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1 Introduction

This is the first of three lectures prepared by the authors for the von Karman Institute that deal with
the subject of aerodynamic shape optimization. In this lecture we introduce some theoretical background
on optimization techniques commonly used in the industry, apply some of the approaches to a couple of
very simple model problems, and compare the results of these schemes. We also discuss their merits and
defficiencies as they relate to the class of aerodynamic shape optimization problems the authors deal with on
a daily basis. In the second lecture, we provide a set of sample applications, while the third lecture is focused
on parameterization of the design space. However, before we continue with the simple model problems of
this lecture, let’s first review some properties of the aerodynamic shape optimization studies the authors are
regularly concerned with.

In an airplane design environment, there is no need for an optimization based purely on the aerodynamics
of the aircraft. The driving force behind (almost) every design change is related to how the modification
improves the vehicle, not how it enhances any one of the many disciplines that comprise the design. And
although we focus our lectures on the aerodynamics of an airplane, we also include the means by which other
disciplines are linked into and affect the aerodynamic shape optimization subtask; these will be addressed
in detail in the second lecture. Another characteristic of the problems we typically (but not always) work,
is that the baseline configuration is itself within 1-2% of what may be possible, given the set of constraints
that we are asked to satisfy. This is certainly true for commercial transport jet aircraft whose designs have
been constantly evolving for the past half century or more. This class of problems is much more demanding
than those in which the baseline is far from the optimum design. Frequently, it is easier to show a 25%
improvement relative to a baseline that is 30% off optimum than it is to realize a 1% gain on a starting
configuration that only has 2% to give.

Quite often the problem is very constrained; this is the case when the shape change is required to be a
retrofitable modification that can be applied to aircraft already in service. Occasionally, we can begin with
a clean slate, such as in the design of an all-new airplane. And the problems cover the full spectrum of
studies in between these two extremes. Let’s note a couple of items about this setting. First, in order to
realize a true improvement to the baseline configuration, a high-fidelity and very accurate computational
fluid dynamics (CFD) method must be employed to provide the aerodynamic metrics of lift, drag, pitching
moment, spanload, etc. Even with this, measures should be taken to estimate the possible error band of the
final analyses: this discussion is beyond the scope of these lectures. The second item to consider is related to
the definition of the design space. A common practice is to use a set of basis functions which either describe
the absolute shape of the geometry, or define a perturbation relative to the baseline configuration. In order
to realize an improvement to the baseline shape, the design space should not be artificially constrained by
the choice of the set of basis functions. This can be accomplished with either a small set of very-well-chosen
basis functions, or with a large set of reasonably-chosen basis functions. The former approach places the
burden on the user to establish an adequate design space; the latter approach places the burden on the
optimization software to economically accommodate problems with large degrees of freedom. Over the past
two decades, the authors have focused on solving the problem of aerodynamic shape optimization utilizing
a design space of very large dimension. The interested reader can find copious examples of the alternative
approaches throughout the literature.

With some understanding of where we are headed, let’s now return to the simple model problems included
herein, review various aspects of the optimization process, and discuss how these relate to the aerodynamic
shape optimization problem at hand. The first model problem introduces some of the basics; the second one
is a classic example in mathematical history.

2 The Spider & The Fly

In our first model problem, we will discuss how to set up a design space, how to numerically approximate the
gradient and the Hessian matrix, how to impose active constraints, and how to navigate this design space
from an initial state towards a local optimum using gradient-based search methods. We will also talk about
some traps to avoid when setting up a problem of optimization.

The original spider and fly problem was first introduced by Dudeney [1] in 1903. In our version of the
spider-fly problem, we have a wooden block with dimensions of 4 in wide, by 4 in tall, by 12 in long; the
bottom of this block is resting on a solid flat surface. See Figure 1. On one of the square ends sits a spider,
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located 1 in from the top and centered left-to-right. On the opposite side a fly is trapped in the spider’s web;
the fly is located 1 in from the bottom and centered left-to-right. The spider considers the path where he
would initially travel 1 in straight up to the top, then 12 in axially across the top face, then 3 in downward
to the fly; the length of this path is 16 in. This path represents a local optimum path.

As it turns out, the spider was a mathematician in a former lifetime, so he wonders if this is the global
minimum-length path possible. In order to solve this enigma and determine the true geodesic, the spider
sets up a problem of optimization. To cast this optimization problem into a mathematical formulation, the
spider must some how constrain his motion to the surface of the wooden block, and furthermore, he knows
he cannot traverse the bottom side of the block as it is resting on the solid flat surface. It is clear that the
aforementioned 16 in path is a local optimum, and due to the symmetry of the problem, there are really
only two other types of paths that need to be studied. In one type, the spider moves laterally 2+ in toward
the right/left side of the block, then 12+ in across that side towards the back, then 2+ in to the trapped fly.
Here, the length of any path of this type is definitely in excess of 16 in, and therefore the global optimum
cannot be a path of this type. The remaining path type allows the spider to move upward 1+ in to the top of
the block, continue diagonally towards the right/left side, then diagonally across and downward towards the
back face, and finally 2+ in to the fly. See Figure 2. It is not immediately obvious that the local optimum of
this path type cannot also be the global optimum. Hence, the spider must investigate further to determine
the geodesic from his position to that of the fly’s.

Design Space Set Up

To set up the design space for this problem, the spider adopts a cartesian coordinate system aligned with the
wooden block such that the origin coincides with the front-lower-left corner of the block. The x coordinate
measures positive to the right, the y coordinate measures positive along the long side of the block away from
the front face, and the z coordinate measures positive upward in the vertical direction. In this coordinate
system, the spider’s initial position on the front face is (XS, Y S, ZS) = (2, 0, 3), and the fly is trapped on
the back face at (XF, Y F, ZF ) = (2, 12, 1).

The path type to optimize can be partitioned into four segments, corresponding to the four block faces
to be traversed. The first segment is described by end points (2, 0, 3) and (X, 0, 4). The second segment’s
end points are (X, 0, 4) and (4, Y, 4). The third, (4, Y, 4) and (4, 12, Z). The fourth, (4, 12, Z) and (2, 12, 1).
Hence, the complete path can be described as the piecewise linear curve that connects (2, 0, 3), (X, 0, 4),
(4, Y, 4), (4, 12, Z), and (2, 12, 1). In this design space, there are precisely three design variables (X,Y, Z).
Further, the design space is constrained by the inequalities:

0 ≤ X ≤ 4,
0 ≤ Y ≤ 12,
0 ≤ Z ≤ 4.

(1)

Hence, the design space as defined in this problem is constrained to the interior of the wooden block. While
these constraints facilitate limiting the search for the optimium, once we find the optimum path, it will
become obvious that these are non-active constraints. So we will follow up this problem with an addendum
problem which introduces another constraint on the path to illustrate how one can handle constraints that
may or may not become active at the constrained minimum.

Cost Function

The length of each segment is given as:

S1 =
[

1 + (X − 2)2
]

1

2 ,

S2 =
[

(X − 4)2 + Y 2
]

1

2 ,

S3 =
[

(Y − 12)2 + (Z − 4)2
]

1

2 ,

S4 =
[

(Z − 1)2 + 4
]

1

2 .

(2)

The total path length (or objective/cost function) is defined as:

I ≡ S = S1 + S2 + S3 + S4. (3)
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The statement of optimization is to minimize I subject to the constraints of Eqn (1). Note that Eqn (3) is
not a quadratic equation. Furthermore, this cost function is not equivalent to summing the squares of the
line segment lengths, which is a quadratic equation. So, always be careful when defining your cost function.
I emphasize this point, as this question has been asked in the past and argued with conviction.

There are many ways in which one can proceed to solve this problem of optimization. For example, one
approach is to use evolution theory, where a population of random guesses of (X,Y, Z)i is evaluated for their
associated set of cost-function values, Ii. This establishes a generation of information which can be used
to coerse subsequent generations towards the optimum location within the design space. An improvement
to basic evolution theory is the Genetic Algorithm (GA). GAs attempt to speed the evolution process by
combining the genes of promising pairs from one generation to procreate the next. GAs also allow some
fraction of mutations to occur in order to improve the chance of finding a global optimum. However in
general, this is not guaranteed. These methods are relatively easy to set up and program as they do not
require any gradient information, and in fact may be the best choice if the cost function does not smoothly
vary throughout the design space. Unfortunately, they can be computationally very expensive, even for a
problem with a modest number of design variables. Nonetheless, solving the spider-fly problem with evolution
methods can be entertaining, and we recommend it to the ambitious student as a follow-up exercise to this
lecture.

Gradient-Based Optimization

Let’s now consider gradient-based optimization techniques. These optimization methods use derivatives of
the objective function with respect to the design space to navigate the design space from an initial state to
a local optimum. These techniques include steepest descent, Newton methods, and quasi-Newton methods,
amoung others.

In the case of the spider-fly problem, the exact derivatives are easily found. However, in general this
is not usually the case for most large-scale problems of interest, so one may have to resort to utilizing an
approximate derivative. We will study both, and introduce a couple of basic methods that one can use to
approximate the gradient of a cost function.

Exact Gradient

Let’s return to the definition of the cost function given by Eqns (2-3). In this simple example problem it is
straightforward to derive the first and second derivatives of the cost function. Hence, the first variation of
the cost function is:

δI = IXδX + IY δY + IZδZ ≡ G δX (4)

where G is the gradient vector, X is the design space vector, and the partial derivatives with respect to the
design space are given as:

IX = (X−2)
S1

+ (X−4)
S2

,

IY = Y
S2

+ (Y−12)
S3

,

IZ = (Z−4)
S3

+ (Z−1)
S4

.

(5)

Exact Hessian

Now find the Hessian matrix (second derivatives) for this problem; it will be needed to navigate the design
space with a Newton iteration. The Hessian matrix is:

A =





IXX IY X IZX

IXY IY Y IZY

IXZ IY Z IZZ



 (6)
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where,

IXX = 1
S3

1

+ Y 2

S3

2

IXY = IY X = (4−X)Y
S3

2

IXZ = IZX = 0

IY Y = (X−4)2

S3

2

+ (Z−4)2

S3

3

IY Z = IZY = (Y−12)(4−Z)
S3

3

IZZ = (Y−12)2

S3

3

+ 4
S3

4

(7)

Approximate Gradient by Finite Differences

One can approximate the gradient by finite differences, where the amplitude of each design variable is
independently perturbed by a small delta from the current state and the cost function reevaluated. In
general, this requires N + 1 function evaluations to approximate the gradient, where N is the number of
design variables. (N is also referred to as the number of degrees of freedom, or as the dimension of the design
space.)

Consider the Taylor series expansion of a function f .

f(x+∆x) = f(x) + ∆x fx(x) +
∆x2

2
fxx(x) + . . .+

∆xn

n!
fn(x) + . . . (8)

A first-order accurate approximation of fx(x) can be determined from Eqn (8) with a forward differencing.

fx(x) ≃
f(x+∆x) − f(x)

∆x
. (9)

Using Eqn (9), let’s approximate IX of Eqn (5).

IX ≃ I(X + h, Y, Z)− I(X,Y, Z)

h
(10)

Where h = ∆x is a small perturbation of the X coordinate. Using Eqn (10) with h = 10−3 at (X,Y, Z) =
(2, 6, 2) gives IX ≃ −0.31565661, an error of about 0.1%. The exact value of IX at this location is − 2√

40
≃

−0.31622777. In exact mathematics, the accuracy of IX improves as h → 0. However, if we evaluate the
approximation of this derivative with various values of h using finite-precision mathematics, one will quickly
find that as h gets really small, the stability of this evaluation will eventually degrade. For example at
(X,Y, Z) = (2, 6, 2) and using 64-bit precision, the finite-difference estimate of IX improves with decreasing
h until h < 10−7, as shown below in Table 1. However at this point, the trend reverses and the error
of IX begins to grow with decreasing h. And remember, this is a simple cost function. A cost function
for aerodynamic shape optimization is typically related to the computed drag of a design. Computing a
high-precision value for drag can be quite costly, and in this context, finding an appropriate value of h for
each design variable can become problematic. In practice, using a second-order accurate finite differencing
of the function not only doubles the cost of the gradient, it typically does not solve the stability issue of
finite-precision computations.

Approximate Gradient by Complex Variables

Another approach to approximating the gradient is now presented which, as it turns out, is much more stable
than finite differences. In general, the computational cost of this technique also scales with O(N) function
evaluations.

Let’s revisit the Taylor series of Eqn (8). This expansion also holds true for complex functions of complex
variables. With this in mind, let’s now consider an imaginary perturbation of X , where ∆x = ih. If we take
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log10(Error IX)
log10(h) Finite Difference Complex Variable

-1 -1.244 -4.449
-2 -2.243 -6.449
-3 -3.243 -8.449
-4 -4.243 -10.449
-5 -5.243 -12.449
-6 -6.244 -14.449
-7 -7.192 -16.256
-8 -6.778 -16.256
-9 -5.977 -16.256
-10 -4.768 -16.256

00

-2

-4

-6

-8

-10

-12

-14

-16

-18

00-1-2-3-4-5-6-7-8-9-10-11

Finite Difference vs Complex Variables

log10 ( h )

lo
g1

0 
( 

E
rr

or
[I

x]
 )

Finite Difference

Complex Variables

Table 1: Stability of Finite-Difference and Complex-Variable Methods.

the imaginary part of the expansion of f(x + ih), we get a second-order accurate approximation of fx, as
given below.

fx(x) ≃
Im[f(x+ ih)]

h
. (11)

Now we can approximate IX using Eqn (11).

IX ≃ Im[I(X + ih, Y, Z)]

h
(12)

Eqn (12) for all h ≤ 10−3 at (X,Y, Z) = (2, 6, 2) gives IX ≃ −0.31622777, which is identical to the exact
value of this derivative to 8 significant digits. Table 1 illustrates the improved accuracy and stability of using
complex variables relative to using finite differences to approximate the gradient of a function. Note that
while the finite-difference error reverses its trend at h ≤ 10−7, the complex-variable estimates level out.

Additional information on the complex-variable method for approximating gradients for the Navier-Stokes
equations can be found in Anderson et. al. [2].

Steepest Descent

One can use the gradient to establish a steepest descent trajectory of the cost function through the design
space. This trajectory begins with the initial state (baseline) and ends at a local minimum. From Eqn (4) it
can be seen that a reduction in the cost function is realized if a sufficiently small step is taken in the negative
gradient direction, and a local minimum is found when the magnitude of the gradient vanishes. Accordingly,
we can iteratively update the value of the design variables in the following manner.

Xn+1 = Xn + δXn, (13)

where n is the iterative step number, and
δXn = −λG. (14)

Here, λ > 0 is a step-size parameter. Thus,

δIn = G δXn = −λG2 ≤ 0. (15)

In order to initialize the trajectory search for the spider-fly problem, we arbitrarily select the center of the
allowable design space as our baseline path. This corresponds to the following initial state for the design
space vector, X 0, the gradient vector, G0, and the Hessian matrix, A0. Note that for this arbitrarily chosen
state, the objective function, I0, is already less than that of the local-minimum path of Figure 1; this is
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nothing more than a coincidence.

X 0 =





2
6
2



 , G0 =





−2√
40

0.0
( −3√

40
+ 1√

5
)



 ≈





−0.31623
0.0

−0.02713



 ,

A0 ≈





1.14230 0.04743 0.0
0.04743 0.03162 −0.04743

0.0 −0.04743 0.50007



 ,

(16)

with
I0 = (1 + 2

√
40 +

√
5) ≈ 15.88518.

In a steepest descent procedure, the value of the free parameter λ is usually limited by the stability of the
iterative process. We will discuss this further in our second model problem. Through some experimentation,
a value of λ = 1.885 yields about the fastest convergence to the optimum state for the spider-fly problem.
Using 64-bit mathematical operations, the exact minimum-distance path is found within machine-level-zero
in 295 iterations. The convergence of the gradient is shown in Figure 3. Here, the magnitude of the gradient
has been reduced more than 7.5 orders of magnitude. Figure 4 provides the trajectory of the optimization
process through the design space from start to finish. Notice the top view of this trajectory. Here one
can see the high-frequency zig-zag nature of this navigation, but it appears that the general trend of the
trajectory is correct. If the high-frequency behavior could be filtered and the low-frequency trend amplified,
then convergence to the optimum could be accelerated. Such a technique will be addressed in our second
model problem of this lecture.

Newton Iteration

Now let us solve this optimization problem with a Newton iteration. To develop a Newton iteration, simply
replace the variation of the design variables of Eqn (14) with

δXn = −A−1G = −HG, (17)

where H = A−1 is the inverse of the Hessian matrix of Eqns (6-7). Using this approach, the exact solution to
machine-level-zero is found in just 3 steps. Figure 5 provides the convergence of the gradient, and as expected,
this convergence has a quadratic behavior. Figure 6 illustrates the corresponding navigation through the
design space. Data from the Newton iteration are also given in Table 2.

In this model problem, the superior performance of the Newton iteration over that of the steepest descent
method may lead one to abandon steepest descent in favor of an approach that utilizes the Hessian. However,
let’s investigate the requirements of a Newton method in more depth. First, the construction of the Hessian
matrix can costO(N) times that of the gradient, unless the Hessian happens to be a sparse matrix. In the case
of the spider-fly problem, this additional computational work trades very favorably (i.e., 3(1 + 3) << 295).
However, when N is moderately large, this may no longer be the case. A second issue is that the terms of
the Hessian matrix may not be explicitly available, and in fact this is usually the case for aerodynamic shape
optimization problems.

n Xn Y n Zn In

0 2.000000 6.000000 2.000000 15.88518
1 2.319023 4.984009 1.641696 15.81167
2 2.333268 4.999744 1.666556 15.81139
3 2.333333 5.000000 1.666667 15.81139

Table 2: Convergence of Newton Iteration on the Spider-Fly Problem.

Quasi-Newton Methods

To consider this scenario, let’s assume that neither the Hessian matrix, A, or its inverse, H , are readily
available for the spider-fly problem. Under this circumstance, a quasi-Newton method can be employed.
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For the purpose of providing this case as a training exercise, we will document in detail the results of an
application of a Rank-1 (R1) quasi-Newton iteration to the spider-fly problem. In this approach, the inverse
of the Hessian matrix, H , is approximated and updated concurrently with the trajectory search. The Rank-1
updates of H are given by the following relationship.

Hn+1 = Hn +
(Pn)(Pn)T

(Pn)T δGn
, (18)

where
δGn = Gn+1 −Gn

and
Pn = δXn −HnδGn.

Here, n is the iteration index, with n = 0 representing the initial state, and H0 being initialized as the
identity matrix. P is an error vector of the Rank-1 approximation of the Hessian. In the case of the spider-fly
problem, Hn is a 3x3 matrix, and δXn, δGn & Pn are 3-dimensional vectors. Note that [(Pn)(Pn)T ] is a 3x3
matrix, and [(Pn)T δGn] is a scalar inner product. The numerical results of the R1 trajectory are illustrated
in Figures 7-8, and tabulated in Table 3. Although it takes 6 to 7 iterations before the Hessian inverse is
sufficiently approximated, the R1 iterations eventually exhibit quadratic convergence. Close inspection of
Table 3 reveals some trends worth noting. Recall that vector Pn is a measure of the error of the Hessian
inverse Hn. These data show that P exhibits quadratic convergence after 5 iterations. The gradient vector
G also exhibits quadratic convergence after 6 iterations. However, the final Hessian inverse H10, although
close to the exact matrix H∞, still contains terms which are off in the fourth decimal place.

Nash Equilibrium

For completeness, we will review one more popular technique - the Nash equilibrium. In this approach,
between iterations, independent sub-searches are performed in each of the N coordinate directions of the
design space. For example, in the case of the spider-fly problem, a sub-optimization is performed in the
X direction, to find X⋆, while holding Y n & Zn fixed. Similarily, sub-optimizations are also done on Y
& Z, to determine Y ⋆ & Z⋆, respectively. A significant attribute of this approach is that each of the N
sub-optimizations are independent of the others, and as such, the whole set of sub-optimizaitons can be
performed in parallel. For the spider-fly, these sub-optimizations are defined as:

minimize I(X⋆, Y n, Zn) → Ix(X
⋆, Y n, Zn) = 0 → X⋆,

minimize I(Xn, Y ⋆, Zn) → Ix(X
n, Y ⋆, Zn) = 0 → Y ⋆,

minimize I(Xn, Y n, Z⋆) → Ix(X
n, Y n, Z⋆) = 0 → Z⋆.

By manipulating Eqn 5, these minimizations can be reduced to:

X⋆ =
2(2 + Y n)

(1 + Y n)
, Y ⋆ =

12(4−Xn)

(8−Xn − Zn)
, Z⋆ = 4− 3(12− Y n)

(14− Y n)
. (19)

Once the sub-optimizations are completed, the design vector is updated as:

Xn+1 = X⋆,

Y n+1 = Y ⋆,

Zn+1 = Z⋆.

This process is repeated until the desired level of convergence has been achieved. Note that each of the
intermediate cost functions will be less than or equal to In, the cost function at step n. However, this
does not imply that the magnitude of the intermediate gradients are likewise bounded by the magnitude
of Gn. Furthermore, it is not guaranteed that In+1 ≤ In, or |Gn+1| ≤ |Gn|. Nonetheless, when a Nash
equilibrium is located, it coincides with a local optimum in the design space. Figures 9-10 illustrate the
convergence of the Nash approach as applied to the spider-fly problem. The Error depicted in Figure 9 is
defined as: Error = In − Imin. While the convergence of the objective function In exhibits a monotonic
behavior, the convergence of the gradient Gn does not. Select data are also provided in Table 4 for reference.
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n Xn Y n Zn In

0 2.000000 6.000000 2.000000 15.88518
1 2.316228 6.000000 1.869014 15.82842
2 2.309340 5.995497 1.854977 15.82729
3 2.283594 5.931327 1.731183 15.82250
4 2.268113 6.064459 1.736156 15.82602
5 2.329076 5.002280 1.654099 15.81144
6 2.325976 4.997523 1.643056 15.81157
7 2.333299 4.999719 1.666628 15.81139
8 2.333331 5.000017 1.666668 15.81139
9 2.333333 5.000002 1.666667 15.81139
10 2.333333 5.000000 1.666667 15.81139

n Gn Pn

0 -0.3162278 0.0000000 0.1309858 -0.0313201 -0.0204757 -0.0638312
1 0.0313201 0.0204757 0.0638312 -0.0027101 -0.0067548 -0.0130308
2 0.0241196 0.0207513 0.0566640 0.0032314 -0.0277891 -0.0010379
3 -0.0051403 0.0239077 -0.0068202 -0.0092369 0.1609362 0.0124328
4 -0.0156349 0.0272111 -0.0109428 0.0038082 0.0058428 0.0135643
5 -0.0042385 0.0003440 -0.0070051 -0.0061541 -0.0018454 -0.0198081
6 -0.0076998 0.0004624 -0.0129071 0.0000316 0.0002953 0.0000405
7 -0.0000509 -0.0000095 -0.0000100 0.0000021 -0.0000171 -0.0000017
8 -0.0000014 0.0000003 0.0000003 0.0000003 -0.0000015 -0.0000002
9 -0.0000003 0.0000000 0.0000001 0.0000000 0.0000000 0.0000000

10 0.0000000 0.0000000 0.0000000

n Hn n Hn

1.0000000 0.0000000 0.0000000 1.0178515 -2.0173360 -0.1120774
0 0.0000000 1.0000000 0.0000000 6 -2.0173360 39.0361115 2.7720896

0.0000000 0.0000000 1.0000000 -0.1120774 2.7720896 1.9924568
0.8602224 -0.0913802 -0.2848703 1.0194495 -2.0023937 -0.1100296

1 -0.0913802 0.9402598 -0.1862351 7 -2.0023937 39.1758307 2.7912373
-0.2848703 -0.1862351 0.4194274 -0.1100296 2.7912373 1.9950809
0.9263627 0.0734691 0.0331463 0.9628110 -1.5479228 -0.0640429

2 0.0734691 1.3511333 0.6063951 8 -1.5479228 35.5291298 2.4222374
0.0331463 0.6063951 1.9485177 -0.0640429 2.4222374 1.9577428
0.8366376 0.8450854 0.0619643 1.0930870 -2.1085463 -0.1558491

3 0.8450854 -5.2845988 0.3585666 9 -2.1085463 37.9416902 2.8173117
0.0619643 0.3585666 1.9392619 -0.1558491 2.8173117 2.0224391
0.9844233 -1.7298270 -0.1369557 1.0931086 -2.1081974 -0.1562477

4 -1.7298270 39.5788215 3.8244048 10 -2.1081974 37.9473320 2.8108673
-0.1369557 3.8244048 2.2070087 -0.1562477 2.8108673 2.0298003
0.7433885 -2.0996388 -0.9954916 1.0931330 -2.1081851 -0.1561619

5 -2.0996388 39.0114314 2.5071815 ∞ -2.1081851 37.9473319 2.8109135
-0.9954916 2.5071815 -0.8509886 -0.1561619 2.8109135 2.0301042

Table 3: Convergence of Rank-1 quasi-Newton Iteration on the Spider-Fly Problem.
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n Xn Y n Zn In

0 2.000000 6.000000 2.000000 15.88518
1 2.285714 6.000000 1.750000 15.82411
2 2.285714 5.189189 1.750000 15.81388
3 2.323144 5.189189 1.680982 15.81186
4 2.323144 5.035762 1.680982 15.81148
5 2.331358 5.035762 1.669326 15.81141
6 2.331358 5.006782 1.669326 15.81139
7 2.332957 5.006782 1.667169 15.81139
8 2.332957 5.001287 1.667169 15.81139
9 2.333262 5.001287 1.666762 15.81139
10 2.333262 5.000244 1.666762 15.81139
11 2.333320 5.000244 1.666685 15.81139
12 2.333320 5.000046 1.666685 15.81139
13 2.333331 5.000046 1.666670 15.81139
14 2.333331 5.000009 1.666670 15.81139
15 2.333333 5.000009 1.666667 15.81139
16 2.333333 5.000002 1.666667 15.81139
17 2.333333 5.000002 1.666667 15.81139
18 2.333333 5.000000 1.666667 15.81139
19 2.333333 5.000000 1.666667 15.81139

Table 4: Convergence of Nash Equilibrium on the Spider-Fly Problem.

Design Space

In the case of the spider-fly problem, the set up is straight forward. In fact, it is somewhat difficult to
envision how to set it up otherwise. Our definition of the design space is directly linked to the intersection
of the spider’s path with the three edges of the wooden block. All possible straight-line-segment paths that
cross these three edges are represented in the constrained design space. The human mind is an amazing
thing; it routinely filters information that does not apply to a given situation. Unfortunately, at times it
hides some pertinent data. In the case of the spider-fly problem, this may indeed occur. To explain what we
mean by this, we define the spider-fly problem from a different perspective.

The spider-fly problem falls within the class of problems which seek the geodesic between two points on
an arbitrary surface. The geodesic is the minimum-length path that connects the two points and is confined
to the surface. For example, the geodesic between two cities on Earth is given as the great-circle arc (assumes
the Earth is a perfect sphere). Now replace the wooden-block with that of a super-ellipsoid surface given by:

[ |x− 2|
2

]p

+

[ |y − 6|
6

]p

+

[ |z − 2|
2

]p

= 1 (20)

where p ≥ 2 is an arbitrary power. The spider’s initial position is:

XS = 2

Y S = 6

[

1−
[

1− 1

2p

]
1

p

]

(21)

ZS = 3

and the location of the trapped fly is:

XF = 2

Y F = 12− Y S (22)

ZF = 1

In the limit as p → ∞, the super-ellipsoid surface approaches that of the original wooden block.
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Yet one would probably set up the corresponding optimization problem very differently than as we did
before. Most likely the geodesic would be approximated by a discrete path ofN+1 piecewise-linear segments.
This can be done in any number of ways. For example, one can seek a uniform segment-length path, or
possibly a path with constant ∆y segments. If the constant ∆y approach is chosen, then the discrete design
space can be defined by N angular positions at each of the interior y stations.

Let’s make some observations regarding this set up of the geodesic problem. First, the evaluation of the
discrete cost function (total length of the discrete path) will not be equal to that of the continuum geodesic.
As a consequence, the nodes of the optimum discrete path will not fall on the continuum geodesic. The
accuracy of the discrete problem can be improved by increasing the dimension of the design space, but the
computational costs will escalate as well. In this approximation of the spider-fly problem, the value of the
discrete cost function will be less than the length of the continuum geodesic. This is due to the fact that each
discrete line segment takes a short cut from end-point to end-point as compared with the curved continuum
geodesic. Furthermore, for the constant ∆y representation, the error will degrade to first-order accurate on
∆y in the limit as p → ∞. Given these observations, one should wonder if there may be a better way to
seek the discrete geodesic besides driving the gradient of the discrete cost function to zero. One approach
that addresses this will be introduced later, when we get to our next model problem.

Exact Solution

Before we finally leave the spider-fly problem, has the reader determined how to directly compute the exact
length of the geodesic on the wooden block? The solution to this problem can be found quite simply if one
thinks of the wooden block instead as a cardboard box which can be unfolded and flattened out as illustrated
by Figures 11-12. Here, Imin =

√
250 ≈ 15.81139 in. The corresponding optimum position in our design

space is precisely (X,Y, Z)opt = (73 , 5,
5
3 ).

This concludes our discussion on the spider-fly model problem. We hope this exercise has peaked the
reader’s interest, as well as challenged him/her to think beyond the norm. Our second model problem is
based on the classic brachistochrone. Here, we will investigate additional quasi-Newton methods, but again,
they all require O(N) iterations to establish the Hessian. Hence, for the class of optimization problems where
N is very large, we conclude that a Newton iteration may not be the best choice. Instead, we will revisit
steepest descent as the foundation of our optimization process, and develop techniques that accelerate the
convergence of the steepest-descent trajectory.

Active Constraints and KKT Conditions

In the original spider-fly problem, as described above, the constraints of Eqn (1) were all inactive for the
optimum path. In practice however, optimization problems of interest typically include active constraints.
Therefore, we will revisit the spider-fly brain teaser, but this time with an active constraint added to the
problem statement.

The spider notices that in the ”unconstrained” problem above, the optimum path requires that he walks
a distance of ≈ 5.270463 inches over the top-side of the wooden block. The length of this path segment has
been designated S2 in Eqn (2). Unfortunately, it is 12:00 noon and the Sun is beating down hard on the
top of the block. The spider happens to know that this surface is too hot for him to comfortably traverse
any more than 4 inches over it, so he wants to include a constraint that S2 ≤ 4 inches. First, we put this
constraint into standard form per Boyd and Vandenberghe [3], and define the constraint equation and its
gradient as:

C(X,Y ) = S2(X,Y )− 4 ≤ 0,

CX = (X − 4)/S2, (23)

CY = Y/S2.

Introduce a Lagrange dual cost function,

L(X,Y, Z) ≡ S(X,Y, Z) + µC(X,Y ), (24)

and its gradient,
∇L(X,Y, Z) = ∇S(X,Y, Z) + µ∇C(X,Y ). (25)
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Here µ ≥ 0 is a Lagrange multiplier, the value of which will be determined during the minimization of
Eqn (24) while satisfying the constraint of Eqn (23). More precisely, we satisfy the Karush-Kuhn-Tucker
(KKT) conditions of optimality, which for this problem are:

C ≤ 0,

µ ≥ 0,

µC = 0, (26)

|∇L| = 0.

One can adapt the steepest descent method of Eqns (13-14) with an intermediate step which first projects
the design vector into the allowable design space, then updates the value of µ. If C ≤ 0 and µ = 0, then
proceed as usual. However, if C > 0, we project (X,Y) in the negative ∇C direction to the location where
C = 0. Else, if µC 6= 0, then project in the positive ∇C direction to the location where C = 0. After either
projection, an update to µ is made as follows.

µ = max

[

−∇S · ∇C

|∇C| , 0

]

. (27)

With a non-zero value of µ, the constraint is active and ∇L will be locally tangent to the constraint surface,
therefore, the update on the design vector will remain inside or close to the allowable space. This process
is repeated until all of the KKT conditions are satisfied within a user-specifed level of tolerance. For this
optimum design vector, ∇L = 0 implies ∇S = −µ∇C, which in turn implies that the iso-surface of S is
tangent to the iso-surface of constraint C at (X,Y, Z)opt. Here, the optimum design state with S2 ≤ 4 is:

(X,Y, Z)opt ≈ (2.443682 , 3.684817 , 1.581667),

µ ≈ 0.04234745, (28)

Sopt ≈ 15.83659.

Figure 13 illustrates the convergence of |∇L| for the steepest descent process described above. Note that
at almost every iteration, there are two symbols shown. The first symbol represents the projection of the
design vector into the allowable space, while the second illustrates the steepest-descent step. Also notice
that in this particular case, adding the active constraint actually improved convergence of the optimization.
This behaviour is not necessarily typical. Figure 14 provides the trajectory through the design space for
this constrained optimization. Since the trajectory bounces about, for clarity, the final converged solution is
depicted with a hollow blue dot in a larger blue circle. Figures 15-16 compare the constrained path (blue line)
with the previously computed geodesic (red line). The corresponding (X,Y,Z) design vectors are illustrated
with blue or red dots, for the constrained or the unconstrained problems, respectively. Also included in these
Figures are the cylindrical constraint boundary depicted as green curves, and the (X,Y,Z) projections of the
constrained problem shown with gray lines. It may appear that the blue line in Figure 16 is comprised of
two straight line segments, one from the spider to the edge between the top and side faces, and one from
there to the fly. However, this is not the case. There is, in fact, an imperceptible kink at the edge between
the front and top faces. Whereas the line from the top-side edge to the fly is indeed a straight line.

This concludes our discussion about the spider-fly problem, and we move on to another more challenging
model problem based on the classical brachistochrone.

3 Brachistochrone Problem

The second model problem that we will study in this lecture is based on the classic brachistochrone.
Much of the fundamental theory to the branch of mathematics known as the calculus of variations is

attributable to the Bernoulli brothers, Johann and Jakob, who were friendly rivals. They would design new
mathematical problems to stimulate each other in the form of challenges. One of which is known as the
brachistochrone, which dates back to June 1696 when Johann Bernoulli [4] proposed it as a challenge to
the mathematical community. Only 5 solutions were provided initially; these came from Sir Isaac Newton,
Gottfried Leibniz, Guillaume de L’Hopital, Johann and Jakob Bernoulli. [Actually, Galileo Galilei [5] studied
this problem first in 1638, but incorrectly deduced that the optimum path is a circular arc.]

The authors’ original work on this problem is documented in References [6]-[7].
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The brachistochrone problem [8] is the determination of the path y(x) connecting initial and final points
(x0, y0) and (x1, y1) such that the time taken by a particle traversing this path, subject only to the force of
gravity, is a minimum.

(x0, y0)

(x1, y1)

x

y

g

The total time is given by

T =

∫ x1

x0

ds

v
,

where the velocity of a particle falling under the influence of gravity, g, and starting from rest at y = 0, is

v =
√

2gy.

Denoting dy
dx

by y′, and setting ds =
√

(1 + y′2)dx one finds that T = I√
2g

where

I =

∫ x1

x0

F (y, y′)dx

with

F (y, y′) =

√

1 + y′2

y
.

Then

G =
∂F

∂y
− d

dx

∂F

∂y′
(29)

= −
√

1 + y′2

2y
3

2

− d

dx

y′
√

y(1 + y′2)

which may be simplified to

G = −1 + y′2 + 2yy′′

2(y(1 + y′2))
3

2

. (30)

[Note that Eqn (29) is the Euler-Lagrange equation when set to zero.] In this case, since F is not a funciton
of x,

(

y′
∂F

∂y′
− F

)′

= y′′
∂F

∂y′
+ y′

d

dx

∂F

∂y′
− ∂F

∂y′
y′′ − ∂F

∂y
y′

= y′
(

d

dx

∂F

∂y′
− ∂F

∂y

)

= −y′G.

On the optimal path G = 0 and hence,
(

y′
∂F

∂y′
− F

)

is constant.
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Here
(

y′
∂F

∂y′
− F

)

=
−1

√

y(1 + y′2)
.

Hence it follows that
√

y(1 + y′2) = C,

where C is a constant. The classical solution is obtained by the substitution

y(t) =
1

2
C2(1− cos(t))

= C2sin2

(

t

2

)

. (31)

Then

y′2 =
C2

y
− 1,

y′ =

√

C2 − y

y

= cot

(

t

2

)

,

and

x =

∫

dy

y′

=

∫

tan

(

t

2

)

dy

dt
dt,

where
dy

dt
= C2sin

(

t

2

)

cos

(

t

2

)

.

Thus, if one choses x0 = 0,

x(t) = C2

∫

sin2

(

t

2

)

dt

=
1

2
C2

∫

(1− cos(t))dt

=
1

2
C2(t− sin(t)). (32)

The optimal path described parametrically in t by Eqns (31) & (32) is a cycloid. However, when a numerical
method is to be adopted, a discussion regarding the discrete problem is in order. Nonetheless, having the
exact analytical solution of the brachistochrone provides significant value when comparing various aspects
of different numerical techniques. The next sections discuss numerical procedures for solving the brachis-
tochrone problem. Section 4 discusses the approximation of the gradient, while Section 5 discusses alternative
descent procedures.

4 Gradient Calculations

This section describes two approaches to approximating the gradient of the objective function, I. The first
is based on deriving the gradient of the continuous problem, then approximating this continuous gradient
through numerical discretization. We will refer to this as the continuous gradient. The second scheme
determines the exact gradient of the discrete cost function. We will refer to this as the discrete gradient. In
either case, the resulting gradient calculations are only approximations of the exact gradient of the objective
function of the continuous problem. A discussion at the end of this section addresses the benefits and
deficiencies of each approach.
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4.1 Continuous Gradient

Numerical optimization methods use the gradient G as the basis of a search method. In developing the
gradient for the brachistochrone problem, let the trajectory be represented by the discrete values

yj = y(xj),

at
xj = j∆x,

where ∆x is the mesh interval, 0 ≤ j ≤ N + 1 and N is the number of design variables. Note that y0 and
yN+1 are fixed end-points of the path. The gradient is evaluated by applying a second-order finite difference
approximation to the continuous gradient, Eqn (30), by substituting

y′j =
yj+1 − yj−1

2∆x
,

y′′j =
yj+1 − 2yj + yj−1

∆x2
,

for y′ and y′′ at the jth point. This yields the following approximation of the continuous gradient at the
discrete points j.

Gj = −
1 + y′2j + 2yjy

′′
j

2(yj(1 + y′2j ))
3

2

. (33)

4.2 Discrete Gradient

In the second approach, the discrete cost function is calculated by approximating I by the rectangle rule of
integration.

IR =

N
∑

j=0

Fj+ 1

2

∆x,

where

Fj+ 1

2

=

√

√

√

√

1 + y′2
j+ 1

2

yj+ 1

2

,

with

yj+ 1

2

=
1

2
(yj+1 + yj),

y′
j+ 1

2

=
(yj+1 − yj)

∆x
.

The rectangle rule of integration gives second-order accuracy for a smooth integrand. In this case, its use
allows the evaluation of I even when y0 = 0 at the left boundary, where v = 0 and F becomes unbounded.

The discrete gradient is now evaluated by directly differentiating IR,

Gj =
∂IR
∂yj

.

It may be verified that

Gj = Bj− 1

2

− Bj+ 1

2

− ∆x

2
(Aj+ 1

2

+Aj− 1

2

), (34)

where A and B are calculated by evaluating

Aj+ 1

2

=

√

1 + y′2

2y
3

2

,

Bj+ 1

2

=
y′

√

y(1 + y′2)
,

with the values yj+ 1

2

and y′
j+ 1

2

.
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4.3 Continuous vs Discrete Gradient

Consider for a moment, that an optimization of the continuous problem is the actual goal. In general, the
optimum state of the discrete problem will not coincide with that of the continuous system, but of course,
one hopes that it will be “close.”

An advantage of the discrete gradient is that it directly relates to the objective function as it is evaluated
numerically. Consequently, if a local optimum is found by driving the discrete gradient to zero, it may
be easily verified that this is indeed a local optimum by making small perturbations and re-evaluating the
objective function. If the search procedure involves line searches to find the minimum along a given search
direction, the searches will also be compatible with the calculated gradient.

When the continuous gradient is driven to zero, local perturbations of the discrete cost function do
not necessarily verify that a local minimum has been obtained. However, we offer a conjecture that an
optimization based on the continuous gradient may be closer to the optimum of the continuous problem
than that based on the discrete gradient. Our reasoning is based on the following argument. Consider
a smooth curve defined by I = f(y), where f(y) is a known function. Now assume that f(y) cannot be

evaluated directly, only measured inexactly. Through these measurements, f(y) is approximated by f̂(y),
where

f̂(y) = f(y) + Ef
and Ef is the error associated with discretization of f(y). This error can become further amplified if a
derivative of f(y) is sought, especially if Ef is a high-frequency error. Conversely, if the quantity g(y) = f ′(y)
can be measured, we have

ĝ(y) = g(y) + Eg
where Eg is the error associated with the discretization of g(y).

Now if the inequality

||Eg|| < || d
dy

Ef ||

holds true, then ĝ(y) more accurately represents the exact gradient than f̂ ′(y) does, and it should follow

that an optimization based on ĝ(y) will more accurately recover the true optimum than one driven by f̂ ′(y).
In the next section, several search methods are discussed which have been under investigation in this

effort.

5 Search Methods

A variety of search methods have been evaluated, including steepest descent, modified steepest descent with
smoothing, implicit descent, multigrid steepest descent, Krylov acceleration, and quasi-Newton methods.
These are outlined below. In all cases, the values yj are regarded as the design variables.

5.1 Steepest Descent

Here a simple step is taken in the negative gradient direction. Such a strategy is reviewed further in
Reference [9]. Denoting the iterations with the superscript n, we have

yn+1
j = ynj − λGn

j .

This may be regarded as a forward Euler discretization of a time dependent process with λ = ∆t. Hence,

∂y

∂t
= −G.

Substituting for G from Eqn (30) it can be seen that y is the solution of the nonlinear parabolic equation

∂y

∂t
=

1 + y′2 + 2yy′′

2(y(1 + y′2))
3

2

. (35)

Thus it is possible to estimate the time step limit for stable integration. This is dominated by the parabolic
term βy′′ where

β =
y

(y(1 + y′2))
3

2

.
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This gives the following estimate on the time step limit for a stable forward Euler explicit scheme.

∆t⋆ =
∆x2

2β
.

Thus the number of iterations can be expected to grow as the square of the number of design variables.
Hence, this approach is prohibitively expensive to apply to large scale engineering problems of interest.

5.2 Smoothed (Sobolev) Descent

In trajectory optimization problems such as the brachistochrone problem, one may anticipate that the
optimum solution will be a smooth curve. This suggests that neighboring points defining the trajectory
should not be perturbed independently during the optimization process, but rather be moved so that the
modified trajectory remains smooth. In the case of aerodynamic design, the described aerodynamic shapes
will generally be smooth (except at occasional corners such as the trailing edge of the wing or at component
intersections). This motivates the introduction of smoothing directly into the optimization process.

Here, the gradient G is replaced by a smoothed gradient Ḡ defined by the implicit smoothing equation.

Ḡ − ∂

∂x
ǫ
∂Ḡ
∂x

= G. (36)

Now one sets
δy = −λḠ (37)

where
λ = ∆t ≡ STEP ∆t⋆

and STEP is a CFL-like input parameter.
Then to first order the variation in I is

δI =

∫ x1

x0

Gδydx = −λ

∫ x1

x0

(

Ḡ − ∂

∂x
ǫ
∂Ḡ
∂x

)

Ḡdx.

Then, integrating by parts and using the fact that the end points are fixed,

δI = −λ

∫ x1

x0

(

Ḡ2 + ǫ

(

∂Ḡ
∂x

)2
)

dx.

Thus descent is assured with an arbitrarily large value of the smoothing parameter ǫ.
The smoothing acts as a preconditioner. In practice it is noted that λ (or∆t) can be doubled when ǫ is

doubled over a wide range, and it is possible to increase ∆t to very large values. It should also be noted that
if the optimimum shape turns out not to be a smooth shape, this preconditioner still allows the optimum
to be recovered. However, the preconditioner forces the trajectory to approach the non-smooth optimum
shape from a set of increasingly-conforming smooth shapes. Next, it is shown that the implicit smoothing
operator is equivalent to casting the gradient in a Sobolev space.

Define a modified Sobolev inner product

〈u, v〉 =
∫

Ω

(uv + ǫ∇u · ∇v)dΩ ,

then
〈u, v〉 = (u, v) + (ǫ∇u,∇v)

where the (u, v) is the standard inner product in L2. Integration by parts yields

〈u, v〉 = (u−∇ (ǫ∇u) , v) +

∫

∂Ω

ǫv
∂u

∂n
d∂Ω.

Using the inner product notation the variation of the cost function I can be expressed as

δI = (G, δy) = 〈Ḡ, δy〉 =
(

Ḡ − ∇
(

ǫ∇Ḡ
)

, δy
)

.
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Therefore we can solve implicitly for Ḡ
Ḡ − ∇

(

ǫ∇Ḡ
)

= G.
Then, if one sets δy = −λḠ,

δI = −λ〈Ḡ, Ḡ〉 = −λ
(

G, Ḡ
)

,

and an improvement is assured if λ is sufficiently small and positive, unless the process has already reached
a stationary point at which Ḡ = 0 (and therefore G = 0).

5.3 Implicit Descent

As it turns out, if the gradient is dominated by a y′′ term, as is the case with the brachistochrone, see
Eqn (35), the smoothed descent given by Eqn (37) can be shown to be equivalent to an implicit stepping
scheme if the appropriate choice of ǫ is used.

Consider the parabolic equation
∂y

∂t
= β

∂2y

∂x2

where β is variable. Solving this with an implicit scheme, the resulting system is

−αδyj−1 + (1 + 2α)δyj − αδyj+1 = −∆tĜj (38)

where δyj is the correction to yj ,

α =
β∆t

∆x2
=

∆t

2∆t⋆
=

1

2
STEP (39)

and

Ĝj =
β

∆x2
(ynj−1 − 2ynj + ynj+1).

Combining Eqns (36&37), the discrete smoothed descent method assumes the form of Eqn (38) with

α =
ǫ

∆x2
. (40)

Comparing Eqn (39) with Eqn (40), one can see using the smoothed gradient is equivalent to an implicit
time stepping scheme if ǫ = 1

2STEP ∆x2. Furthermore, a Newton iteration is recovered as ∆t → ∞.
While it is fortunate that the brachistochrone problem can be solved by an implicit time stepping scheme,

in general, this may not be the case with the more complicated optimization of aerodynamic design. However,
in this paper, we will use the performance of the implicit scheme to establish a goal for the multigrid descent
methods described below.

5.4 Multigrid Descent

Radical improvements in the rate of convergence to a steady state can be realized by the multigrid time-
stepping technique. The concept of acceleration by the introduction of multiple grids was first proposed
by Fedorenko [10]. There is now a fairly well-developed theory of multigrid methods for elliptic equations
based on the concept that the updating scheme acts as a smoothing operator on each grid [11, 12]. In the
case of a time-dependent problem, one may expect that it should be possible to accelerate the evolution of a
hyperbolic system to steady state by using large time steps on coarse grids so that disturbances will be more
rapidly expelled through the outer boundary. Various multigrid time-stepping schemes have been designed
to take advantage of this effect [13, 14, 15, 16, 17]. The present work adapts the scheme devised by the first
author to solve the Euler equations [15] to the equation dy

dt
= −G.

A sequence of K meshes is generated by eliminating alternate points along each coordinate direction of
mesh-level k to produce mesh-level k+1. Note that k = 1 refers to the finest mesh of the sequence. In order
to give a precise description of the multigrid scheme, subscripts may be used to indicate grid level. Several
transfer operations need to be defined. First, the solution vector, y, on grid k must be initialized as

y
(0)
k = Tk,k−1 yk−1 , 2 ≤ k ≤ K
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where yk−1 is the current value of the solution on grid k − 1, and Tk,k−1 is a transfer operator. Next it is
necessary to transfer a residual forcing function, P , such that the solution on grid k is driven by the residuals
of grid k − 1. This can be accomplished by setting

Pk = Qk,k−1 Gk−1(yk−1)− Gk(y
(0)
k ),

where Qk,k−1 is another transfer operator. Now, Gk is replaced by Gk + Pk in the time-stepping such that

y+k = y
(0)
k −∆tk [Gk(yk) + Pk]

where the superscript + denotes the updated value. The resulting solution vector, y+k , then provides the
initial data for grid k + 1. Finally, the accumulated correction on grid k has to be transferred back to grid
k − 1 with the aid of an interpolation operator, Ik−1,k. Thus one sets

y++
k−1 = y+k−1 + Ik−1,k

(

y++
k − y

(0)
k

)

where the superscript ++ denotes the result of both the time step on grid k and the interpolated correction
from grid k + 1.

A W -cycle of the type shown below proves to be a particularly effective strategy for managing the work
split between the meshes. In this figure, the solid nodes indicate that full evaluations are being performed

while the open nodes indicate that only transfers of solution updates are computed.

Three-Lev

k = 1

k = 2

k = 3

Recursive Stencil for a
K-Level Multigrid W-Cycle

(K − 1)-Level
W-Cycle

(K − 1)-Level
W-Cycle

In a three-dimensional setting, the number of cells is reduced by a factor of 8 on each coarser grid. By
examination of these illustrations, it can be verified that the work measured in units which correspond to
an iteration on the finest grid is of the order of

1 +
2

8
+

4

64
+ ...+

1

4K
<

4

3
.

Since Eqn (35) is a parabolic equation, its convergence can be accelerated by standard multigrid tech-
niques. This has been implemented here, with options for both V and W cycles.

5.5 Krylov Acceleration

Consider thatK linearly-independent solution-gradient states are known. This system spans aK-dimensional
Krylov subspace of the N -dimensional problem. If the system is linear, then the states supported by this
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subspace can be described by the following recombination of known y-G pairs.

y⋆ =
K
∑

k=1

γky
k , G⋆ =

K
∑

k=1

γk Gk,

where
K
∑

k=1

γk = 1.

Convergence of the descent optimization procedures can be accelerated by minimizing the L2 Norm of
G⋆ to determine the appropriate recombination coefficients γk. See references [18, 19]. Now, the iterative
process becomes

yn+1
j = y⋆j − λG⋆

j .

It should be noted that the above acceleration can fail if the preconditioned state of the current iteration
is not linearly independent of the previous Krylov subspace. This can occur if the previous Krylov subspace
happens to contain the zero-gradient state, and this “failure” is fortuitous since the converged solution is
prematurely determined. Another cause for failure is a poor choice of preconditioner, however, this should
not be the case with the method of steepest descent as the gradient at y⋆ should be nearly perpendicular
to the previous Krylov subspace. In a linear setting, it is guaranteed that the new state as given by the
preconditioner is not contained within the previous Krylov subspace if the L2 Norm of the gradient of the
new state is less than that of G⋆ of the previous iteration.

5.6 Quasi-Newton Methods

Quasi-Newton methods are widely regarded as the method of choice for general optimization problems
whenever the gradient can be readily calculated. These methods estimate the Hessian (A) or its inverse
(A−1) from changes in the gradient (δG) during the search steps. By the definition of A, to first order

δG = A δy.

Let Hn be an estimate of A−1 at the nth step. Then it should be required to satisfy

HnδGn = δyn. (41)

This can be satisfied by various recursive updating formulas for H , which also have the hereditary property
that if A is constant, as is the case of a quadratic form, Eqn (41) holds for all of the previous steps δyk, k < n.
Consequently H becomes an exact estimate of A−1 in N steps.

Three quasi-Newton methods have been tested in this work. The first is the rank one (R1) correction

Hn+1 = Hn +
Pn(Pn)T

(Pn)T δGn
. (42)

where
Pn = δyn −HnδGn.

The second method is the Davidon-Fletcher-Powell (DFP) rank-two updating formula

Hn+1 = Hn

+
δyn(δyn)T

(δyn)T δGn
− HnδGn(δGn)THn

(δGn)THnδGn
. (43)

In order to assure N -step convergence for a quadratic form, this method requires the use of exact line
searches to find the minimum objective function in the search direction at each step. This is because the
hereditary property depends on the orthogonality of each new gradient with the previous search direction,
i.e., (Gn+1)T δyn = 0. Hence, many more evaluations of the objective function are required for DFP than
R1. However, DFP has an advantage in that the updated estimates of the inverse Hessian, Hn, remain
positive-definite.
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The third quasi-Newton method tested uses the Broyden-Fanno-Goldfarb-Shannon (BFGS) updating
formula

Hn+1 = Hn

+

(

1 +
(δGn)THnδGn

(δGn)T δyn

)

δyn(δyn)T

(δGn)T δyn

−HnδGn(δyn)T + δyn(δGn)THn

(δGn)T δyn
. (44)

This corresponds to the DFP formula applied to estimate A rather than A−1. As with DFP, BFGS also
requires exact line searches to assure N -step convergence for a quadratic form. In practice however, BFGS
is usually preferred over DFP because it is considered to be more tolerant to inexact line searches, and
therefore a more robust procedure.

We should note that the line searches performed for the Rank-2 quasi-Newton methods were implemented
to locate the position where the local gradient is orthogonal to the search direction. For the discrete
gradient, this location coincides with the minimum measurable cost function along the line. However, for
the continuous gradient, this may not be the case. The motivation for this choice of line search (as opposed
to finding the minimum measurable cost) is to ensure that the Rank-2 systems remain positive-definite for
the continuous gradient optimizations. (See Reference [20], pp 54-55).

6 Results

The various methods described in this paper have been exercised to better understand their accuracy and
performance. Specifically, three items are addressed. The first is whether the discrete or the continuous
gradient is necessarily better than the other either by yielding more accurate solutions, or by reducing the
cost of the search procedure. The second is whether an alternate search strategy can be devised which out
performs the quasi-Newton approaches, when applied to trajectory and shape optimization problems, where
the solution is expected to be smooth. And the third item discussed is regarding the robustness of the various
methods as applied to the brachistochrone problem.

6.1 Accuracy

Both the continuous and discrete gradient-based optimizations have been applied to the brachistochrone
problem over a wide range of mesh sizes. The model problem analyzed in this work is given by Eqns (31& 32)
with C = 1. Furthermore, to minimize the effects of the left-hand singularity, the boundary conditions were
determined by using t0 = π

2 and t1 = π. A summary of this data related to accuracy is provided in
Figures 17-21.

Figures 17& 18 illustrate the convergence of the optimization process being driven by the continuous and
discrete gradients, respectively. Here, the number of design variables is N = 31 and convergence is achieved
using the implicit stepping approach. Figure 19 is analogous to Figure 17 for the case of N = 511 design
variables. In these plots, the L2 Norm of both gradients and a measure of the converged path’s accuracy are
provided. The accuracy of these results are monitored with the root-mean-square difference of the optimized
discrete trajectory with that of the exact solution.

YERR =

√

∑N

j=1 (yj − yexact(xj))
2

N

Whether the optimization is driven by the continuous or discrete gradient, the convergence histories look
very similar. The main difference between these results is that the converged value of YERR levels off at
a lower value for the continuous gradient (10−4.619) than it does for the discrete gradient (10−4.332). This
character persists over the complete range of mesh sizes tested in this work as shown in Figure 20. Here,
NX is the number of mesh intervals, thus N = NX − 1. While the advantage of the continuous gradient
is apparent for the brachistochrone problem, in general, this may not be the case. Yet, these data clearly
illustrate that an optimization based on the discrete gradient is not necessarily the best choice. In either
case, Figure 20 illustrates that both approaches are second-order accurate.
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Using YERR as a measure of accuracy is only possible because the exact optimal solution is known for this
problem. Typically, problems of optimization do not know what the exact solution is and therefore must rely
on another figure of merit, usually the measurable cost function. For the brachistochrone problem, this is
IR. Even though Figure 20 clearly illustrates that the continuous gradient is more accurate than the discrete
gradient, we know that ICR will be greater than (or equal to) IDR by definition. Here ICR is the measured cost
function as optimized by the continuous gradient, while IDR is that optimized by the discrete gradient. This
surplus, defined by

Surplus = ICR − IDR

is illustrated in Figure 21 as a function of mesh size. Interpretating this surplus as a disadvantage of the con-
tinuous gradient relative to the discrete gradient is unwarranted, as evidenced by Figure 20. However, since
both approaches are second-order accurate, it should come as no surprise that this surplus also diminishes
in a second-order manner with increasing number of design variables.

6.2 Performance

The performances of the various optimization techniques are verified in this section. Detailed illustrations
of path histories as well as gradient convergences are given in Figures 22-38 for the different strategies on a
problem involving N = 31 & 511 design variables.

Since an implicit stepping for the brachistochrone is possible, its performance is used as a goal to achieve
in the design of an explicit scheme. As shown in Figures 22 & 24, the transient path shapes of the implicit
scheme rapidly converges to the final state within a few iterations, regardless of problem dimension. The
rapid convergence of this scheme is also exemplified by the quick decay of the corresponding gradients as
shown in Figures 23 & 25.

Figures 26-29 provide path histories and gradient convergences for the three quasi-Newton methods.
It is interesting to note that the character of the paths from iteration to iteration is distinctly different
than that of the implicit scheme shown before in Figures 22 & 24. The main cause for this difference is
that the quasi-Newton methods effectively take a uniform time step, whereas the other descent schemes
investigated in this work employ a non-uniform time step dictated only by stability considerations. It is also
interesting to note that for N = 31, the two methods which estimate A−1 (Rank-1 and DFP), follow nearly
identical convergence histories, while the BFGS method requires about two extra iterations to converge the
gradient norm to an equivalent level. For example, notice in Figure 27 that the Rank-1 and DFP schemes
required 38 iterations to converge the gradient 6 orders of magnitude, while BFGS took about 40 cycles.
These quasi-Newton methods were tested on problems up to N = 511 design variables; they consistently
exhibited a convergence behavior where the gradient norm remains relatively flat until N iterations have
been performed, then rapidly converging to machine-level zero in about 10 more steps. This behavior is
precisely what the theory suggests should occur and this trend is definitely supported by Figures 27 & 29 for
N = 31 & 511, respectively. However, the reader is reminded that the Rank-1 algorithm does not require a
line search each iteration, and therefore may evaluate the gradient up to an order of magnitude fewer times
than either of the Rank-2 schemes. Robustness issues aside, this can result in a significant difference in the
computational times between the various quasi-Newton methods.

Figures 30-31 give the results of the steepest descent approach. Recall that in Section 5.1 the stability
analysis of this stepping concluded that the number of iterations required for convergence was directly
proportional to N2. Even for the small case of N = 31 shown in these figures, more than 512 cycles were
performed before the path visually converged and almost 6000 iterations were needed before machine-level
zero was attained. (Because of the CPU requirements involved, a solution for N = 511 was not even
attempted.) Clearly, this approach is unacceptable in the setting of large engineering problems of interest.
In this solution, STEP = 1.0 was used as it provides the fastest convergence rates for the steepest descent
approach. A test with STEP = 1.01 verified our stability analysis as the solution quickly diverged.

In contrast with the previous results, the path history for a smoothed descent is illustrated in Figure 32.
In this solution, STEP = 100 was used and to the eye, the final path is determined in less than 8 cycles.
Figure 33 gives the convergence histories for a variety of values of STEP = 12.5, 25, 50, 100. These data
confirm that a doubling of the step size essentially halves the number of iterations required for convergence,
up to a point.

Figures 34-35 provide the results of applying the smoothed descent scheme coupled with Krylov accel-
eration. In this case, the path history looks to settle down after only 4 iterations while the gradient norm
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exhibits a quadratic-like convergence behavior. Figure 35 indicates that the Krylov accelerated convergence
is almost invariant of the value of STEP in the preconditioned step. To obtain 6 orders of magnitude
reduction requires between 12 & 14 steps for STEP ≥ 25. For reference, this figure also includes the best
convergence curve of Figure 33 to better illustrate the positive effect that this acceleration scheme has on
the convergence of the optimization process.

Application of a multigrid W-cycle to drive the convergence of the brachistochrone is now studied.
Figures 36-37 give the corresponding path history and gradient convergence plots as seen before. Amazingly,
the path of the second cycle is almost within symbol width of the final path. The effect of number of mesh
levels, NMESH , used in the multigrid convergence is shown in Figure 37. Here, with NMESH = 1, a
smoothed descent scheme is recovered; increasing the number of multigrid levels significantly increases the
convergence rate. Furthermore, while this figure depicts the convergence for NX = 32, it was observed that
the multigrid convergence history was grid independent if one always used NMESH = log2(NX).

The enhancements incorporated beyond the original steepest descent method have systematically im-
proved the convergence of the optimization process to the point where the performance of the implicit
scheme has been achieved. The final enhancement to the multigrid scheme is to incorporate the Krylov
acceleration. Figure 38 compares the complete ensemble of enhancements to our explicit scheme with the
performance of the implicit stepping. For all practical purposes, the convergence rates of these two schemes
are identical. For comparison, this figure also includes the NMESH = 5 multigrid convergence of Figure 37,
which is noticeably slower than that with the Krylov acceleration. However, the convergence histories de-
picted in this figure, for these three schemes, are essentially independent of the dimensionality, N . (See
Figure 39.)

Figure 39 compares the performance of several of the various schemes. Here, ITERS is the number of
iterations required for the gradient norm to be reduced at least six orders of magnitude. This figure represents
problems ranging in size from N = 3 design variables up to N = 8191. (In this figure, NX is the number
of mesh intervals, thus N = NX − 1.) The basic steepest descent approach exhibits an O(N2) behavior in
the number of iterations required, while the quasi-Newton methods indicate O(N) as expected. Using the
full number of multigrid levels and Krylov acceleration provides a grid independent result, requiring about
8 iterations to converge 6 orders. Finally, this is shown to compare favorably with the implicit stepping
performance which also yields a grid independent character, requiring only 7 iterations.

6.3 Robustness

We include a brief, qualitative synopsis of the robustness of the various schemes studied herein. While no
attempt was made to establish a metric which one could monitor a scheme’s level of robustness, the successful
application of some of these methods proved to be sensitive to certain implementation issues. For example,
and previously noted, the Krylov acceleration can “bomb” if a machine-level exact solution is found in less
than N iterations. Figure 39 clearly shows that this occurred for all cases where N > 8.

The behavior of the robustness of the various quasi-Newton schemes seemed contrary to popular under-
standing. The Rank-1 scheme had no issue converging any of the cases tested. This included optimizations
driven by both the continuous and discrete gradients for problems with 3 ≤ N ≤ 511 design variables. How-
ever, the Rank-2 schemes were fairly sensitive to the level of convergence of the line searches, and surprisingly,
BFGS seemed more sensitive to “inexact” line searches than DFP.

Subject only to the stability limits discussed in § 5.1 & 5.2, the explicit time-stepping schemes of steepest
descent, smoothed steepest descent, and multigrid descent proved to be very robust. These optimizations
converged as anticipated for every case tested. This included optimizations based on both the continuous
and discrete gradients for problems up to N = 8191 design variables.

7 Conclusions

In this lecture, two model problems of optimization have been discussed. The first model problem of the
spider-and-fly was used to introduce some basic concepts of optimization set up; it also illustrated some
mental traps to avoid. The second model problem of the brachistochrone was used to develop various
aspects of the optimization process in much greater detail.

In the spider-fly problem, we showed how one can set up the objective function and its associated design
space, including constraints. Here, the cost function of the discrete problem was equivalent to that of the
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continuum; this is normally not the case. Direct differentiation of the cost function was used to establish the
gradient and Hessian matrix; also equivalent to that of the continuum. Steepest descent, Newton iteration,
quasi-Newton, and Nash equilibrium methods were demonstrated. One trap avoided was on the choice
of which of these methods is most appropriate for optimizations that utilize design spaces of very large
dimension. Another trap discussed was how a developer envisions the set up of the discrete problem.

A variety of optimization techniques have been applied to the brachistochrone problem. These include
gradient approaches based on both the continuous as well as discrete forms. Results show that, at least for
the brachistochrone problem, the continuous gradient yields a slightly more accurate solution than does the
discrete gradient; a possible reason for this outcome is included.

The solution of the nonlinear optimization problem is accomplished with explicit and implicit time step-
ping schemes which are also compared with several quasi-Newton algorithms. The data presented herein
illustrate that an explicit time-stepping scheme can be constructed whose convergence properties are invari-
ant with the dimensionality of the problem. Furthermore, the performance of this explicit scheme rivals
that of the implicit time stepping. These trends have been verified on problems ranging from N = 3 design
variables up to N = 8191 unknowns.

Finally, the performance of quasi-Newton methods is consistent with theoretical estimates in that their
convergence (i.e., iterations required) is linearly dependent on the number of design variables.

For large engineering optimization problems of interest, N > O(103), it is obvious that quasi-Newton
methods can become prohibitively expensive in terms of both computational and memory requirements.
However, it is encouraging that the possibility exists of constructing an efficient explicit scheme based on
the straightforward techniques investigated under this research.

References

[1] H. E. Dudeney. The Spider and The Fly. The Weekly Dispatch Newspaper, 14 June 1903. Also published
in The Canterbury Puzzles and Other Curious Problems, London, 1907.

[2] W. K. Anderson, III J. C. Newman, D. L. Whitfield, and E. J. Nielsen. Sensitivity analysis for Navier-
Stokes equations on unstructured meshes using complex variables. AIAA Journal, 39(1):56–63, January
2001. Also, AIAA Paper 99-3294.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, NY,
2004. ISBN 0 521 83378 7.

[4] Johann Bernoulli. Acta Eruditorum. J.F. Gleditsch Publishing, Leipzig, Germany, June 1696. Otto
Mencke, Editor.

[5] Galileo Galilei. Discourses and mathematical demonstrations concerning the two new sciences. Pub-
lished, Leyden, Holland, 1638.

[6] A. Jameson and J. C. Vassberg. Studies of alternative numerical optimization methods applied to the
brachistochrone problem. Computational Fluid Dynamics Journal, 9(3), October 2000. Special Issue
on CFD and Education, Dedicated to Dr. Koichi Oshima; Emeritus Professor of University of Tokyo.

[7] A. Jameson and J. C. Vassberg. Studies of alternative numerical optimization methods applied to the
brachistochrone problem. In Proceedings of OptiCON’99, Newport Beach, CA, October 1999.

[8] G. B. Thomas. Calculus and Analytic Geometry. Addison-Wesley, Reading, MA, 1960. Series in
Mathematics.

[9] E. Chong and S. Zak. Introduction to Optimization. Wiley, New York, NY, 1995.

[10] R. P. Fedorenko. The speed of convergence of one iterative process. Comp. Mathematics and Mathe-

matical Physics, 4:227–235, 1964.

[11] A. Brandt. Multi-level adaptive solutions to boundary value problems. Mathematical Computing,
31:333–390, 1977.

[12] W. Hackbusch. On the multi-grid method applied to difference equations. Computing, 20:291–306,
1978.

Vassberg & Jameson, VKI Lecture-I, Brussels, Belgium, 16-20 May, 2022 24 of 45



[13] R. H. Ni. A multiple grid scheme for solving the Euler equations. AIAA Journal, 20:1565–1571, 1982.

[14] M. G. Hall. Cell vertex multigrid schemes for solution of the Euler equations. Reading, April 1985.
Proceedings IMA Conference on Numerical Methods for Fluid Dynamics.

[15] A. Jameson. Multigrid algorithms for compressible flow calculations. In W. Hackbusch and U. Trotten-
berg, editors, Lecture Notes in Mathematics, Vol. 1228, pages 166–201. 2nd European Conf. Multigrid
Methods, Cologne, 1985, Springer-Verlag, 1986.

[16] A. Jameson. Solution of the Euler equations for two dimensional transonic flow by a multigrid method.
Applied Mathematics and Computations, 13:327–356, 1983.

[17] A. Jameson. Solution of the Euler equations by a multigrid method. Applied Mathematics and Com-

putations, 13:327–356, 1983.

[18] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, Boston, MA, 1996.
PWS Series in Computer Science.

[19] R. W. Clark. A new iterative matrix solution procedure for three-dimension panel methods. AIAA

paper 85-0176, AIAA Aerospace Sciences Meeting, Reno, NV, January 1985.

[20] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, NY, 1995. Second
Edition.

Vassberg & Jameson, VKI Lecture-I, Brussels, Belgium, 16-20 May, 2022 25 of 45



  
  Block Size  

  4" x 4" x  12"  
  

  Path Length  
  16.00"  

  
  

  
        SPIDER   
        FLY   
        PATH
  

Figure 1: Obvious local-minimum path between Spider and Fly.
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Figure 2: Non-obvious global-minimum path between Spider and Fly.
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Figure 3: Convergence of Gradient for Steepest Descent.
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Figure 4: Steepest-Descent Trajectory through the Design Space.
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Figure 5: Convergence of Gradient for Newton Iteration.
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Figure 6: Newton-Iteration Trajectory through the Design Space.
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Figure 7: Convergence of Gradient for Rank-1 quasi-Newton Iteration.
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Figure 8: Rank-1 quasi-Newton Trajectory through the Design Space.
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Figure 9: Convergence of Error and Gradient for Nash Equilibrium.
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Figure 10: Nash Equilibrium Trajectory through the Design Space.
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Figure 11: Obvious local-minimum path between Spider and Fly on flattened box.

  
  Block Size  

  4" x 4" x  12"  
  

  Path Length  
  Sqrt(250.0)"  

  ~ 15.81"  
  

  
        SPIDER   
        FLY   
        PATH
  

Figure 12: Non-obvious global-minimum path between Spider and Fly on flattened box.
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Figure 13: Convergence of Gradient for Steepest Descent with S2 ≤ 4.
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Figure 14: Steepest-Descent Trajectory through the Design Space with S2 ≤ 4.
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Figure 15: Minimum path between Spider and Fly with S2 ≤ 4.
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Figure 16: Minimum path between Spider and Fly on flattened box with S2 ≤ 4.
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Figure 17: Convergence histories of implicit stepping using continuous gradient with N=31.
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Figure 18: Convergence histories of implicit stepping using discrete gradient with N=31.
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Figure 19: Convergence histories of implicit stepping using continuous gradient with N=511.
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Figure 20: Computed path errors as a function of mesh size.
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Figure 21: Difference of measurable cost function between the continuous and discrete gradients.

Vassberg & Jameson, VKI Lecture-I, Brussels, Belgium, 16-20 May, 2022 36 of 45



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

X

Y

Exact

cyc  1

cyc  2

cyc  4

Figure 22: History of paths of implicit stepping with N=31.
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Figure 23: Convergence history of implicit stepping with N=31.
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Figure 24: History of paths of implicit stepping with N=511.
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Figure 25: Convergence history of implicit stepping with N=511.
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Figure 26: History of paths for Rank-1 quasi-Newton with N=31.
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Figure 27: Comparison of quasi-Newton convergence histories with N=31.
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Figure 28: History of paths for Rank-1 quasi-Newton with N=511.
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Figure 29: Comparison of quasi-Newton convergence histories with N=511.
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Figure 30: History of paths of steepest descent with N=31.
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Figure 31: Convergence history of steepest descent with N=31.

Vassberg & Jameson, VKI Lecture-I, Brussels, Belgium, 16-20 May, 2022 41 of 45



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

X

Y

Exact

cyc  1

cyc  2

cyc  4

cyc  8

cyc 32

cyc 64

Figure 32: History of paths of smoothed descent with N=31 & STEP=100.
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Figure 33: Convergence history of smoothed descent with N=31.
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Figure 34: History of paths for Krylov acceleration with N=31 & STEP=100.
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Figure 35: Convergence history of Krylov acceleration with N=31.

Vassberg & Jameson, VKI Lecture-I, Brussels, Belgium, 16-20 May, 2022 43 of 45



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-0.65

-0.60

-0.55

-0.50

-0.45

-0.40

-0.35

-0.30

STEP = 2.0  ,  SMOO = 0.75

NMESH = 5

X

Y

Exact

cyc  1

cyc  2

cyc  4

cyc  8

cyc 32

cyc 64

Figure 36: History of paths for multigrid acceleration with N=31.
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Figure 37: Convergence history of multigrid acceleration with N=31.
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Figure 38: Comparison of grid-independent convergence histories.
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Figure 39: Comparison of convergence properties with dependence on dimensionality.
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