Theoretical Background for Aerodynamic Shape Optimization

John C. Vassberg

Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA

Antony Jameson

T. V. Jones Professor of Engineering Dept. Aeronautics & Astronautics Stanford University Stanford, CA 94305-3030, USA

Von Karman Institute Brussels, Belgium 7 April, 2014

LECTURE OUTLINE

- INTRODUCTION
- THEORETICAL BACKGROUND
 - SPIDER & FLY
 - BRACHISTOCHRONE
- SAMPLE APPLICATIONS
 - MARS AIRCRAFT
 - RENO RACER
 - GENERIC 747 WING/BODY
- DESIGN-SPACE INFLUENCE

THE SPIDER & THE FLY

- PROBLEM STATEMENT
- PROBLEM SET-UP
 - COST FUNCTION
 - DESIGN SPACE
 - GRADIENT & HESSIAN
- SEARCH METHODS
 - STEEPEST DESCENT
 - NEWTON ITERATION
 - NASH EQUILIBRIUM
- EXACT SOLUTION

THE SPIDER & THE FLY

Obvious Local-Minimum Path between Spider and Fly.

THE SPIDER & THE FLY

Non-Obvious Global-Minimum Path between Spider and Fly.

SPIDER-FLY DESIGN SPACE

Path type to optimize is partitioned into four segments. Path described as the piecewise linear curve that connects:

(2,0,3), (X,0,4), (4,Y,4), (4,12,Z), (2,12,1).

Three design variables (X, Y, Z), constrained by:

SPIDER-FLY COST FUNCTION

Segment Lengths:

$$S_{1} = \left[1 + (X - 2)^{2}\right]^{\frac{1}{2}},$$

$$S_{2} = \left[(X - 4)^{2} + Y^{2}\right]^{\frac{1}{2}},$$

$$S_{3} = \left[(Y - 12)^{2} + (Z - 4)^{2}\right]^{\frac{1}{2}},$$

$$S_{4} = \left[(Z - 1)^{2} + 4\right]^{\frac{1}{2}}.$$

Total Path Length:

$$I \equiv S = S_1 + S_2 + S_3 + S_4.$$

Minimize I Subject to Constraints.

SPIDER-FLY GRADIENT

First Variation of Cost Function:

$$\delta I = I_X \delta X + I_Y \delta Y + I_Z \delta Z \equiv G \ \delta \mathcal{X}$$

SPIDER-FLY HESSIAN MATRIX

$$A = \begin{bmatrix} I_{XX} & I_{YX} & I_{ZX} \\ I_{XY} & I_{YY} & I_{ZY} \\ I_{XZ} & I_{YZ} & I_{ZZ} \end{bmatrix}, \qquad I_{XY} = I_{YX} = \frac{(4-X)Y}{S_2^3} \\ I_{XZ} = I_{ZX} = 0 \\ I_{YY} = \frac{(X-4)^2}{S_2^3} + \frac{(Z-4)^2}{S_3^3} \\ I_{YZ} = I_{ZY} = \frac{(Y-12)(4-Z)}{S_3^3} \\ I_{ZZ} = \frac{(Y-12)^2}{S_3^3} + \frac{4}{S_4^3} \end{bmatrix}$$

FINITE-DIFFERENCE APPROXIMATION

Consider the Taylor series expansion of a function f.

$$f(x + \Delta x) = f(x) + \Delta x f_x(x) + \frac{\Delta x^2}{2} f_{xx}(x) + \dots + \frac{\Delta x^n}{n!} f_n(x) + \dots$$

A first-order accurate approximation of $f_x(x)$ can be determined with the forward differencing formula

$$f_x(x) \simeq \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Here Δx is a small perturbation of the X coordinate.

FINITE-DIFFERENCE APPROXIMATION

In the case of the spider-fly, let's approximate I_X .

$$I_X \simeq \frac{I(X+h, Y, Z) - I(X, Y, Z)}{h}$$

For example, using $h = 10^{-3}$ at (X, Y, Z) = (2, 6, 2) gives:

 $I_X \simeq -0.31565661$, an error of about 0.1%.

The exact value of I_X at this location is $-\frac{2}{\sqrt{40}} \simeq -0.31622777$.

COMPLEX-VARIABLE APPROXIMATION

Consider the Taylor series expansion of a complex function f.

$$f(x + \Delta x) = f(x) + \Delta x f_x(x) + \frac{\Delta x^2}{2} f_{xx}(x) + \dots + \frac{\Delta x^n}{n!} f_n(x) + \dots$$

A second-order accurate approximation of $f_x(x)$ can be found with the complex-variable formula

$$f_x(x) \simeq \frac{Im[f(x+ih)]}{h}.$$

Here $\Delta x = ih$ is an imaginary perturbation of X.

COMPLEX-VARIABLE APPROXIMATION

In the case of the spider-fly, let's approximate I_X .

$$I_X \simeq \frac{Im[I(X+ih, Y, Z)]}{h}$$

For all $h \le 10^{-3}$ at (X, Y, Z) = (2, 6, 2), we get:

$$I_X\simeq -0.31622777.$$

This is identical to the exact value to 8 significant digits.

GRADIENT APPROXIMATION

	$log_{10}(Error I_X)$		
$log_{10}(h)$	Finite Difference	Complex Variable	
-1	-1.244	-4.449	
-2	-2.243	-6.449	
-3	-3.243	-8.449	
-4	-4.243	-10.449	
-5	-5.243	-12.449	
-6	-6.244	-14.449	
-7	-7.192	-16.256	
-8	-6.778	-16.256	
-9	-5.977	-16.256	
-10	-4.768	-16.256	

Stability of Finite-Difference and Complex-Variable Methods

GRADIENT APPROXIMATION

Finite Difference vs Complex Variables

SPIDER-FLY SEARCH METHODS

Trajectory:

$$\mathcal{X}^{n+1} = \mathcal{X}^n + \delta \mathcal{X}^n$$

Steepest Descent:

$$\delta \mathcal{X}^n = -\lambda G, \quad \lambda > 0$$
$$\delta I^n = G \, \delta \mathcal{X}^n = -\lambda G^2 < 0$$

Newton Iteration:

$$\delta \mathcal{X}^n = -A^{-1}G = -HG$$

SPIDER-FLY SEARCH METHODS

Rank-1 quasi-Newton:

$$H^{n+1} = H^n + \frac{(\mathcal{P}^n)(\mathcal{P}^n)^T}{(\mathcal{P}^n)^T \delta G^n},$$

where

$$\delta G^n = G^{n+1} - G^n$$

and

$$\mathcal{P}^n = \delta \mathcal{X}^n - H^n \delta G^n.$$

SPIDER-FLY SEARCH METHODS

Nash Equilibrium:

minimize
$$I(X^{\star}, Y^n, Z^n) \implies I_x(X^{\star}, Y^n, Z^n) \equiv 0 \implies X^{\star},$$

minimize $I(X^n, Y^{\star}, Z^n) \implies I_x(X^n, Y^{\star}, Z^n) \equiv 0 \implies Y^{\star},$
minimize $I(X^n, Y^n, Z^{\star}) \implies I_x(X^n, Y^n, Z^{\star}) \equiv 0 \implies Z^{\star}.$

These reduce to:

$$X^{\star} = \frac{2(2+Y^n)}{(1+Y^n)}, \quad Y^{\star} = \frac{12(4-X^n)}{(8-X^n-Z^n)}, \quad Z^{\star} = 4 - \frac{3(12-Y^n)}{(14-Y^n)}.$$

Update design vector:

$$[X^{n+1}, Y^{n+1}, Z^{n+1}]^T = [X^*, Y^*, Z^*]^T$$

SPIDER-FLY INITIAL PATH

$$\mathcal{X}^{0} = \begin{bmatrix} 2\\ 6\\ 2 \end{bmatrix}, \quad G^{0} = \begin{bmatrix} \frac{-2}{\sqrt{40}} \\ 0.0 \\ (\frac{-3}{\sqrt{40}} + \frac{1}{\sqrt{5}}) \end{bmatrix} \approx \begin{bmatrix} -0.31623 \\ 0.0 \\ -0.02713 \end{bmatrix},$$

$$A^{0} \approx \begin{bmatrix} 1.14230 & 0.04743 & 0.0\\ 0.04743 & 0.03162 & -0.04743\\ 0.0 & -0.04743 & 0.50007 \end{bmatrix},$$

$$I^0 = (1 + 2\sqrt{40} + \sqrt{5}) \approx 15.88518$$

SPIDER-FLY INITIAL PATH

Initial Path between Spider and Fly.

SPIDER-FLY STEEPEST DESCENT

Convergence of Gradient for Steepest Descent.

SPIDER-FLY STEEPEST DESCENT

SPIDER-FLY NEWTON ITERATION

Convergence of Gradient for Newton Iteration.

SPIDER-FLY NEWTON ITERATION

74

SPIDER-FLY NEWTON ITERATION

n	X^n	Y^n	Z^n	I^n
0	2.000000	6.000000	2.000000	15.88518
1	2.319023	4.984009	1.641696	15.81167
2	2.333268	4.999744	1.666556	15.81139
3	2.333333	5.000000	1.666667	15.81139

Convergence of Newton Iteration on the Spider-Fly Problem.

Convergence of Gradient for Rank-1 quasi-Newton Iteration.

n	X^n	Y^n	Z^n	I^n
0	2.000000	6.000000	2.000000	15.88518
1	2.316228	6.000000	1.869014	15.82842
2	2.309340	5.995497	1.854977	15.82729
3	2.283594	5.931327	1.731183	15.82250
4	2.268113	6.064459	1.736156	15.82602
5	2.329076	5.002280	1.654099	15.81144
6	2.325976	4.997523	1.643056	15.81157
7	2.333299	4.999719	1.666628	15.81139
8	2.333331	5.000017	1.666668	15.81139
9	2.333333	5.000002	1.666667	15.81139
10	2.333333	5.000000	1.666667	15.81139

Convergence of Rank-1 quasi-Newton on Spider-Fly.

		\sim	
n		G^{n}	
0	-0.3162278	0.0000000	0.1309858
1	0.0313201	0.0204757	0.0638312
2	0.0241196	0.0207513	0.0566640
3	-0.0051403	0.0239077	-0.0068202
4	-0.0156349	0.0272111	-0.0109428
5	-0.0042385	0.0003440	-0.0070051
6	-0.0076998	0.0004624	-0.0129071
7	-0.0000509	-0.0000095	-0.0000100
8	-0.0000014	0.000003	0.000003
9	-0.000003	0.0000000	0.0000001
10	0.0000000	0.0000000	0.0000000

Convergence of Rank-1 quasi-Newton on Spider-Fly.

n		\mathcal{P}^n	
0	-0.0313201	-0.0204757	-0.0638312
1	-0.0027101	-0.0067548	-0.0130308
2	0.0032314	-0.0277891	-0.0010379
3	-0.0092369	0.1609362	0.0124328
4	0.0038082	0.0058428	0.0135643
5	-0.0061541	-0.0018454	-0.0198081
6	0.0000316	0.0002953	0.0000405
7	0.0000021	-0.0000171	-0.0000017
8	0.000003	-0.0000015	-0.0000002
9	0.0000000	0.0000000	0.000000
10			

Convergence of Rank-1 quasi-Newton on Spider-Fly.

n		H^n	
	1.0000000	0.0000000	0.0000000
0	0.0000000	1.0000000	0.0000000
	0.0000000	0.000000	1.0000000
	0.8602224	-0.0913802	-0.2848703
1	-0.0913802	0.9402598	-0.1862351
	-0.2848703	-0.1862351	0.4194274
	0.9263627	0.0734691	0.0331463
2	0.0734691	1.3511333	0.6063951
	0.0331463	0.6063951	1.9485177
	0.8366376	0.8450854	0.0619643
3	0.8450854	-5.2845988	0.3585666
	0.0619643	0.3585666	1.9392619
	0.9844233	-1.7298270	-0.1369557
4	-1.7298270	39.5788215	3.8244048
	-0.1369557	3.8244048	2.2070087
	0.7433885	-2.0996388	-0.9954916
5	-2.0996388	39.0114314	2.5071815
	-0.9954916	2.5071815	-0.8509886

Convergence of Rank-1 quasi-Newton on Spider-Fly.

n		H^n	
	1.0178515	-2.0173360	-0.1120774
6	-2.0173360	39.0361115	2.7720896
	-0.1120774	2.7720896	1.9924568
	1.0194495	-2.0023937	-0.1100296
7	-2.0023937	39.1758307	2.7912373
	-0.1100296	2.7912373	1.9950809
	0.9628110	-1.5479228	-0.0640429
8	-1.5479228	35.5291298	2.4222374
	-0.0640429	2.4222374	1.9577428
	1.0930870	-2.1085463	-0.1558491
9	-2.1085463	37.9416902	2.8173117
	-0.1558491	2.8173117	2.0224391
	1.0931086	-2.1081974	-0.1562477
10	-2.1081974	37.9473320	2.8108673
	-0.1562477	2.8108673	2.0298003
	1.0931330	-2.1081851	-0.1561619
∞	-2.1081851	37.9473319	2.8109135
	-0.1561619	2.8109135	2.0301042

Convergence of Rank-1 quasi-Newton on Spider-Fly.

Convergence of Error for Nash Equilibrium.

Convergence of Gradient for Nash Equilibrium.

n	X^n	Y^n	Z^n	I^n
0	2.000000	6.000000	2.000000	15.88518
1	2.285714	6.000000	1.750000	15.82411
2	2.285714	5.189189	1.750000	15.81388
3	2.323144	5.189189	1.680982	15.81186
4	2.323144	5.035762	1.680982	15.81148
5	2.331358	5.035762	1.669326	15.81141
6	2.331358	5.006782	1.669326	15.81139
7	2.332957	5.006782	1.667169	15.81139
8	2.332957	5.001287	1.667169	15.81139
9	2.333262	5.001287	1.666762	15.81139
10	2.333262	5.000244	1.666762	15.81139
11	2.333320	5.000244	1.666685	15.81139
12	2.333320	5.000046	1.666685	15.81139
13	2.333331	5.000046	1.666670	15.81139
14	2.333331	5.000009	1.666670	15.81139
15	2.333333	5.000009	1.666667	15.81139
16	2.333333	5.000002	1.666667	15.81139
17	2.333333	5.000002	1.666667	15.81139
18	2.333333	5.000000	1.666667	15.81139
19	2.333333	5.000000	1.666667	15.81139

Convergence of Nash Equilibrium on Spider-Fly.
SPIDER-FLY GEODESIC

Super Ellipsoid Surface:

$$\left[\frac{|x-2|}{2}\right]^{p} + \left[\frac{|y-6|}{6}\right]^{p} + \left[\frac{|z-2|}{2}\right]^{p} = 1, \quad p \ge 2$$

Spider Initial Position:

Trapped Fly Position:

$$XS = 2$$

$$YS = 6 \left[1 - \left[1 - \frac{1}{2^p} \right]^{\frac{1}{p}} \right]$$

$$XF = 2$$

$$YF = 12 - YS$$

$$ZF = 1$$

SPIDER-FLY OBSERVATIONS

- CHOICE OF PATH
 - WOODEN BLOCK vs SUPER ELLIPSOID
 - DEFINES COST FUNCTION & DESIGN SPACE
 - DISCRETE vs CONTINUUM
- CHOICE OF SEARCH METHOD
 - N.I. 3(1+3) << 295 S.D. \rightarrow GOOD TRADE
 - HESSIAN COST = $\mathcal{O}(N)$ *GRADIENT COST
 - LARGE $N \rightarrow$ AVOID NEWTON ITERATION

Obvious Local-Minimum Path between Spider and Fly.

Obvious Local-Minimum Path on Flattened Box.

Non-Obvious Global-Minimum on Flattened Box.

Non-Obvious Global-Minimum Path between Spider and Fly.

BRACHISTOCHRONE PROBLEM

- GRADIENT & HESSIAN
- BRACHISTOCHRONE
- GRADIENT CALCULATIONS
- SEARCH METHODS
- RESULTS
- SUMMARY

GRADIENT & HESSIAN

Consider the class of optimization problems with cost function

$$I = \int_{x_0}^{x_1} F(x, y, y') \, dx \tag{1}$$

where F is an arbitrary, twice-differentiable function, and y(x) is the trajectory between fixed end points to be optimized.

The first variation of the cost function is

$$\delta I = \int_{x_0}^{x_1} \mathcal{G} \, \delta y \, dx. \tag{2}$$

Under a variation δy , the resulting variation in I is

$$\delta I = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right) dx.$$

GRADIENT & HESSIAN

Integrating the second term by parts with fixed end points gives

$$\delta I = \int_{x_0}^{x_1} \mathcal{G}(x) \delta y(x) dx$$

where

$$\mathcal{G} = \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'}.$$
 (3)

Also,

$$\delta \mathcal{G} = A \, \delta y$$

where A is the Hessian.

GRADIENT & HESSIAN

The first variation of the gradient can be written as

$$\delta \mathcal{G} = \frac{\partial \mathcal{G}}{\partial y} \delta y + \frac{\partial \mathcal{G}}{\partial y'} \delta y' + \frac{\partial \mathcal{G}}{\partial y''} \delta y''.$$

The Hessian can be represented as the local differential operator

$$A = \frac{\partial \mathcal{G}}{\partial y} + \frac{\partial \mathcal{G}}{\partial y'} \frac{d}{dx} + \frac{\partial \mathcal{G}}{\partial y''} \frac{d^2}{dx^2}.$$
 (4)

One might also represent the Hessian by the integral operator

$$\delta \mathcal{G}(x) = \int_{x_0}^{x_1} a(x,\xi) \,\delta y(x) \,d\xi. \tag{5}$$

The brachistochrone problem is the determination of path y(x) connecting points (x_0, y_0) and (x_1, y_1) such that the time taken by a particle traversing this path, subject only to the force of gravity, is a minimum. The total time is given by

$$T = \int_{x_0}^{x_1} \frac{ds}{v}$$

where the velocity of a particle falling under the influence of gravity, g, and starting from rest at y = 0, is $v = \sqrt{2gy}$.

Setting $ds = \sqrt{(1 + y'^2)} dx$, one finds that $T = \frac{I}{\sqrt{2g}}$

where

$$I = \int_{x_0}^{x_1} F(y, y') dx$$
 (6)

with

$$F(y,y') = \sqrt{\frac{1+y'^2}{y}}.$$

Vassberg & Jameson, VKI Lecture-I, Brussels, 7 April, 2014

48

Under a variation δy , the resulting variation in I is

$$\delta I = \int_{x_0}^{x_1} \left(\frac{\partial F}{\partial y} \delta y + \frac{\partial F}{\partial y'} \delta y' \right) dx.$$

Integrating the second term by parts with fixed end points

$$\delta I = \int_{x_0}^{x_1} \mathcal{G}(x) \delta y(x) dx$$

where

$$\mathcal{G} = \frac{\partial F}{\partial y} - \frac{d}{dx} \frac{\partial F}{\partial y'} = -\frac{\sqrt{1+{y'}^2}}{2y^{\frac{3}{2}}} - \frac{d}{dx} \frac{y'}{\sqrt{y(1+{y'}^2)}}.$$

This may be simplified to

$$\mathcal{G} = -\frac{1 + y'^2 + 2yy''}{2(y(1 + y'^2))^{\frac{3}{2}}}.$$
(7)

In this case, since F is not a funciton of x,

$$\begin{pmatrix} y'\frac{\partial F}{\partial y'} - F \end{pmatrix}' = y''\frac{\partial F}{\partial y'} + y'\frac{d}{dx}\frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y'}y'' - \frac{\partial F}{\partial y}y'$$
$$= y'\left(\frac{d}{dx}\frac{\partial F}{\partial y'} - \frac{\partial F}{\partial y}\right) = -y'\mathcal{G}.$$

On the optimal path $\mathcal{G}=\mathbf{0}$ and hence

$$\left(y'\frac{\partial F}{\partial y'}-F\right)$$
 is constant.

It follows that $\sqrt{y(1+y'^2)} = C$, where C is a constant.

The classical solution to the brachistochrone is a cycloid.

$$x(t) = \frac{1}{2}C^{2}(t - sin(t))$$
$$y(t) = \frac{1}{2}C^{2}(1 - cos(t))$$

GRADIENT CALCULATIONS

• CONTINUOUS GRADIENT

- Approximation of the Exact Gradient

• DISCRETE GRADIENT

- Exact Derivative of Discrete Function

CONTINUOUS GRADIENT

The exact continuous gradient of Eqn (7) is approximated by

$$\mathcal{G}_{j} = -\frac{1 + y_{j}^{\prime 2} + 2y_{j}y_{j}^{\prime \prime}}{2(y_{j}(1 + y_{j}^{\prime 2}))^{\frac{3}{2}}}$$
(8)

where

$$y'_{j} = \frac{y_{j+1} - y_{j-1}}{2\Delta x}$$
, $y''_{j} = \frac{y_{j+1} - 2y_{j} + y_{j-1}}{\Delta x^{2}}$.

DISCRETE GRADIENT

The exact cost function of Eqn (6) can be approximated by

$$I_R = \sum_{j=0}^{N} F_{j+\frac{1}{2}} \Delta x$$
 (9)

where

$$F_{j+\frac{1}{2}} = \sqrt{\frac{1+y_{j+\frac{1}{2}}'}{y_{j+\frac{1}{2}}}}$$
$$y_{j+\frac{1}{2}} = \frac{1}{2}(y_{j+1}+y_j) \qquad , \qquad y_{j+\frac{1}{2}}' = \frac{(y_{j+1}-y_j)}{\Delta x}.$$

DISCRETE GRADIENT

Differentiating Eqn (9) gives another approximate form for the gradient as

$$\mathcal{G}_{j} = \frac{\partial I_{R}}{\partial y_{j}} = \mathcal{B}_{j-\frac{1}{2}} - \mathcal{B}_{j+\frac{1}{2}} - \frac{\Delta x}{2} (\mathcal{A}_{j+\frac{1}{2}} + \mathcal{A}_{j-\frac{1}{2}})$$
(10)

where

$$\mathcal{A}_{j+\frac{1}{2}} = \frac{\sqrt{1+y_{j+\frac{1}{2}}^{\prime 2}}}{2y_{j+\frac{1}{2}}^{\frac{3}{2}}} \qquad , \qquad \mathcal{B}_{j+\frac{1}{2}} = \frac{y_{j+\frac{1}{2}}^{\prime}}{\sqrt{y_{j+\frac{1}{2}}(1+y_{j+\frac{1}{2}}^{\prime 2})}}.$$

SEARCH METHODS

- STEEPEST DESCENT
- SMOOTHED STEEPEST DESCENT
- IMPLICIT DESCENT
- MULTIGRID DESCENT
- KRYLOV ACCELERATION
- QUASI-NEWTON METHODS
 - Rank 1
 - Davidon-Fletcher-Powell (DFP)
 - Broyden-Fanno-Goldfarb-Shannon (BFGS)

STEEPEST DESCENT

Forward Euler step gives

$$y_j^{n+1} = y_j^n - \lambda \mathcal{G}_j^n$$
 , $\lambda > 0$

 $\delta y^n = -\lambda \mathcal{G}^n.$

Then to first order the variation in I is

$$\delta I = \int_{x_0}^{x_1} \mathcal{G}\delta y dx = -\lambda \int_{x_0}^{x_1} \mathcal{G}^2 dx$$

and

 $\delta I \leq 0.$

STEEPEST DESCENT

This may be regarded as a forward Euler discretization of a time dependent process with $\lambda = \Delta t$. Hence, $\frac{\partial y}{\partial t} = -\mathcal{G}$. Substituting for \mathcal{G} from Eqn (7), y solves the nonlinear parabolic equation

$$\frac{\partial y}{\partial t} = \frac{1 + y'^2 + 2yy''}{2(y(1 + y'^2))^{\frac{3}{2}}}.$$
(11)

The time step limit for stable integration is dominated by the parabolic term $\beta y''$, where $\beta = \frac{y}{(y(1+y'^2))^{\frac{3}{2}}}$.

This gives the following estimate on the time step limit.

$$\Delta t^{\star} = \frac{\Delta x^2}{2\beta}.$$

SMOOTHED STEEPEST DESCENT

Define $\overline{\mathcal{G}}$ with the implicit smoothing equation.

$$\bar{\mathcal{G}} - \frac{\partial}{\partial x} \epsilon \frac{\partial \bar{\mathcal{G}}}{\partial x} = \mathcal{G}$$
(12)

Now set

$$\delta y = -\lambda \bar{\mathcal{G}}.\tag{13}$$

Then to first order the variation in I is

$$\delta I = \int_{x_0}^{x_1} \mathcal{G} \delta y dx = -\lambda \int_{x_0}^{x_1} \left(\bar{\mathcal{G}} - \frac{\partial}{\partial x} \epsilon \frac{\partial \bar{\mathcal{G}}}{\partial x} \right) \bar{\mathcal{G}} dx$$

SMOOTHED STEEPEST DESCENT

Integrating by parts and noting that the end points are fixed,

$$\delta I = -\lambda \int_{x_0}^{x_1} \left(\bar{\mathcal{G}}^2 + \epsilon \left(\frac{\partial \bar{\mathcal{G}}}{\partial x} \right)^2 \right) dx.$$

Again,

 $\delta I \leq 0.$

IMPLICIT DESCENT

If the gradient is dominated by a y'' term, the smoothed descent given by Eqn (13) can be made equivalent to an implicit scheme.

Consider the parabolic equation, $\frac{\partial y}{\partial t} = \beta \frac{\partial^2 y}{\partial x^2}$, where β is variable.

The system for an implicit scheme is

$$-\alpha \delta y_{j-1} + (1+2\alpha)\delta y_j - \alpha \delta y_{j+1} = -\Delta t \widehat{\mathcal{G}}_j \tag{14}$$

where δy_j is the correction to y_j ,

$$\alpha = \frac{\beta \Delta t}{\Delta x^2} = \frac{\Delta t}{2\Delta t^*} \tag{15}$$

IMPLICIT DESCENT

and

$$\widehat{\mathcal{G}}_j = \frac{\beta}{\Delta x^2} (y_{j-1}^n - 2y_j^n + y_{j+1}^n).$$

Combining Eqns (12 & 13), the discrete smoothed descent method assumes the form of Eqn (14) with

$$\alpha = \frac{\epsilon}{\Delta x^2}.$$
 (16)

Comparing Eqn (15) with Eqn (16), one can see using the smoothed gradient is equivalent to an implicit time stepping scheme if $\epsilon = \beta \Delta t$. Furthermore, a Newton iteration is recovered as $\Delta t \to \infty$.

Consider a sequence of K meshes, generated by eliminating alternate points along each coordinate direction of mesh-level k to produce mesh-level k + 1. Note that k = 1 refers to the finest mesh of the sequence. In order to give a precise description of the multigrid scheme, subscripts may be used to indicate grid level. Several transfer operations need to be defined. First, the solution vector, y, on grid k must be initialized as

$$y_k^{(0)} = T_{k,k-1} y_{k-1}$$
 , $2 \le k \le K$

where y_{k-1} is the current value of the solution on grid k-1, and $T_{k,k-1}$ is a transfer operator.

It is also necessary to transfer a residual forcing function, P, such that the solution on grid k is driven by the residuals of grid k-1. This can be accomplished by setting

$$P_k = Q_{k,k-1} \mathcal{G}_{k-1}(y_{k-1}) - \mathcal{G}_k(y_k^{(0)}),$$

where $Q_{k,k-1}$ is another transfer operator. Now, \mathcal{G}_k is replaced by $\mathcal{G}_k + P_k$ in the time-stepping such that

$$y_k^+ = y_k^{(0)} - \Delta t_k \left[\mathcal{G}_k(y_k) + P_k \right]$$

where the superscript + denotes the updated value. The resulting solution vector, y_k^+ , provides the initial data for grid k + 1.

Finally, the accumulated correction on grid k is transferred back to grid k - 1 with the aid of an interpolation operator, $I_{k-1,k}$. Thus one sets

$$y_{k-1}^{++} = y_{k-1}^{+} + I_{k-1,k} \left(y_k^{++} - y_k^{(0)} \right)$$

where the superscript $^{++}$ denotes the result of both the time step on grid k and the interpolated correction from grid k + 1.

Three-Level Multigrid W-Cycle

Recursive Stencil for a K-Level Multigrid W-Cycle

In a three-dimensional setting, the number of cells is reduced by a factor of 8 on each coarser grid. By examination of the stencils, it can be verified that the work of one multigrid W-Cycle, in work units, is on the order of

$$1 + \frac{2}{8} + \frac{4}{64} + \dots + \frac{1}{4^K} < \frac{4}{3}.$$

Hence, one multigrid W-Cycle only requires about $\frac{1}{3}$ more effort as that required for a fine-mesh iteration.

KRYLOV ACCELERATION

Given K linearly independent (y, \mathcal{G}) vectors, one can survey the K-dimensional subspace spanned by these vectors.

$$y^{\star} = \sum_{k=1}^{K} \gamma_k y^k$$
 , $\mathcal{G}^{\star} = \sum_{k=1}^{K} \gamma_k \mathcal{G}^k$, $\sum_{k=1}^{K} \gamma_k = 1$

Minimize the L_2 Norm of \mathcal{G}^{\star} to determine the recombination coefficients γ_k .

Now,

$$y_j^{n+1} = y_j^{\star} - \lambda \mathcal{G}_j^{\star}$$

QUASI-NEWTON METHODS

Quasi-Newton methods estimate the Hessian, A, or its inverse A^{-1} , from changes δG in the gradient during the search steps. By the definition of A, to first order

$$\delta \mathcal{G} = A \delta y$$

Let H^n be an estimate of A^{-1} at the n^{th} step. Then it should be required to satisfy

$$H^n \delta \mathcal{G}^n = \delta y^n$$

This can be satisfied by various recursive formulas for H.

QUASI-NEWTON METHODS

Rank 1

$$H^{n+1} = H^n + \frac{\mathcal{P}^n(\mathcal{P}^n)^T}{(\mathcal{P}^n)^T \delta \mathcal{G}^n}$$

where

$$\mathcal{P}^n = \delta y^n - H^n \delta \mathcal{G}^n$$

QUASI-NEWTON METHODS

$$H^{n+1} = H^n + \frac{\delta y^n (\delta y^n)^T}{(\delta y^n)^T \delta \mathcal{G}^n} - \frac{H^n \delta \mathcal{G}^n (\delta \mathcal{G}^n)^T H^n}{(\delta \mathcal{G}^n)^T H^n \delta \mathcal{G}^n}$$
QUASI-NEWTON METHODS

Broyden-Fanno-Goldfarb-Shannon (BFGS)

$$H^{n+1} = H^n + \left(1 + \frac{(\delta \mathcal{G}^n)^T H^n \delta \mathcal{G}^n}{(\delta \mathcal{G}^n)^T \delta y^n}\right) \frac{\delta y^n (\delta y^n)^T}{(\delta \mathcal{G}^n)^T \delta y^n}$$

$$-\frac{H^n \delta \mathcal{G}^n (\delta y^n)^T + \delta y^n (\delta \mathcal{G}^n)^T H^n}{(\delta \mathcal{G}^n)^T \delta y^n}$$

RESULTS

• ACCURACY OF GRADIENTS

- Continuous vs. Discrete
- Level of Accuracy
- Order of Accuracy

• PERFORMANCE OF SEARCH METHODS

- Build-up of Explicit Schemes
- Comparison with Implicit Scheme
- Grid-Independent Convergence
- Tested with up to 8192 Design Variables

• ROBUSTNESS

ACCURACY: CONTINUOUS GRADIENT

Convergence of continuous gradient, implicit scheme, N=31.

ACCURACY: DISCRETE GRADIENT

ACCURACY: CONTINUOUS GRADIENT

Convergence of continuous gradient, implicit scheme, N=511.

ACCURACY: CONTINUOUS vs. DISCRETE

Computed path errors as a function of mesh size.

ACCURACY: SURPLUS COST

Difference of measurable cost function between gradients.

PERFORMANCE: STEEPEST DESCENT

History of paths of steepest descent, N=31.

PERFORMANCE: STEEPEST DESCENT

Convergence history of steepest descent, N=31.

PERFORMANCE: SMOOTHED DESCENT

History of paths of smoothed descent, N=31 & STEP=100.

PERFORMANCE: SMOOTHED DESCENT

PERFORMANCE: KRYLOV ACCELERATION

History of paths for Krylov acceleration, N=31 & STEP=100.

PERFORMANCE: KRYLOV ACCELERATION

PERFORMANCE: MULTIGRID DESCENT

History of paths for multigrid acceleration, N=31.

PERFORMANCE: MULTIGRID DESCENT

PERFORMANCE: MULTIGRID vs. IMPLICIT

Comparison of grid-independent convergence histories.

History of paths for Rank-1 quasi-Newton, N=31.

History of paths for Rank-1 quasi-Newton, N=511.

Comparison of quasi-Newton convergence histories, N=511.

PERFORMANCE: GRID DEPENDENCE

Comparison of convergence dependencies on dimensionality.

SUMMARY: BRACHISTOCHRONE STUDY

• COMPARISON OF GRADIENTS

- Both Gradients Exhibited 2^{nd} -Order Accuracy
- Continuous Gradient Slightly More Accurate

• SEARCH METHODS

- Steepest Descent Scales with N^2
- Quasi-Newton Methods Scale with ${\cal N}$
- Implicit Scheme Independent of ${\cal N}$
- Multigrid Descent Independent of ${\cal N}$
- Smoothed Descent Equivalent to Implicit Scheme

Theoretical Background for Aerodynamic Shape Optimization

John C. Vassberg

Boeing Technical Fellow Advanced Concepts Design Center Boeing Commercial Airplanes Long Beach, CA 90846, USA

Antony Jameson

T. V. Jones Professor of Engineering Dept. Aeronautics & Astronautics Stanford University Stanford, CA 94305-3030, USA

Von Karman Institute Brussels, Belgium 7 April, 2014