOCHRONE
• GRADIENT CALCULATIONS
• SEARCH METHODS
• RESULTS
• SUMMARY
Consider the class of optimization problems with cost function

\[I = \int_{x_0}^{x_1} F(x, y, y') \, dx \]

(1)

where \(F \) is an arbitrary, twice-differentiable function, and \(y(x) \) is the trajectory between fixed end points to be optimized.

The first variation of the cost function is

\[\delta I = \int_{x_0}^{x_1} G \, \delta y \, dx. \]

(2)

Under a variation \(\delta y \), the resulting variation in \(I \) is

\[\delta I = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right) \, dx. \]
Integrating the second term by parts with fixed end points gives

$$\delta I = \int_{x_0}^{x_1} G(x) \delta y(x) \, dx$$

where

$$G = \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'}.$$ (3)

Also,

$$\delta G = A \delta y$$

where A is the Hessian.
The first variation of the gradient can be written as
\[
\delta G = \frac{\partial G}{\partial y} \delta y + \frac{\partial G}{\partial y'} \delta y' + \frac{\partial G}{\partial y''} \delta y''.
\]

The Hessian can be represented as the local differential operator
\[
A = \frac{\partial G}{\partial y} + \frac{\partial G}{\partial y'} \frac{d}{dx} + \frac{\partial G}{\partial y''} \frac{d^2}{dx^2}.
\]

One might also represent the Hessian by the integral operator
\[
\delta G(x) = \int_{x_0}^{x_1} a(x, \xi) \delta y(x) \, d\xi.
\]
The brachistochrone problem is the determination of path \(y(x) \) connecting points \((x_0, y_0)\) and \((x_1, y_1)\) such that the time taken by a particle traversing this path, subject only to the force of gravity, is a minimum. The total time is given by

\[
T = \int_{x_0}^{x_1} \frac{ds}{v}
\]

where the velocity of a particle falling under the influence of gravity, \(g \), and starting from rest at \(y = 0 \), is \(v = \sqrt{2gy} \).
Setting \(ds = \sqrt{(1 + y'^2)} \, dx \), one finds that

\[
T = \frac{I}{\sqrt{2g}}
\]

where

\[
I = \int_{x_0}^{x_1} F(y, y') \, dx
\]

with

\[
F(y, y') = \sqrt{\frac{1 + y'^2}{y}}.
\]
Under a variation δy, the resulting variation in I is

$$\delta I = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right) dx.$$

Integrating the second term by parts with fixed end points

$$\delta I = \int_{x_0}^{x_1} G(x) \delta y(x) dx$$

where

$$G = \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = -\sqrt{1 + y'^2} - \frac{d}{dx} \frac{y'}{\sqrt{y(1 + y'^2)}}.$$
This may be simplified to

\[G = -\frac{1 + y'^2 + 2yy''}{2(y(1 + y'^2))^{\frac{3}{2}}}. \]

(7)

In this case, since \(F \) is not a function of \(x \),

\[\left(y' \frac{\partial F}{\partial y'} - F \right)' = y'' \frac{\partial F}{\partial y'} + y' \frac{d}{dx} \frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y} y'' - \frac{\partial F}{\partial y} y' \]

\[= y' \left(\frac{d}{dx} \frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y} \right) = -y' G. \]
On the optimal path \(G = 0 \) and hence

\[
\left(y' \frac{\partial F}{\partial y'} - F \right) \text{ is constant.}
\]

It follows that \(\sqrt{y(1 + y'^2)} = C \), where \(C \) is a constant.

The classical solution to the brachistochrone is a cycloid.

\[
x(t) = \frac{1}{2}C^2(t - \sin(t))
\]

\[
y(t) = \frac{1}{2}C^2(1 - \cos(t))
\]
GRADIENT CALCULATIONS

- CONTINUOUS GRADIENT
 - Approximation of the Exact Gradient

- DISCRETE GRADIENT
 - Exact Derivative of Discrete Function
CONTINUOUS GRADIENT

The exact continuous gradient of Eqn (7) is approximated by

\[G_j = - \frac{1 + y_j'^2 + 2y_jy_j''}{2(y_j(1 + y_j'^2))^{\frac{3}{2}}} \]

(8)

where

\[y_j' = \frac{y_j + 1 - y_j - 1}{2\Delta x} \quad , \quad y_j'' = \frac{y_j + 1 - 2y_j + y_j - 1}{\Delta x^2}. \]
The exact cost function of Eqn (6) can be approximated by

$$I_R = \sum_{j=0}^{N} F_{j+\frac{1}{2}} \Delta x$$

where

$$F_{j+\frac{1}{2}} = \sqrt{1 + y_j'^2 \frac{1 + y_{j+\frac{1}{2}}}{y_{j+\frac{1}{2}}}}$$

$$y_{j+\frac{1}{2}} = \frac{1}{2}(y_{j+1} + y_j)$$

$$y_j' = \frac{y_{j+1} - y_j}{\Delta x},$$
Differentiating Eqn (9) gives another approximate form for the gradient as

\[G_j = \frac{\partial I_R}{\partial y_j} = B_j - \frac{1}{2} - B_{j+\frac{1}{2}} - \frac{\Delta x}{2}(A_{j+\frac{1}{2}} + A_{j-\frac{1}{2}}) \]

(10)

where

\[A_{j+\frac{1}{2}} = \frac{1 + y_{j+\frac{1}{2}}^2}{2y_{j+\frac{1}{2}}^2} \]
\[B_{j+\frac{1}{2}} = \frac{y_{j+\frac{1}{2}}}{\sqrt{y_{j+\frac{1}{2}}^2 + (1 + y_{j+\frac{1}{2}}^2)}}. \]
SEARCH METHODS

- STEEPEST DESCENT
- SMOOTHED STEEPEST DESCENT
- IMPLICIT DESCENT
- MULTIGRID DESCENT
- KRYLOV ACCELERATION
- QUASI-NEWTON METHODS
 - Rank 1
 - Davidon-Fletcher-Powell (DFP)
 - Broyden-Fanno-Goldfarb-Shannon (BFGS)
STEEPEST DESCENT

Forward Euler step gives
\[y_j^{n+1} = y_j^n - \lambda G^n_j, \quad \lambda > 0 \]
\[\delta y^n = -\lambda G^n. \]

Then to first order the variation in \(I \) is
\[\delta I = \int_{x_0}^{x_1} G \delta y dx = -\lambda \int_{x_0}^{x_1} G^2 dx \]
and
\[\delta I \leq 0. \]
STEEPEST DESCENT

This may be regarded as a forward Euler discretization of a time dependent process with $\lambda = \Delta t$. Hence, $\frac{\partial y}{\partial t} = -G$. Substituting for G from Eqn (7), y solves the nonlinear parabolic equation

$$\frac{\partial y}{\partial t} = \frac{1 + y'^2 + 2yy''}{2y(1 + y'^2)^{3/2}}. \quad (11)$$

The time step limit for stable integration is dominated by the parabolic term $\beta y''$, where $\beta = \frac{y}{(y(1+y'^2))^{3/2}}$.

This gives the following estimate on the time step limit.

$$\Delta t^* = \frac{\Delta x^2}{2\beta}.$$
Define \bar{g} with the implicit smoothing equation.

$$\bar{g} - \frac{\partial}{\partial x} \epsilon \frac{\partial \bar{g}}{\partial x} = g$$

(12)

Now set

$$\delta y = -\lambda \bar{g}.$$

(13)

Then to first order the variation in I is

$$\delta I = \int_{x_0}^{x_1} g \delta y dx = -\lambda \int_{x_0}^{x_1} \left(\bar{g} - \frac{\partial}{\partial x} \epsilon \frac{\partial \bar{g}}{\partial x} \right) \bar{g} dx.$$
Integrating by parts and noting that the end points are fixed,

\[\delta I = -\lambda \int_{x_0}^{x_1} \left(\bar{g}^2 + \epsilon \left(\frac{\partial \bar{g}}{\partial x} \right)^2 \right) dx. \]

Again,

\[\delta I \leq 0. \]
IMPLICIT DESCENT

If the gradient is dominated by a y'' term, the smoothed descent given by Eqn (13) can be made equivalent to an implicit scheme.

Consider the parabolic equation, $\frac{\partial y}{\partial t} = \beta \frac{\partial^2 y}{\partial x^2}$, where β is variable.

The system for an implicit scheme is

$$-\alpha \delta y_{j-1} + (1 + 2\alpha) \delta y_j - \alpha \delta y_{j+1} = -\Delta t \hat{G}_j$$

(14)

where δy_j is the correction to y_j,

$$\alpha = \frac{\beta \Delta t}{\Delta x^2} = \frac{\Delta t}{2 \Delta t^*}$$

(15)
Combining Eqns (12 & 13), the discrete smoothed descent method assumes the form of Eqn (14) with

\[\alpha = \frac{\epsilon}{\Delta x^2}. \]

Comparing Eqn (15) with Eqn (16), one can see using the smoothed gradient is equivalent to an implicit time stepping scheme if \(\epsilon = \beta \Delta t \). Furthermore, a Newton iteration is recovered as \(\Delta t \to \infty \).
MULTIGRID DESCENT

Consider a sequence of K meshes, generated by eliminating alternate points along each coordinate direction of mesh-level k to produce mesh-level $k + 1$. Note that $k = 1$ refers to the finest mesh of the sequence. In order to give a precise description of the multigrid scheme, subscripts may be used to indicate grid level. Several transfer operations need to be defined. First, the solution vector, y, on grid k must be initialized as

$$y_k^{(0)} = T_{k,k-1} y_{k-1}, \quad 2 \leq k \leq K$$

where y_{k-1} is the current value of the solution on grid $k-1$, and $T_{k,k-1}$ is a transfer operator.
It is also necessary to transfer a residual forcing function, \(P \), such that the solution on grid \(k \) is driven by the residuals of grid \(k-1 \). This can be accomplished by setting

\[
P_k = Q_{k,k-1} \mathcal{G}_{k-1}(y_{k-1}) - \mathcal{G}_k(y_k^{(0)}),
\]

where \(Q_{k,k-1} \) is another transfer operator. Now, \(\mathcal{G}_k \) is replaced by \(\mathcal{G}_k + P_k \) in the time-stepping such that

\[
y_k^+ = y_k^{(0)} - \Delta t_k \left[\mathcal{G}_k(y_k) + P_k \right]
\]

where the superscript \(+ \) denotes the updated value. The resulting solution vector, \(y_k^+ \), provides the initial data for grid \(k + 1 \).
Finally, the accumulated correction on grid k is transferred back to grid $k - 1$ with the aid of an interpolation operator, $I_{k-1,k}$. Thus one sets

$$y_{k-1}^{++} = y_{k-1}^+ + I_{k-1,k} \left(y_{k}^{++} - y_{k}^{(0)} \right)$$

where the superscript $^{++}$ denotes the result of both the time step on grid k and the interpolated correction from grid $k + 1$.
MULTIGRID DESCENT

Three-Level Multigrid W-Cycle

$k = 1$

$k = 2$

$k = 3$

Three-Level Multigrid W-Cycle
MULTIGRID DESCENT

Recursive Stencil for a K-Level Multigrid W-Cycle

$(K - 1)$-Level W-Cycle

$(K - 1)$-Level W-Cycle

Recursive Stencil for a K-Level Multigrid W-Cycle
In a three-dimensional setting, the number of cells is reduced by a factor of 8 on each coarser grid. By examination of the stencils, it can be verified that the work of one multigrid W-Cycle, in work units, is on the order of

$$1 + \frac{2}{8} + \frac{4}{64} + \ldots + \frac{1}{4^K} < \frac{4}{3}.$$

Hence, one multigrid W-Cycle only requires about $\frac{1}{3}$ more effort as that required for a fine-mesh iteration.
KRYLOV ACCELERATION

Given \(K \) linearly independent \((y, G)\) vectors, one can survey the \(K\)-dimensional subspace spanned by these vectors.

\[
y^* = \sum_{k=1}^{K} \gamma_k y^k, \quad G^* = \sum_{k=1}^{K} \gamma_k G^k, \quad \sum_{k=1}^{K} \gamma_k = 1
\]

Minimize the \(L_2 \) Norm of \(G^* \) to determine the recombination coefficients \(\gamma_k \).

Now,

\[
y_{j}^{n+1} = y_j^* - \lambda G_j^*
\]
Quasi-Newton methods estimate the Hessian, A, or its inverse A^{-1}, from changes δG in the gradient during the search steps. By the definition of A, to first order

$$\delta G = A \delta y$$

Let H^n be an estimate of A^{-1} at the n^{th} step. Then it should be required to satisfy

$$H^n \delta G^n = \delta y^n$$

This can be satisfied by various recursive formulas for H.
QUASI-NEWTON METHODS

Rank 1

\[H^{n+1} = H^n + \frac{p^n(p^n)^T}{(p^n)^T \delta G^n} \]

where

\[p^n = \delta y^n - H^n \delta G^n \]
QUASI-NEWTON METHODS

Davidon-Fletcher-Powell (DFP)

\[H^{n+1} = H^n + \frac{\delta y^n (\delta y^n)^T}{(\delta y^n)^T \delta G^n} - \frac{H^n \delta G^n (\delta G^n)^T H^n}{(\delta G^n)^T H^n \delta G^n} \]
QUASI-NEWTON METHODS

Broyden-Fanno-Goldfarb-Shannon (BFGS)

\[H^{n+1} = H^{n} + \left(1 + \frac{(\delta G^n)^T H^{n} \delta G^n}{(\delta G^n)^T \delta y^n} \right) \frac{\delta y^n (\delta y^n)^T}{(\delta G^n)^T \delta y^n} \]

\[- \frac{H^n \delta G^n (\delta y^n)^T}{(\delta G^n)^T \delta y^n} + \delta y^n (\delta G^n)^T H^n \]
RESULTS

• ACCURACY OF GRADIENTS
 – Continuous vs. Discrete
 – Level of Accuracy
 – Order of Accuracy

• PERFORMANCE OF SEARCH METHODS
 – Build-up of Explicit Schemes
 – Comparison with Implicit Scheme
 – Grid-Independent Convergence
 – Tested with up to 8192 Design Variables

• ROBUSTNESS
Convergence of continuous gradient, implicit scheme, N=31.
Convergence of discrete gradient, implicit scheme, N=31.
Convergence of continuous gradient, implicit scheme, N=511.
Computed path errors as a function of mesh size.
Difference of measurable cost function between gradients.
PERFORMANCE: STEEPEST DESCENT

History of paths of steepest descent, N=31.
Convergence history of steepest descent, $N=31$.

Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014
PERFORMANCE: SMOOTHED DESCENT

History of paths of smoothed descent, N=31 & STEP=100.
Convergence history of smoothed descent, N=31.
This document discusses the performance of Krylov acceleration in the context of a graph. The graph shows a history of paths for Krylov acceleration with $N=31$ and $STEP=100$. The graph includes lines labeled 'Exact', 'cyc 1', 'cyc 2', 'cyc 4', 'cyc 8', 'cyc 32', and 'cyc 64'. The x-axis represents a range from 0.1 to 1.0, while the y-axis ranges from -0.65 to -0.30.
PERFORMANCE: KRYLOV ACCELERATION

Convergence history of Krylov acceleration, N=31.
PERFORMANCE: MULTIGRID DESCENT

History of paths for multigrid acceleration, N=31.
PERFORMANCE: MULTIGRID DESCENT

Convergence history of multigrid acceleration, N=31.
PERFORMANCE: IMPLICIT DESCENT

History of paths of implicit stepping, N=31.
Convergence history of implicit stepping, N=31.
PERFORMANCE: IMPLICIT DESCENT

History of paths of implicit stepping, \(N=511 \).
PERFORMANCE: IMPLICIT DESCENT

Convergence history of implicit stepping, N=511.
PERFORMANCE: MULTIGRID vs. IMPLICIT

Comparison of grid-independent convergence histories.

Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014
History of paths for Rank-1 quasi-Newton, N=31.
Comparison of quasi-Newton convergence histories, N=31.
PERFORMANCE: QUASI-NEWTON

History of paths for Rank-1 quasi-Newton, N=511.
Comparison of quasi-Newton convergence histories, N=511.
Comparison of convergence dependencies on dimensionality.
SUMMARY: BRACHISTOCHRONE STUDY

- **COMPARISON OF GRADIENTS**
 - Both Gradients Exhibited 2^{nd}-Order Accuracy
 - Continuous Gradient Slightly More Accurate

- **SEARCH METHODS**
 - Steepest Descent Scales with N^2
 - Quasi-Newton Methods Scale with N
 - Implicit Scheme Independent of N
 - Multigrid Descent Independent of N
 - Smoothed Descent Equivalent to Implicit Scheme
Theoretical Background for Aerodynamic Shape Optimization

John C. Vassberg
Boeing Technical Fellow
Advanced Concepts Design Center
Boeing Commercial Airplanes
Long Beach, CA 90846, USA

Antony Jameson
T. V. Jones Professor of Engineering
Dept. Aeronautics & Astronautics
Stanford University
Stanford, CA 94305-3030, USA

Von Karman Institute
Brussels, Belgium
7 April, 2014