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Nomenclature

A Hessian Matrix / Operator

AR Wing Aspect Ratio = b2

Sref

b Wing Span

B Shape Function Basis

CFD Computational Fluid Dynamics

CD Drag Coefficient = Drag
q∞Sref

CL Lift Coefficient = Lift
q∞Sref

Cref Wing Reference Chord

count Drag Coefficient Unit = 0.0001

F Surface Defining Function

G Gradient of Cost Function

H Estimate of Inverse Hessian Matrix

HP Horse Power

I Objective or Cost Function

KEAS Knots Equivalent Air Speed

MPH Mile Per Hour

N Number of Design Variables

R Flow-Equation Function

RANS Reynolds-Averaged Navier-Stokes

RCS Reaction Control System

Re Wing Reynolds number based on Cref

Reθ Attachment Line Reynolds number

Sref Wing Reference Area

UAV Unmanned Aerial Vehicle

x Independent Spatial Variable

q Dynamic Pressure = 1

2
ρV 2

w Flow Variable

λ Wing Taper Ratio; Search Step Parameter

Λc/4 Wing Quarter-Chord Sweep

∞ Infinity

δ∗ First Variation of

O(∗) Order of

(∗)−1 Inverse Matrix of

1 Introduction

This is the second of three lectures prepared by the authors for the von Karman Institute that deal with the
subject of aerodynamic shape optimization. In our first lecture we introduced some theoretical background
on optimization techniques commonly used in the industry, applied these approaches to a couple of very
simple model problems, compared the results of these schemes, and discussed their merits and defficiencies
as they relate to the class of aerodynamic shape optimization problems the authors deal with on a regular
basis. In this lecture, we illustrate how the gradient of a complex system of nonlinear partial differerential
equations can be obtained for about the same computational cost as that of the cost function, and we provide
a set of sample applications.

In an airplane design environment, there is no need for an optimization based purely on the aerodynamics
of the aircraft. The driving force behind (almost) every design change is related to how the modification
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improves the vehicle, not how it enhances any one of the many disciplines that comprise the design. Al-
though we focus this lecture on the aerodynamics of an airplane, we also include the means by which other
disciplines are linked into and affect the aerodynamic shape optimization subtask. Another characteristic of
the problems we typically (but not always) work on is that the baseline configuration is itself within 1-2%
of what may be possible, given the set of constraints that we are asked to satisfy. This is certainly true for
commercial transport jet aircraft whose designs have been constantly evolving for the past half century or
more. Most of the sample applications provided herein do not fall into this category. Quite often the problem
can be very constrained; this is the case when the shape change is required to be a retrofitable modification
that can be applied to aircraft already in service. Occasionally, we can begin with a clean slate, such as in
the design of an all-new airplane. And the problems cover the full spectrum of studies in between these two
extremes.

Let’s note a couple of items about this setting. First, in order to realize a true improvement to the
baseline configuration, a high-fidelity and very accurate computational fluid dynamics (CFD) method must
be employed to provide the aerodynamic metrics of lift, drag, pitching moment, spanload, etc. Even with
this, measures should be taken to estimate the possible error band of the final analyses; this discussion
is beyond the scope of these lectures. Figures 1-2 illustrate the class of aircraft and the level of detail
the first author addresses every day. These Navier-Stokes CFD solutions are conducted on full-up cruise
configurations, complete with wing, fuselage, engine groups, empennage, flap-support fairings, and winglets.
The engine groups include a pylon, nacelle, core-cowl, shelf, and bifurcation flows. Although not obvious
in these images, various fillets are also included. Finally, the CFD calculations are performed at prescribed
lifting conditions by altering angle-of-attack, and are trimmed to specified center-of-gravity locations by
adjusting the horizontal tail incidence. This level of detail is needed to achieve an accuracy on the absolute
performance of the aircraft that is within 1% of flight test data. However, this is what is required to improve
the performance of the aircraft by 1-2% without a numerical optimization yielding a false positive. The
second item to consider is related to the definition of the design space. A common practice is to use a set of
basis functions which either describe the absolute shape of the geometry, or define a perturbation relative to
the baseline configuration. In order to realize an improvement to the baseline shape, the design space should
not be artificially constrained by the choice of the set of basis functions. This can be accomplished with
either a small set of very-well-chosen basis functions, or with a large set of reasonably-chosen basis functions.
The former approach places the burden on the user to establish an adequate design space, the later approach
places the burden on the optimization software to economically accommodate problems with large degrees of
freedom. Over the past two decades, the authors have focused on solving the problem of aerodynamic shape
optimization utilizing a design space of very large dimension. Our principal motivation for addressing the
problem of large number of design variables is two fold. The first is to provide a situation where the design
space never needs to be artificially constrained. The second is to allow us the flexibility to automatically
set up the design space within the optimization software at the highest dimensionality supported by the
discrete numerical simulation. In doing so, the aerodynamic shape optimization software based on these
concepts allow the user to run optimizations immediately after set up of the analysis inputs are complete.
This speeds time-to-first-optimization and minimizes the human errors associated with defining a design
space. Furthermore, aerodynamic shape optimizations based on either the Euler or Navier-Stokes equations
can be run on relatively inexpensive computer equipment.

The next section provides an overview of aerodynamic optimization. We develop an efficient evaluation
for the gradient; this is based on solving an adjoint equation. A brief review of the search methods we
utilize are then included. Following this discussion, we present a few selected case studies. These sample
applications are all on design activities that we have been involved with; they include a Mars aircraft, a Reno
Racer, and an aero-structural optimization of a generic B747 wing/body configuration. In addition to these,
we present some recent work based on the publicly-available, open-source SU2 software, which introduces an
alternative technique for lift-constrained optimization. These examples are based on the NACA0012 airfoil
and the NASA Common Research Model (CRM) Wing/Body configuration.

2 Aerodynamic Design Trades

The objective of aerodynamic design is to produce a structurally feasible shape with sufficient carrying
capacity, which achieves good aerodynamic performance.

For example, consider the generic task of delivering a payload between distant city pairs. The Breguet
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Range equation, which aptly applies to long-range missions of jet aircraft, is:

Range =
ML

D

a

SFC
ln

(

W0 +Wf

W0

)

. (1)

Here, M is the cruise Mach number, L & D are the aerodynamic forces of lift and drag, respectively, a is the
acoustic speed, SFC is the specific fuel consumption of the engines, W0 is the aircraft landing weight, and
Wf is the weight of fuel burned during the flight. The Breguet Range equation illustrates the importance of
drag prediction as a function of lift and Mach number in the context of aerodynamic design; it also provides
a glimpse into the interplay between the various disciplines.

Referring to Eqn (1), one might assume that the aerodynamic efficiency of an aircraft is represented
by ML

D
, the propulsion efficiency is embedded in SFC, and that the structural efficiency directly impacts

W0. Interestingly, historical trends of in-service transport aircraft indicate that very little improvement in
the ML

D
metric has been accomplished in the past 50 years, until recently with the Boeing 787. Yet it

would be somewhat naive to state that no aerodynamic advances have been made during this period. In
actuality, advances in aerodynamics have better served aircraft designs when traded for improvements in
other disciplines. For example, the ability to increase the thickness-to-chord ratio of a wing while maintaining
ML
D

not only reduces the structural weight of the wing, it also provides additional fuel volume. In terms
of Eqn (1), an aerodynamic improvement of this nature would manifest itself as a decrease in W0 and an
increase in Wf with the net result being an increase in range. Reducing the aircraft’s empty weight has the
added benefit of reducing the cost of the vehicle. Obviously, this aerodynamic improvement would not be
apparent in the trend charts of ML

D
. Ironically, the recent increase in ML

D
for the B787 is primarily due to its

composite wing structure, where the aero-structural trade optimizes out at a higher wing aspect ratio than
that of a traditional aluminum wing.

Assume that an airline would like to provide a service between two cities with an aircraft that, when
fully loaded with payload and fuel, is 1% short on range. Since the aircraft is fuel-volume limited, the only
recourse is to reduce the payload weight. In relative terms, a typical ratio of weights might have Wf = 2

3
W0

and Wpayload = 1
6
W0. In this scenario, Eqn (1) shows that the operator would have to reduce the payload

(read revenue) by 7.6% to recover the 1% shortfall on range. Since most airlines operate on very small
margins, this service most likely will no longer be a profit-generating venture. This example illustrates that
in the current business of flight, a 1% delta in aircraft performance is a significant change. While improving
an aircraft’s performance by 1% may not be a trivial task given the usual constraints, losing 5% is easily
done if attention is not paid to details such as juncture flows, external doublers, gaps, etc.

Now consider a more typical case where the aircraft does not suffer from a shortfall on range. In round
numbers, the Direct Operating Costs (DOC) of a transport aircraft can be itemized as: 50% for the cost
of ownership, 20% for fuel burn, 20% for crew salaries and maintanence, and 10% for miscellaneous other
items. From an airline’s perspective, if the DOC of its fleet of aircraft could be reduced by 5% with a new
design (while providing the same set of services to its customers), the airline would most likely retire its
entire fleet and replace it with the new aircraft [1].

So how can aerodynamics be leveraged to improve the economics associated with a flight-based mission?
By enabling the development of a simplified high-lift-system design that for a given L

D
and CL max reduces

manufacturing and maintanence costs as well as part count. By increasing the cruise Mach number without
reducing ML

D
reduces the time-dependent costs such as crew and maintanence. Also, by increasing ML

D

without penalizing the other disciplines reduces fuel burn. These are just a few examples that illustrate how
aerodynamic advances would impact DOC. A common requirement for achieving these goals is the accurate
prediction of drag as a function of lift, Mach number, altitude and CG position, and with power effects
included in the simulations.

To push aerodynamic technologies forward, it is becoming more important that accurate drag prediction
become a consistent product of the CFD community. Once this prerequisite is accomplished, the full benefits
of automated aerodynamic shape optimization may begin to be realized.

With the various on-going design programs, these are exciting times for the aircraft industry. A prime
example is the Blended-Wing-Body (BWB) which has established a renaissance in the design of a family of
all-new aircraft [2]. This revolutionary concept is enabling aerodynamic advances in all of the above areas,
and then some. It presents challenges, yet offers significant opportunities, and as a result, a 5% reduction
in DOC is within grasp. Suffice it to say that aerodynamics is not a sunset technology, but rather, it is as
important today as it was a century ago; only the stakes have changed.
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3 Aerodynamic Optimization

Traditionally the process of selecting design variations has been carried out by trial and error, relying on the
intuition and experience of the designer. The degree of success with this classical approach depends directly
on the level of expertise of the aerodynamic designer, which can take over a decade of apprenticeship to
develop. It is not at all likely that a similar process of repeated trials in an interactive design and analysis
procedure can lead to a truly optimum design. In order to take full advantage of the possibility of examining
a large design space, the numerical simulations need to be combined with automatic search and optimization
procedures. This can lead to automatic design methods which will fully realize the potential improvements
in aerodynamic efficiency.

An approach which has become increasingly popular is to carry out a search over a large number of
variations via a genetic algorithm. This may allow the discovery of (sometimes unexpected) optimum design
choices in very complex multi-objective problems, but it becomes extremely expensive when each evaluation
of the cost function requires intensive computation, as is the case in aerodynamic problems.

In order to find optimum aerodynamic shapes with reasonable computational costs, it pays to embed the
flow physics within the optimization process. In fact, one may regard an aerodynamic shape as a device
to control the flow in order to produce a specified lift with minimum drag. As a result, one can draw on
concepts which have been developed in the mathematical theory of control of systems governed by partial
differential equations. In particular, an acceptable aerodynamic design must have characteristics that do not
abruptly vary with small changes in shape and flow conditions. Consequently, gradient-based procedures
are appropriate for aerodynamic shape optimization. Two main issues affect the efficiency of gradient-based
procedures; the first is the actual calculation of the gradient, and the second is the construction of an efficient
search procedure which utilizes the gradient.

3.1 Gradient Calculation

For the class of aerodynamic optimization problems under consideration, the design space is essentially
infinitely dimensional. Suppose that the performance of a system design can be measured by a cost function
I which depends on a function F(x) that describes the shape, where under a variation of the design, δF(x),
the variation of the cost is δI. Now suppose that δI can be expressed to first order as

δI =

∫

G(x)δF(x)dx

where G(x) is the gradient. Then by setting

δF(x) = −λG(x)

one obtains an improvement

δI = −λ

∫

G2(x)dx

unless G(x) = 0. Thus the vanishing of the gradient is a necessary condition for a local minimum. Here, λ
is a positive value that scales the step size of the search trajectory through the design space.

Computing the gradient of a cost function for a complex system can be a numerically intensive task,
especially if the number of design parameters is large and if the cost function is an expensive evaluation.
The simplest approach to optimization is to define the geometry through a set of design parameters, which
may, for example, be the weights αi applied to a set of shape functions Bi(x) so that the shape is represented
as

F(x) =
∑

αiBi(x).

Then a cost function I is selected which might be the drag coefficient or the lift-to-drag ratio; I is regarded
as a function of the parameters αi. The sensitivities

∂I
∂αi

may now be estimated by making a small variation
δαi in each design parameter in turn and recalculating the flow to obtain the change in I. Then

∂I

∂αi

≈
I(αi + δαi)− I(αi)

δαi

.

The main disadvantage of this finite-difference approach is that the number of flow calculations needed
to estimate the gradient is proportional to the number of design variables [3]. Similarly, if one resorts to
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direct code differentiation (ADIFOR [4, 5]), or complex-variable perturbations [6], the cost of determining
the gradient is also directly proportional to the number of variables used to define the design. Even small
problems of aerodynamic shape optimization based on these approaches can require compute resources that
are measured in CPU-Years, which can only be completed in reasonable elapsed time through utilization of
massively-parallel computers costing millions of dollars.

A more cost effective technique is to compute the gradient through the solution of an adjoint problem,
such as that developed in [7, 8, 9]. The essential idea may be summarized as follows. For flow about
an arbitrary body, the aerodynamic properties that define the cost function are functions of the flowfield
variables (w) and the physical shape of the body, which may be represented by the function F . Then

I = I(w,F)

and a change in F results in a change of the cost function

δI =
∂IT

∂w
δw +

∂IT

∂F
δF .

Using a technique drawn from control theory, the governing equations of the flowfield are introduced as
a constraint in such a way that the final expression for the gradient does not require reevaluation of the
flowfield. In order to achieve this, δw must be eliminated from the above equation. Suppose that the
governing equation R, which expresses the dependence of w and F within the flowfield domain D, can be
written as

R(w,F) = 0. (2)

Then δw is determined from the equation

δR =

[

∂R

∂w

]

δw +

[

∂R

∂F

]

δF = 0.

Next, introducing a Lagrange multiplier ψ, we have

δI =
∂IT

∂w
δw +

∂IT

∂F
δF − ψT

([

∂R

∂w

]

δw +

[

∂R

∂F

]

δF

)

.

With some rearrangement

δI =

(

∂IT

∂w
− ψT

[

∂R

∂w

])

δw +

(

∂IT

∂F
− ψT

[

∂R

∂F

])

δF .

Choosing ψ to satisfy the adjoint equation

[

∂R

∂w

]T

ψ =
∂IT

∂w
(3)

the term multiplying δw can be eliminated in the variation of the cost function, and we find that

δI = GδF ,

where

G =
∂IT

∂F
− ψT

[

∂R

∂F

]

.

The advantage is that the variation in cost function is independent of δw, with the result that the gradient of
I with respect to any number of design variables can be determined without the need for additional flow-field
evaluations.

In the case that equation (2) is a partial differential equation, the adjoint equation (3) is also a par-
tial differential equation and appropriate boundary conditions must be determined. As it turns out, the
appropriate boundary conditions depend on the choice of the cost function, and may easily be derived for
cost functions that involve surface-pressure integrations. Cost functions involving field integrals lead to the
appearance of a source term in the adjoint equation.
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The cost of solving the adjoint equation is comparable to that of solving the flow equation. Hence,
the cost of obtaining the gradient is comparable to the cost of two function evaluations, regardless of the
dimension of the design space. The downside of this approach is that it can take man-months to develop an
adjoint code for a given cost function. ***** UPDATE ***** However, there is on-going research at Rice
University to develop ADJIFOR [10] which automatically generates a discrete adjoint code from existing
analysis software. So far, however, this has not realized the same level of efficiency. In the present work, the
adjoint equations have been derived analytically and then approximated in discrete form.

3.2 Search Procedure

The remaining cost issue is related to finding a location in the design space where the gradient vanishes, and
hence where there is a local optimum. Normally, this search starts from a baseline design and the design
space is traversed by a search method. The final state of the search may be subject to constraints imposed
on the design space, yet there is no requirement that the trajectory adhere to these except at its end point.
The efficiency of the search depends on the number of steps it takes to find a local minimum as well as the
cost of each step.

In order to accelerate the search, one may resort to using the Newton method. Here, the search direction
is based on the equation represented by the vanishing of the gradient, G(F) = 0, and is solved by the
standard Newton iteration for nonlinear equations.

Suppose the Hessian is denoted by

A =
∂G

∂F

then the result of a step δF may be linearized as

G(F + δF) = G(F) +A δF

This is set to zero for a Newton step; therefore

δF = −A−1G.

The Newton method is generally very effective if the Hessian can be evaluated accurately and cheaply.
Unfortunately, this is not the case with aerodynamic shape optimization.

Quasi-Newton methods estimate A or A−1 from the changes of G recorded during successive steps. For a
discrete problem with N design variables, it requires N steps to obtain a complete estimate of the Hessian,
and these methods have the property that they can find the minimum of a quadratic form in exactly N
steps. Thus in general, the cost of a quasi-Newton search scales with the dimension of the design space. For
the class of optimizations under consideration, this is an undesirable property.

Rank-2 quasi-Newton schemes have an additional cost associated with the line search of each step, where
multiple function evaluations (5-10) are required to locate the minimum along a fixed search direction. This
additional cost is further amplified by a requirement that each of these function evaluations be converged
to tighter tolerance than that typically needed for engineering-level accuracy. As a consequence, it has been
our experience that quasi-Newton searches are not particularily suited for the class of optimizations that
are addressed here. However, alternative techniques have been developed that can navigate the design space
quite effectively; the foundation of our search method is described next.

Efficient aerodynamic shapes are predominately smooth. This suggests a natural alternative approach to
the search method. In order to make sure that each new shape in the optimization sequence remains smooth,
one may implicitly smooth the gradient and replace G by its smoothed value Ḡ in the descent process. This
is equivalent to reformulating the gradient in a Sobelov space [11], and acts as a preconditioner which allows
the use of much larger steps. To apply an implicit smoothing in the ξ1 direction, for example, the smoothed
gradient Ḡ may be calculated from a discrete approximation to

Ḡ −
∂

∂ξ1
ǫ
∂

∂ξ1
Ḡ = G (4)

where ǫ is the implicit smoothing parameter. Then, if one sets δF = −λḠ, assuming the modification is
applied on the surface ξ2 = constant, the first order change in the cost function is

δI = −

∫ ∫

GδF dξ1dξ3
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= −λ

∫ ∫ (

Ḡ −
∂

∂ξ1
ǫ
∂Ḡ

∂ξ1

)

Ḡ dξ1dξ3

= −λ

∫ ∫

(

Ḡ2 + ǫ

(

∂Ḡ

∂ξ1

)2
)

dξ1dξ3

< 0.

Thus, an improvement is assured for arbitrary choices of the smoothing parameter ǫ if λ is sufficiently small
and positive, unless the process has already reached a stationary point at which Ḡ = 0, and therefore,
according to Equation 4, G = 0. (Note that the λ acting on Ḡ can be significantly larger than that acting
on G, with respect to stability limits.)

It turns out that this approach is extremely tolerant to the use of approximate values of the gradient, so
that neither the flow solution nor the adjoint solution need be fully converged before making a shape change.
This results in very large savings in the computational cost of the complete optimization process, which is
discussed next.

3.3 Computational Costs

In order to address the issues of the search costs, a variety of techniques were investigated in Reference [12]
using a trajectory optimization problem (the brachistochrone) as a representative model. The study verified
that the search cost (i.e., number of steps) of a simple steepest descent method applied to this problem scales
as N2, where N is the number of design variables, while the cost of quasi-Newton methods scaled linearly
with N as expected. On the other hand, with an appropriate amount of smoothing, the smoothed descent
method converged in a fixed number of steps, independent of N . Considering that the evaluation of the
gradient by a finite difference method requires N +1 flow calculations, while the cost of its evaluation by the
adjoint method is roughly that of two flow calculations, one arrives at the estimates of total computational
cost given in Tables 1-2.

Table 1: Cost of Search Algorithm.

Steepest Descent O(N2) steps
Quasi-Newton O(N) steps
Smoothed Gradient O(K) steps
(Note: K is independent of N)

Table 2: Total Computational Cost of Design.

Finite Difference Gradients
+ Steepest Descent O(N3)
Finite Difference Gradients
+ Quasi-Newton Search O(N2)
Adjoint Gradients
+ Quasi-Newton Search O(N)
Adjoint Gradients
+ Smoothed Gradient Search O(K)
(Note: K is independent of N)

Other methods have been investigated which further improve the dimension-independent convergence
rate, including multigrid and postconditioning with a Krylov subspace acceleration. Implementing these in
the current aerodynamic shape optimization software consistently converges the design to a local optimum
within 30-60 steps, even for problems with thousands of design variables. Moreover, because they do not
require either the flow or adjoint solutions to be fully converged, complete optimizations are routinely
completed with a computational cost equivalent to 2-10 converged flow solutions. As a consequence, our
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standard practice is to allow every discrete surface point within the CFD grid to be its own design function,
aligned with the grid line emanating from the surface. The amplitude of this design variable corresponds to
the signed distance from the original baseline surface node. This typically leads to design space dimensions
of N > 4000 for three-dimensional aerodynamic shape optimizations.

Not being constrained by the number of design variables enables the optimization software to be written
so that the end user is not burdened with the task of defining a set of shape functions. This added benefit
is a significant improvement over the standard approach. A common practice throughout industry is to
require a user to specify shape functions of the bump-function class which must be tailored for each specific
application. The main reason for using bump functions is to reduce the number of design variables needed
and yet obtain reasonable results. Specifying an appropriate set of bump functions for a given problem is
somewhat of a black art in itself, and getting an effective set frequently requires experimentation by the
user. The process is also prone to input error that may not be discovered until an optimization run fails to
produce reasonable results. This is a poor environment for both user and design, as the ”optimized” design
will only be as good as the user is at choosing his shape-function set and accurately inputting it. Hence, the
need for an expert user is mandated by this approach. Optimization software should free the engineer from
mundane tasks and allow him to focus on the more global requirements of the system development. This
has been achieved by the present aerodynamic shape optimization software.

The remaining sections of this lecture are devoted to sample applications associated with five case stud-
ies: a Mars aircraft, a Reno Racer, an aero-structural optimization of a generic B747 wing/body configura-
tion, a NACA0012 airfoil, and the NASA Common Research Model.

4 MARES Development

Aircraft based remote sensing has proven to be an excellent method for large scale geologic analysis and
surveying on earth. The same techniques can be applied to planetary science for planets containing an
atmosphere. Aircraft-based sensors can cover a much greater surface area than rovers, at a much greater
resolution than orbiting platforms, with flight-path control not possible using balloon systems. Ground-
based aircraft operations usually require prepared launch sites, which are not normally available for extra-
terrestrial exploration missions. Atmospheric aircraft deployment techniques, as developed by the Naval
Research Labratory (NRL) during many years of unmanned aerial vehicle (UAV) research and development,
can be used to eliminate the need for surface launch sites.

The Mars Airborne Remote Exploration Scout (MARES) is developed specifically for the constraints
of an extra-terrestrial exploration aircraft using an atmospheric entry deployment. The overall aircraft
shape maximizes the airframe size that can be packaged in a traditional conical entry shell and requires a
minimum number of deployable surfaces, enhancing the system simplicity and reliability. The high angle-of-
attack characteristics of the delta wing coupled with a reaction control system (RCS) allow a non-parachute
assisted deployment with a minimum loss of altitude and a minimum over speed, giving greater flexibility
in the selection of sites to be explored. To further minimize technical risk, MARES is powered by a reliable
light-weight rocket engine. Optimizing the airframe for rocket propulsion leads to a higher cruise speed and
a more structurally robust aircraft than very low-speed propeller-driven gossamer-type aircraft. The high
durability enhances survival of the sensor and communications systems after landing, allowing sensor data
to be stored during flight and transmitted after landing, minimizing the impact of data communication rates
on sensor selection and resolution. The higher flight speeds, coupled with the low density of the Martian
atmosphere, also lead to the requirement for wing design optimization in the unique environment of transonic
low Reynolds number flight.

The initial configuration layout and baseline geometry were created by the NASA/NRL/ITT development
team. Further refinement of this geometry was conducted by the authors and is documented in Reference [13].
Aerodynamic design and shape optimization of the MARES wing-surface geometry was conducted using a
number of computational fluid dynamics (CFD) methods, including FLO22 [14, 15], CFL3D [16], SYN88
and SYN107P; this lecture will concentrate on the simulations associated with the synthesis codes SYN88
and SYN107P, which are capable of both analysis and design calculations.

The MARES aircraft configuration is shown stowed in the entry aeroshell in Figure 3 and in its flight
configuration in Figures 4-5. Deployment of the MARES begins with the folded aircraft being released from
the aeroshell, where it falls in a flat attitude enabled by the natural stability provided by the delta planform
and the location of the center of mass, which is augmented by the zero axial velocity control capability
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provided by the RCS. The main propulsion system solid rocket motor is ignited to begin transition of the
aircraft into forward flight without requiring a nose-down body attitude. As the forward flight speed reaches
approximately 30 m/s, the drag forces acting on the vertical stabilizer surfaces are sufficient to begin the
aerodynamic deployment of the outer wing panels. As the forward speed approaches the cruise flight speed
(150 m/s), the RCS is no longer needed and flight control is transferred to conventional aerodynamic control
surfaces. At the completion of the data collection flight, the MARES aircraft will be pitched up into a nose-
high (deep-stall) attitude. The delta planform coupled with the RCS will maintain the aircraft in a stable
attitude and descent rate until reaching a predetermined altitude above the ground, when an additional
z-axis thruster will fire to minimize vertical velocity at the moment of impact. The MARES will contact
the ground ventral fins first, in a nose-high attitude. The fins are designed to crush and provide additional
energy absorption during impact to provide a relatively soft landing.

Because of the constraints associated with packaging the aircraft in the conical entry shell, the configura-
tion has evolved into a flying-wing design, with folding wings. When deployed, the outboard wing planform
has a quarter-chord sweep of only 5.5 degrees. Figure 6 provides the planform of MARES, and the following
list specifies reference quantities and sweep angles.

Table 3: MARES Planform Quantities.

Sref 36.38 ft2

b 13.38 ft

Cref 3.28 ft

Xref 3.28 ft

Y ref 1.51 ft

AR 4.9

λ 0.3

Λc/4 5.5◦

ΛLE 10.0◦

ΛLE.∆ 50.0◦

In order to scope the problem and work out any issues with the baseline geometry definition, SYN88 was
initially applied. SYN88 is an inviscid aerodynamic shape optimization code based on the Euler equations
and corresponding adjoint formulae. The results of this Euler-based optimization are provided in Figures 7-8.
While the outcome of this exercise is somewhat academic given the nature of the task at hand, nonetheless,
it is worth noting that SYN88 is capable of solving this class of problem on a MacBookPro notebook in a
few minutes of CPU time. Utilizing this code to sort out any possible issues with the problem set-up can
greatly accelerate the time to final RANS-based design.

The final detailed aerodynamic design of the MARES wing is accomplished through application of
SYN107P by minimizing total drag at a fixed lift coefficient, while maintaining the spanload and airfoil
thickness distributions of the baseline configuration. The thickness constraint is imposed as a greater than
or equal to condition. The design flight condition for the MARES mission is: M = 0.65, CL = 0.62, and
Re = 170K, where Reynolds number is based on reference chord. The flow is assumed to be fully turbulent
over the wing surface. The rarified Martian atmosphere design condition also has that the density and viscos-
ity are: ρ = 2.356 ∗ 10−5 slugs/ft3, and ν = 2.2517 ∗ 10−7 slugs/ft/sec. Our initial analysis of the baseline
configuration indicated that the original selection of airfoils (with leading-edge droops and aft-camber reflex
modifications to trim the aircraft) yielded an undesirable, strong, unswept shock system.

SYN107P is an aerodynamic synthesis method based on the Reynolds-Averaged Navier-Stokes (RANS)
equations and corresponding continuous-adjoint formulae. SYN107P runs in parallel on distributed-memory
computer systems by using the Message-Passing Interface (MPI). The work performed herein utilizes a Linux
cluster of 8 nodes, where each node is comprised of dual AMD Athlon 1.7GHz processors and 2GB RAM.
The nodes are interconnected with a switched 100BaseT network. Running on 8 processors (half the cluster),
a RANS analysis requires less than 30 minutes of elapsed time; optimizations complete in less than 5 hours.
These wall-clock times correspond to grid dimensions of (257 x 64 x 49) and with a design space defined
with 5,313 basis functions.

Figure 9 provides the history of total drag during the Navier-Stokes optimization process. The baseline
wing-only configuration has a cruise drag of 592 counts, while the optimized design converges to a cruise drag
of 480 counts. Figure 10 gives the corresponding history of the lift-to-drag ratio, which starts at about 10.4
and finishes at 12.8; an improvement of 23%. Figure 11 over-plots the chordwise pressure distributions of the
baseline geometry (solid curves) and optimized shape (dashed curves). It is evident from this comparison
that the wing leading-edge pressure peaks are being reduced and moved forward, both of which act to soften
the adverse pressure gradient of the upper-surface recovery path. The effects of the upper-surface changes are
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also illustrated in the side-by-side comparison of isobars of Figure 12. In addition, a lower-surface leading-
edge peak just outboard of the baseline wing midspan region has been eliminated by the optimizer, which
reshaped the Cp distribution to be monotonically favorable to about 35% chord.

Figure 13 gives a comparison of the drag loops for the baseline and optimized wings. It is often useful
to view pressure distributions in this manner to better understand how changes in geometry and pressures
interplay to effect an improvement in drag. For example, the thrust lobes (negative areas of the drag loops)
of the optimized design are noticably larger than those of the baseline configuration.

Although the drag minimization of the present study is conducted as a single-point optimization, Figure 14
illustrates that the optimized design clearly out-performs the baseline at all lifting conditions; the solid symbol
data is at the cruise design point. This result is especially interesting as both planform and spanload are
common to the initial and final designs, hence their associated induced drags must be comparable. This leaves
shock drag, profile drag, and possibly skin-friction drag as the components contributing to the performance
improvements. Upon closer inspection of the results, the improvements are made in both the shock and
profile drag components. Figure 15 provides the lift curves for the baseline and redesigned configurations.
This figure indicates that the boundary-layer health of the baseline has been greatly improved with the
optimized design, hence the related improvement in profile drag.

Several baseline and optimized geometry airfoil sections are decomposed into thickness and camber dis-
tributions and are compared in Figures 16-18. Although it is counter-intuitive to increase airfoil thickness
when attempting to reduce the drag of a wing, that is precisely what SYN107P did at the wing root. In
addition, the camber levels across the span have been reduced, and in particular, the leading-edge droop of
the mid-to-outboard sections have been significantly reduced.

Regarding the utility of SYN107P as an aerodynamic shape optimization design tool, this exercise high-
lights several key attributes that benchmark the state-of-the-art. A few of these are as follows.

• Problem set-up time is essentially only that which is required to prepare an input deck for an analysis
run. Since the set of basis functions is automatically created within the code, the user expends
absolutely no effort on this task, and an optimization run to minimize drag at a fixed lift is as simple
as changing the number of design cycles in the input deck from a 0 (for analysis-only) to a non-zero
number (say 50) for an optimization to be performed. If the optimization is an inverse design, then
the user will have to specify the target pressure distribution.

• The automatically set-up design space is essentially infinitely dimensional. To be precise, the continuum
design space is represented by the highest possible discrete space that can be supported by the surface-
defining grid. The key attribute here is that the design space of the optimization is not artificially nor
arbitrarily constrained. This can occur when a user is required to specify a very low dimension design
space with a much reduced set of basis functions.

• The cost of a fully converged optimization is less than or equivalent to that of about 10 converged
analyses. To emphasize this point, consider the computer time required to generate the drag polars of
Figure 14; this represents about twice the computer time as that needed for the drag minimization run.
Further, both analysis and optimization capabilities run adequately fast on very affordable computer
equipment, allowing multiple optimizations to be performed within a single day.

• Thickness constraints relative to the initial geometry are automatically set-up by the code and can be
globally controlled by one input parameter.

The four properties listed above have been developed to the stage that they can be implemented into a
general setting, such as that for an unstructured-mesh RANS aerodynamic shape optimization method. In
addition to these, there are a few other niceties related to SYN107P. These are made possible because this
code is tailored for very specific aircraft geometries, namely wing-out-of-a-wall, or wing-body configurations.
These features include the following.

• Automatic grid generation is available for both Euler and RANS simulations.

• A variety of spanload constraints are available, which are either based on the initial distribution or a
blending of elliptic and linear spanloads.

• Calculations can be performed at specified lifting conditions.

All of the properties listed above have enabled the authors to perform the present detailed design study
for the MARES wing under minimal funding levels.
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5 Reno Racer

Once a year, Reno, Nevada plays host to an air show like none other; this of course is the Reno air races.
Spectators from all over the world converge on this remote site to witness man and machine compete with
one another in a series of races which culminate with the unlimited class events. The only hard rule required
of an unlimited class race plane is that it be a propeller design and powered by a piston engine. Most entries
are modified warbirds of WW-II vintage such as North American P-51 Mustangs, or Hawker Sea Furys,
with power plants that produce well in excess of 1, 000 HP. Miss Ashley II and Rare Bear of Figure 19 are
representative of the unlimited class Reno racer. These aircraft are now over 50 years old and have very
little service life left. To be competitive in the unlimited class, these aircraft see less than one hour between
engine rebuilds, and these overhauls can cost upwards of $250K. Furthermore, the historic value of flying
WW-II fighters has increased so much that they are becoming unsuited for racing use. If unlimited class
racing is to continue through the next decade, new race plane designs are required.

A goal of a new unlimited class design would be to significantly push the performance envelope of
propeller-aircraft technologies. The mission of this special-purpose vehicle is to minimize the lap time around
the 8.3 mile unlimited race course at Reno, depicted as the largest oval in Figure 20. Previous winners of this
race have achieved average speeds around the oval course in excess of 450 MPH. The design requirements of
the current development effort called for an average race speed of about 550 MPH. Because of this average
velocity and the geometry of the race course, the aircraft pulls 4Gs about 60% of the time, 1G about 20%
of the time, and transitions between these loads the remaining 20% of the time. Furthermore, because of
the nature of this racing environment, 7G maneuvers are typically encountered to avoid mid-air collisions.
While there are many other factors to consider during the design of this class an aircraft, the aforementioned
loading conditions set the stage for the aerodynamic shape optimization of this vehicle. More precisely, the
mission emphasizes that multi-point optimizations be performed over a weighted range of lifting conditions
and on-set Mach numbers.

The design objectives of the Reno racer are given with respect to a standard day at the race location
which is at 5000’ MSL and ISA +20◦ C. The top speed in straight and level flight is to exceed 600 MPH
TAS. The average lap speed around the 1999 unlimited race course is to exceed 550 MPH TAS. The aircraft
is to be capable of sustaining a 9G maneuver load, subject to a 5G gust load; yielding a 14G limit load with
a 1.5X safety factor. Roll rate should exceed 200◦ per sec at 350 KEAS. Stall speed should be less than
90 KEAS. Landing distance should not exceed 1500’, dead stick. Note that some of these requirements are
more stringent than the performance of some state-of-the-art jet fighters.

The design requirements state that the aircraft must be piston powered and propeller driven. Engine
power-to-weight ratio for reliability at continuous output should be about 2.5 HP/lb. for a turbocharged
piston engine with gear reduction and other accessories. The stability & control is to be provided by a
manual, unboosted system with positive static & dynamic margins that exceed current unlimited-class race
planes. There should be minimal change in stability between power on and off. For crew provisions, the
design allows dual pilots in a tandem seating arrangement, with seats inclined 30◦ for G tolerance, and
include MIL-SPEC oxygen and G-suit connections. Low altitude ejection for both pilots is also required.

The development of this aircraft began from the ground up, as an all-new design. Every major element of
the airplane had to be engineered. This included the airplane’s general layout, a unique propulsion system,
the aerodynamic designs of the wing, fuselage and empennage, as well as the efficient integration of these
and other subsystems. Although a unique propulsion system eventually became our baseline design, several
systems were considered. These included a conventional tractor propeller with a front-mounted engine, and
two mid-engine designs – one with a pusher prop aft of the tail and the other a body-prop design. While a
tractor design is much more conventional, the design requirements favored a mid-engine concept. Avoiding
propeller strike for the pusher design during rotation was a major issue. While there were many other factors
that played into our decision, the body-prop design became our baseline configuration. With the propeller
mounted aft of the wing, this concept also provided the possibility of promoting laminar flow on the forward
fuselage and wing surfaces. A side view of the body-prop’s general layout is provided in Figure 21 and a
computer graphics rendering of this configuration in flight is given in Figure 22. The highest risk item of
this design is definitely related to engineering the structure to accommodate the load path between the tail
and center wing box.

One can see from the general layout that the vertical tail (rudder) is rigged downward instead of in a
normal upward position. This was done for two reasons; the first to provide a skid at the rudder tip to
prevent propeller strike, and the second to keep it in clean air during a high, positive G maneuver.
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The complete aircraft design effort was conducted by a very small team; the authors were tasked with
the responsibility to design the outer-mold-line surfaces of the wing and fuselage components.

During this multi-disciplinary design effort, the general layout of the body-prop concept race plane evolved
as the design team better understood how to maximize the performance of the integrated system. Normally,
global changes such as those encountered are very disruptive during the design of a high-performance, tran-
sonic wing. However, utilization of the aerodynamic shape optimization software developed by the authors
allowed various aircraft subsystems to be routinely modified without adversely impacting development costs
or schedule; new wing designs occurred over night. Our ability to perform new optimizations over night, on
affordable computers, was a key factor which allowed this form of simulation-based aerodynamic design work
to be embraced by the rest of the design team. There were two other members of the team that are world-
class wing designers, and they would have quickly relieved us of this duty if we were not providing quality
designs in a timely manner. The complete evolution of the aircraft’s general layout was accomplished in a
very compressed time frame: our aerodynamic shape optimizations played a pivotal role in this achievement.
More importantly, this evolution was required to meet all of the design goals imposed on the team by our
sponsor. For more detailed information on this aircraft design, see References [17]-[18].

6 Reno Racer Wing Design

Any successful system design effort must accommodate a changing set of requirements as the designers of the
various subsystems learn more about how their individual efforts impact and are affected by the actions of
the other designers. This was certainly the case with this wing design as we integrated it with the fuselage,
propulsion system, stability & control, manufacturing and overall packaging. Most of the assembled team
has worked closely together for more than a decade. Our style has been to allow the individuals of the team
to gravitate towards the work items that they feel most comfortable with, however, each member loosely
participates in all concurrent activities in progress. On this project, participation was usually in the form of
daily discussions regarding the overall design of the aircraft. By disseminating everybody’s findings on a very
frequent basis, the group as a whole began to understand how best to maximize the system’s performance.
Hence, this was very much a multi-disciplinary (MD) effort with the team members exploring the MD design
space for increasingly better aircraft designs. These informal design reviews also provided regular sanity
checks such that a poor design direction was never ventured too far. A characteristic of this dynamic design
environment was that the design constraints at the subsystem levels were constantly and rapidly changing.
New constraints can be in unexpected directions, and trying to program these dynamic changes in an MDO
code, in a timely manner, can be quite daunting. This is where the man-in-the-loop belongs. The interface
between humans can easily adapt to the ever-changing design requirements such that pertinent information
continues to be shared across the appropriate disciplines.

This group regularly works on tight schedules and under small budgets. As a result, the most cost-effective
tools are used at every stage of a design effort. Initially, when the design is not very well understood, design
charts and rules-of-thumb dominate the effort. As the design begins to evolve, and these methods no longer
add value to the direction of the group, linear methods are drawn into the tool set. Then, as the ROI of linear
methods begins to reduce, they are replaced by non-linear tools – starting with the simple and finishing with
the most sophisticated. Using the right tool at the right time helps manage costs and schedule, and allows
the final designs to be competitive at the highest level. This approach is in contrast to those efforts that
start using the most sophisticated numerical tools from the onset of the design activity.

6.1 Phase I: Conceptual Layout

The design of the wing geometry occurred in several phases; the duration of each of the first five phases
lasted from 1 day to 1 week long. In most cases, there was a lapse between phases, as time was required for
the team to digest the evolution of the aircraft design and formulate new ideas to investigate.

The basic requirements defined in phase I were based on conceptual methods and design charts. These
requirements included the general layout of the wing (planform & thickness distribution), the design cruise
condition

M = 0.77, CLTotal = 0.32, Ren = 14.5M,

the off-design capabilities for buffet

CLBuffet = 0.64 at M = 0.72,
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the drag divergence Mach number
Mdd = 0.80 at CL = 0.1,

the clean wing maximum lift coefficient

CLmaxCW ≥ 1.6 at M = 0.2,

and a pad on the divergence Mach number to allow room for growth in out years.
The conceptual methods set the wing area, Sref = 75ft2, to provide a wing loading range of 40− 60 lbs./ft2.

Despite the high dynamic pressures of the racing environment and the opportunity for very high wing load-
ing, the stall speed requirement sized the wing area. The maneuver loads, sustained turn rate, and gust
loads required that the wing have no buffet at CLTotal = 0.64,M = 0.72. A trade study of wing thickness,
sweep and taper ratio was made using NACA SC(2) airfoils as a baseline. From this, a section thickness of
13.5% at the wing root and 12% at the tip was chosen, combined with a quarter-chord sweep of 28◦ to meet
the Mdd = 0.8 requirement. An aspect ratio of AR = 8.3 and a taper ratio of λ = 0.45 were chosen to allow
a wing-tip extension for a growth airplane. Conversely, a production break was included at 87% semi-span
to allow a 4ft2 reduction in wing area if ever needed. A planform Yehudi (inboard chord extension) was
incorporated into the wing trailing edge to accommodate the main landing gear. Inclusion of this Yehudi
also helped reduce the wing downwash angle of the flow entering the propeller. The wing is a two-spar design
with spars at 15% and 65% chord, and is augmented with a secondary spar behind the main gear wells that
parallel the Yehudi trailing edge. This secondary spar provides structural support at the main gear pivots.
A one-piece wing box construction will be used to reduce weight and complexity.

6.2 Phase II: Rough Detailed Design

The baseline wing of phase II was defined using airfoil sections derived from NACA 64 sections, scaled to
conform to the planform and thickness distribution established in phase I. Some cursory 2D aerodynamic
optimizations were performed on these sections to better tailor their characteristics for the initial design
conditions; the 2D conditions and geometry transformations used for this effort were based on simple-
sweep theory. SYN103 was run in Euler, drag-minimization mode for this 2D design effort. The remaining
unspecified geometric quantity for the wing was it’s twist distribution. To set this, FLO22 was used to
provide the span load of the wing. This code, which solves the three-dimensional transonic potential flow
equation, has been extensively used since its inception in 1976. (For reference, FLO22 runs in about 5
seconds on an AMD Athlon 850 MHz PC.) While FLO22 is a wing-only CFD code, pseudo-fuselage effects
were included in the present work. The first pseudo-body influence is its acceleration of the on-set Mach
number at a critical station on the wing; typically this is around 50%-60% semi-span. Running the isolated
fuselage geometry in a surface-panel method and interrogating the flowfield velocity at the critical wing
station determines this acceleration. The second pseudo-body effect is how the presence of the fuselage at an
angle of attack warps the flowfield’s local angle of attack as a function of span location. The third pseudo-
body influence is related to the carry-over lift of the wing’s circulation onto the fuselage. This ratio is defined
as CLTotal/CLWing, is 1.22 for this configuration and was determined by running a surface-panel method
on the wing/body combination. These pseudo-body effects are included in FLO22’s wing-only solution by
running the exposed wing in the code at the wing’s CL, at a higher Mach number and re-referencing the
results back to the original Mach, and adding a delta-twist distribution to the wing to simulate the flowfield
warping. Using this procedure, a twist distribution was specified that yielded a near-elliptic span loading.
This initial design was done very rapidly, covering only a two-day period, and provided a point to start the
3D design effort.

The initial FLO22 analyses indicated that the wing design requirements could be satisfied; the initial
wing had a Mach capability of 0.775 at CLTotal = 0.3. However, there was serious concern with the body
effects of the fuselage’s low fineness ratio. The team was relatively sure that the baseline wing would have
problems near the root region because of the atypical contouring of the fuselage geometry.

6.3 Phase III: Aero Optimization

In phase III, the first step was to assess the issues existing with the baseline wing geometry, designated
Shark1, as it integrates with the fuselage. This analysis was performed using SYN88, and is illustrated
in Figure 23. SYN88 is a wing/body Euler method which also incorporates an adjoint-based optimization
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procedure for aerodynamic shape design. In Figure 23, pressure distributions at several stations on the
wing are provided. Adhering to standard aerodynamic practices, the pressure coefficient of the subplots
are presented with the negative axis upward. The area trapped by the upper- and lower-surface pressure-
distribution curves is equivalent to the local sectional lift coefficient. Each subplot is linked graphically to its
corresponding location on the wing depicted in the center of the figure. Also included on the wing-planform
plot are the upper-surface isobars of the first solution which is depicted by the solid curves in the perimeter
subplots. A shock is evident with a concentration of contour lines in the isobar image and corresponds
to a sharp discontinuity in the pressure-distribution subplots. The quantities in the legend of this figure
correspond to the wing forces. The drag listed is only the inviscid drag (induced+shock). Recall that the
design lift was CLTotal = 0.32 and that the carry-over lift ratio was 1.22 for this configuration. Hence, the
wing lift is CLWing = CLTotal/1.22 = 0.27. The other item to note is that this analysis was performed at a
Mach number of M = 0.78 rather than M = 0.77. The reason for this increase in freestream Mach number
was due to the acceleration of the flowfield near the wing root from the propulsion system. Methods based on
actuator-disc and blade-element theories determined this acceleration to be ∆M ≃ 0.01. Since the wing-root
region was of utmost concern at this stage in the design, the full level of propeller effects on the on-set Mach
number was used. Referring to the wing-planform plot of Figure 23, notice the strong shock that unsweeps
as it nears the side-of-body. The main purpose of a swept-back wing is to reduce the normal Mach number
of the flow into a shock, however, if the shock unsweeps, this benefit is lost. As suspected, the contouring of
the fuselage cross-sections had an adverse effect on the wing aerodynamics, unfortunately it was worse than
expected. The inviscid drag (induced+shock) of the wing was CDWingINV = 180 counts for the baseline
configuration.

Phase III continued by running SYN88 in drag-minimization mode, constraining the wing modifications
to be thicker everywhere than the baseline geometry to maintain structural depth; the fuselage geometry was
frozen. Initially, these were single-point optimizations at the 4G design condition, just to scope the potential
benefit. (For reference, a SYN88 wing/body analysis takes about 15 minutes on a Sony VAIO notebook
computer with a 500 MHz Pentium II chip; a single-point optimization takes about 75 minutes.) Eventually,
all optimizations were migrated to triple-point designs that considered a range of lifting conditions at the
design Mach number. This range corresponded to variation and persistence of G loads being pulled during
a lap of the race course. The design Mach number corresponded to an average speed around the track.
Within 30 design cycles, SYN88 dropped the wing’s inviscid drag from 180 counts to 104 counts. The
results of this optimization are illustrated in Figure 24. Although fairly large improvements were realized,
we felt we could do better if the fuselage contour near the wing trailing edge was allowed to be modified.
Several concurrent changes to the aircraft’s general layout were being considered. The team was forming
new ideas as the complete system integration was beginning to be better understood. The changes that
were directly related to the wing design were the fuselage reshaping and a trailing-edge planform blending
that would allow more room for stowing the landing-gear structure. The planform modifications were made
to the current wing and three additional fuselages were defined that stretched it by 1, 2 and 4 feet aft of
the wing-root mid-chord and consistent with the engine packaging requirements. In fact, the trailing-edge
modification was also done in a manner to help alleviate the shock-unsweep problem, as well as accommodate
the landing gear. This planform change proved to be beneficial as another triple-point drag minimization
was performed, which dropped the wing’s inviscid drag from 148 counts to 98 counts at the design point. For
clarification, this wing redesign was done with the original fuselage to establish a new base for the parametric
study stretching the fuselage. Repeating similar triple-point optimizations on the 1-, 2- and 4-foot fuselage
extensions provided sufficient data to show that the shock unsweep problem could be completely eliminated
with a 2-foot fuselage stretch. This optimization reduced the wing’s inviscid drag from 92 counts to 74 counts
within 30 design cycles; the resulting wing geometry was designated Shark52. The pressure distributions
and drag loops for Shark52 at M = 0.78 and CLWing = 0.27 are shown in Figures 25-26.

It should be emphasized that within the course of one week, the wing geometry had evolved from one that
produced 180 counts of inviscid drag to Shark52, which only had 74 counts at the design point. During this
week, the wing planform changed and the fuselage length stretched. This is an extremely large improvement
accomplished in a very compressed time! Furthermore, the database of CFD solutions O(100) had grown
large enough that very informed modifications to the configuration could be made. This included the wing-
planform change to better stow the landing gear, as well as the fuselage reshaping to eliminate the shock
unsweep issue. Figure 26 shows a side-by-side comparison of the pressure isobars of the Shark52 wing and
the initial wing that clearly illustrates the reduction of the shock strength across the entire wing. This
improvement was a result of all of these important changes to the configuration.
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The final aspect of phase III was to rebalance the aircraft. This required a 6-inch fuselage stretch forward
of the wing to compensate for the 2-foot stretch of the after-body. Once the fuselage geometry was frozen,
the wing pressures were polished by running SYN88 in inverse-design mode. A drag build-up of this design
showed that, at 550 MPH, the maximum L/D of the complete aircraft was estimated to be 14.78. It occurs
at CLTotal = 0.49, which corresponds to a 7G maneuver.

6.4 Phase IV: Laminar Flow

The team began to kick around the idea of a laminar-flow design. Quick calculations on the attachment-line
Reynolds number, Reθ, indicated that the Tollmien-Schlichting waves would decay rather than amplify. The
possibility of having runs of laminar flow was achievable. The dilemma, however, was could laminar flow be
achieved in the field? The primary mission of this plane occurs just above ground level where bug strikes
are sure to occur, thus contaminating the wing’s leading edge. We decided to investigate whether or not
the wing’s pressure distributions could be tailored to have favorable gradients for up to 40% chord without
adversely affecting the aerodynamic performance of the fully-turbulent wing design. If it could, then the
resulting design would be adopted, yet without taking credit for laminar-flow drag reductions.

Phase IV concentrated on promoting laminar flow on the wing without degrading the performance of the
wing if it was fully turbulent as compared with the fully-turbulent design of Shark52. This objective was not
limited to the design point, but rather was expanded to include a Mach number range M ≥ 0.74 and a lift
range of CLWing ≤ 0.27. The first task was to compute the viscous flow about the Shark52 configuration
at various flow conditions. This was accomplished using SYN107P, a wing/body Navier-Stokes method for
analysis and design. The design Reynolds number was Re = 14.5M , based on the reference chord. (For
reference, SYN107P runs in parallel under MPI; on a 16 processor AMD Athlon 650 MHz cluster, an analysis
takes about 30 minutes of wall-clock time, while an optimization of 30 design cycles takes less than 3 hours.)
Starting with the computed pressure distributions of Shark52, a series of inverse designs were performed,
also with SYN107P. It was easier to redesign the wing at the higher Mach number and accommodate the
requirements at M = 0.74, rather than the other way around. This study was completed with the wing
geometry designated SharkNS7. Figure 28 illustrates the pressure distributions for SharkNS7 at M = 0.78
and a lift range of

0.18 ≤ CLWing ≤ 0.34.

At the design point CDWing = 128 counts which is composed of 77 counts of Form Drag and 51 counts of
Skin-Friction Drag.

Note that favorable gradients exist on both upper and lower surfaces for about the first 30%-40% chord,
depending on span location and lifting condition. On the upper surface the shock will trigger transition
provided any attachment line contamination from the fuselage boundary layer is removed by a notch-bump,
and Reθ < 200. Reθ varied from approximately 125 just outboard of the fuselage to around 80 at the wing
tip. The amount of laminar run on the upper surface increases as Mach increases due to the shock moving
aft on the airfoil as well as the pressure gradients becoming more favorable. At race conditions the wing
should have an appreciable extent of laminar flow, provided the surface of the wing is smooth and free of
particulate contamination. The estimated benefit of the laminar flow runs is between 10 and 20 counts of
drag reduction, depending on Mach number. This level of drag reduction increases the aircraft’s performance
by an additional 5%, which is a significant improvement.

6.5 Phase V: Final Touches

The first task of phase V was to establish an appropriate leading-edge radius distribution, tailored for low-
speed characteristics, without really changing the wing pressure distributions at the cruise design conditions.
This modification was accomplished with local, explicit geometry perturbations. An additional modification
to the wing thickness distribution was also done. After these changes were incorporated into SharkNS7,
the final wing was analyzed to verify that these geometry changes did not adversely effect the pressure
distributions. When overlaid on the same plot, the curves nearly appeared as one.

Finally, clean wing CLmax, CLmaxCW , was computed to ensure the wing satisfied the required clean
wing stall speed. The design requirement was to provide CLmaxCW > 1.6 at M = 0.2. This was determined
by finding the flow condition where the wing’s Cpmin distribution reached an empirically-determined critical
value. The final wing provided a CLmaxCW = 1.64, just meeting the requirement.
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The final wing geometric characteristics are shown in Figure 29 which illustrates the half-thickness and
camber distributions of the root and outboard airfoil sections. Note that the root airfoil is 13% thick @ 31.5%
chord and has -1.2% camber. The outboard airfoil is 11.5% thick @ 38.6% chord and has +1% camber. While
these thicknesses are about 0.5% thinner of that specified in the conceptual design stage, it was the team
that reduced this thickness, not the optimization exercises.

This concludes our discussion on the Reno Racer. Next, we will review an aero-structural optimization
of a generic 747 wing/body configuration.

7 Generic 747 Wing/Body

In this section, a simplified structural weight model is directly coupled with the high-fidelity aerodynamic
shape optimization procedure. Further, the planform of the aircraft wing is allowed to be redesigned. The
original work on this case study is documented in detail in Reference [19].

In an airplane design, there are many criteria to be satisfied: multiple design points, fuel distributions,
stability-and-control effects, aero-elastics, etc. Some of the general criteria that must be met in the design
of any efficient transonic wing include:

1. Good drag characteristics (parasite, induced, compressibility) over a range of lift coefficients, i.e.
CLdesign

± 0.1 at Mcruise.

2. No excess penalties for installation of nacelle-pylons, fairing, etc.

3. Sufficient buffet boundary margin at cruise lift coefficients (1.3g margin).

4. No pitch-up tendencies near stall or buffet.

5. Maintain control surface effectiveness.

6. No unsatisfactory off-design performance.

7. Sufficient fuel volume for design range.

8. Structurally efficient (to minimize weight).

9. Sufficient space to house main landing gear.

10. Compatible with the high-lift system.

11. Consistent with airplane design for relaxed static stability.

12. Manufacturable at a reasonable cost.

7.1 Cost Function

In this optimization, the two relevant disciplines are aerodynamics and structural weight. Therefore we
minimize a combination of aircraft drag and wing weight. This optimization not only makes the design
more realistic, but we can also relax some of the constraints on thickness. Hence, we mainly target the
minimization of

I = α1CD + α2CW . (5)

Here α1 and α2 are properly chosen weighting constants, and CW = weight
q∞Sref

is a non-dimensional weight

coefficient. This choice of cost function emphasizes the trade-off between aerodynamics and structures. For
design of a long range transport aircraft, Eqn (5) actually centers on the idea of improving the range of the
aircraft.

Consider the well known Breguet range equation which provides a good first estimate of the range of the
airplane

R =
V

C

L

D
ln

(

We +Wf

We

)

(6)

where V is the speed, C is the specific fuel consumption of the engine, L/D is the lift to drag ratio,We is the
landing weight, and Wf is the weight of the fuel burnt. During the last few decades, the means to improve
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the efficiency of an airplane has centered around reducing the fuel consumption C of the engine, increasing
V L/D, and reducing the airplane weight. The last two methods together imply that the constants α1 and
α2 in Eqn (5) can be estimated from the range Eqn (6).

7.2 Structural Weight Model

Wing weight is directly given by the wing structure, which is sized by aerodynamic load, allowable deflection,
and failure criteria such as buckling. Different methods to estimate wing weight have been proposed, ranging
from empirical expression to complex Finite Element Analysis. At the detailed design level, once the wing
structure has been laid out, structure engineers use finite element analysis to size the interior structure to
satisfy various criteria. Then the material weight of each component is added up to calculate the structural
weight.

When the detailed structure layout is not known, which is usually the case for conceptual and preliminary
design levels, it is very difficult to predict the structural weight correctly. We select an emperically-influenced
simple structure model that can be expressed analytically. Here, the wing structure is modeled by a box
beam whose primary structural material is the upper and lower box skin. The skin thickness (ts) varies
along the span and resists the local bending moment caused by the wing lift. Then, the structural wing
weight Wwing can be calculated on the basis of the skin material.

Consider the box structure of a swept wing whose quarter-chord sweep is Λ and its cross-section A-A is
as shown in Figure 30. The skin thickness ts, structure box chord cs, and overall thickness t vary along the
span, such that the local stress is equal to the maximum allowable stress everywhere. The maximum normal
stress due to bending at section z∗ is:

σ =
M(z∗)

t tscs
.

The corresponding structural box-beam weight is:

Wwingbox
= ρmatg

∫

structual span

2tscsdl

= 2
ρmatg

σcos(Λ)

∫ b
2

− b
2

M(z∗)

t(z∗)
dz∗

= 4
ρmatg

σcos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗,

and

CWb
=

Wwingbox

q∞Sref

=
β

cos(Λ)

∫ b
2

0

M(z∗)

t(z∗)
dz∗, (7)

where

β =
4ρmatg

σq∞Sref

,

ρmat is the material density, and g is the acceleration due to gravity.
The bending moment can be calculated by integrating pressure toward the wing tip. Ignoring the end

effects due to the rotated axis of the box beam,

M(z∗) = −

∫ b
2

z∗

p(x, z)(z − z∗)

cos(Λ)
dA

= −

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

cos(Λ)
dxdz.

Thus

CWb
=

−β

cos(Λ)2

∫ b
2

0

∫ b
2

z∗

∮

wing

p(x, z)(z − z∗)

t(z∗)
dxdzdz∗. (8)
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However, CWb
must be expressed as

∫

B
dBξ in the computational domain, or

∫ ∫

dxdz in a physical
domain to match the adjoint boundary term.

To switch the order of integral of Eqn (8), introduce a Heaviside function

H(z − z∗) =

{

0, z < z∗

1, z > z∗

Then Eqn (8) can be rewritten as

CWb
=

−β

cos(Λ)2

∫ b
2

0

∮

wing

p(x, z)K(z)dxdz, (9)

where

K(z) =

∫ b
2

0

H(z − z∗)(z − z∗)

t(z∗)
dz∗

=

∫ z

0

z − z∗

t(z∗)
dz∗

Finally, to account for the weight of other wing material such as ribs, spars, webs, stiffeners, leading
and trailing edges, slats, flaps, main gear doors, primer and sealant, we multiply CWb

by a correction factor
Kcorr,b.

Moreover, statistical correlation over the range of aircraft type indicates a relationship between Wwing/S
and Wwingbox

/S as a linear function, shown in Figure 31. Therefore we add another term to account for
area-dependent wing weight

CWs
=

1

Sref

∮

B

|S22|dξ1dξ3, |S22| =
√

S2iS2i, (10)

along with a correction factor Kcorr,s. Thus

CW = Kcorr,bCWb
+Kcorr,sCWs

. (11)

7.3 Wing Weight Estimation

From our discussion in section 7.2, the expression of wing weight contains terms that correspond to bending-
load-carrying material and two correction factors; Kcorr,b and Kcorr,s. To estimate these correction factors,
we can rewrite the expression (11) as

Wwing

S
= α1

Wb

S
+ α2 (12)

where Wwing is the total weight of the wing, Wb is the weight of the wing box, and S is a gross wing area.
When there is information from more than two aircraft, we can use the “least-square” curve-fitting strategy
to calculate α1 and α2.

To compute α1 and α2, we solve a system of two equations and two unknowns. These equations have the
form of Eqn (12) but with different values of

Wwing

S
and Wb

S
. This gives

α1 = 1.30 and α2 = 6.03 (lb/ft2).

However, the total wing weight estimation will be inexact because of the limitation of aircraft number.
Finally, Kcorr,b and Kcorr,s can be computed by

Kcorr,b = α1 and Kcorr,s =
α2

q∞
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7.4 Planform Design Variables

From the trade study, the parameters that lead up to a basic design which satisfies the general design criteria
include:

• wing shape • area
• span • sweep
• aspect ratio • taper ratio
• airfoil types • airfoil thickness

Because some of these parameters do not define the wing geometry uniquely, we employ another set of
design parameters that still represent these parameters but can be extracted from surface mesh points. Here
we model the wing of interest using six planform variables: root chord (c1), mid-span chord (c2), tip chord
(c3), span (b), leading-edge sweep(Λ), and wing thickness ratio (t), as shown in Figure 32. This choice of
design parameters will lead to an optimum wing shape that will not require an extensive structural analysis
and can be easily manufactured.

7.5 Maximizing Range

The choice of α1 and α2 in Eqn (5) greatly affects the optimum shape. We can interpret α1 and α2 as how
much emphases we give to drag and wing weight. If α1

α2
is high, we focus more on minimizing the drag than

the weight and we tend to get an optimum shape that has low CD but high CW .
An intuitive choice of α1 and α2 can be made by considering the problem of maximizing range of an

aircraft. Consider the Breguet range Eqn (6)

R =
V

C

L

D
ln

(

We +Wf

We

)

where We is the gross weight of the airplane without fuel and Wf is weight of fuel burnt.
If we take

W1 = We +Wf = fixed

W2 = We

then the variation of the weight can be expressed as

δW2 = δWe.

With fixed V
C

, W1, and L, the variation of R can be stated as

δR =
V

C

(

δ

(

L

D

)

ln
W1

W2

+
L

D
δ

(

ln
W1

W2

))

=
V

C

(

−
δD

D

L

D
ln
W1

W2

−
L

D

δW2

W2

)

= −
V

C

L

D
ln
W1

W2

(

δD

D
+

1

lnW1

W2

δW2

W2

)

and

δR

R
= −

(

δCD

CD

+
1

lnW1

W2

δW2

W2

)

= −





δCD

CD

+
1

ln
CW1

CW2

δCW2

CW2



 .

If we minimize the cost function defined as

I = CD + αCW ,
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where α is the weighting multiplication, then choosing

α =
CD

CW2
ln

CW1

CW2

, (13)

corresponds to maximizing the range of the aircraft.

7.6 Optimization Results

In these calculations the flow is modeled by the Reynolds Averaged Navier-Stokes equation, with a Baldwin
Lomax turbulence model. This turbulence model was considered sufficient because the design point at cruise
has predominately-attached flow. The nominal cruise condition of the generic 747 wing/fuselage combination
has a Mach number of 0.85 and a lift coefficient of CL = 0.45. On the corresponding (256x64x48) grid, the
wing is represented by 4,224 surface mesh points and six planform variables. All coefficients are calculated
with a fixed reference area based on the baseline configuration. Thus an increase in skin friction due to an
increase in wetted area will appear as an increase in the skin-friction drag coefficient.

As a reference point, we first modified only the wing sections to eliminate the shock drag, while keeping
the planform fixed. Figure 33 shows the redesigned calculation. In 30 design cycles, the drag was reduced
from 137 counts to 127 counts (7.3% reduction), while the weight was minimally reduced by 0.7%.

Next, we implement both section and planform optimization in a viscous redesign, using an inviscid
redesign as a starting point. Figure 34 shows the effect of allowing changes in sweepback, span, root chord,
mid-span chord, and tip chord. The parameter α2/α1 is chosen to maximize the range of the aircraft. In 30
design cycles, the drag was reduced to 117 counts (14.5% reduction from the baseline), while the dimensionless
structure weight was decreased from 546 counts to 516 counts (6.1% reduction), which corresponds to a
reduction of 4,800 lbs. The planform changes are shown in Figure 35. This viscous redesigned wing has less
drag and structural weight than the fixed-planform viscous redesigned wing.

When we compare this planform with the redesign by inviscid optimization, as seen in Figure 36, we can
see that the effect of viscosity is to shrink the area of the inviscidly redesigned planform. This trend is to
be expected because skin friction drag varies roughly linearly with the area. By reducing the area, we can
reduce the skin friction drag.

The results from the viscous planform optimizations yield large drag reduction without structural weight
penalty in a meaningful way. They show the following basic trends:

• Increase wing span to reduce vortex drag,

• Reduce sweep but increase section-thickness to reduce structural weight,

• Use section optimization to minimize shock drag.

Although the suggested strategy tends to increase the wing area, which increases the skin friction drag,
the pressure drag drops at a faster rate, dominating the trade-off. Overall, the combined results yields
improvements in both drag and weight.

7.7 Pareto Front

In order to present the designer with a wider range of choices, the problem of optimizing both drag and
weight can be treated as a multi-objective optimization problem. In this sense one may also view the problem
as a “game”, where one player tries to minimize CD and the other tries to minimize CW . In order to compare
the performance of various trial designs, designated by the symbol X in Figure 37, they may be ranked for
both drag and weight. A design is un-dominated if it is impossible either to reduce the drag for the same
weight or to reduce the weight for the same drag. Any dominated point should be eliminated, leaving a set
of un-dominated points which form the Pareto front. In Figure 37, for example, the point Q is dominated
by the point P (same drag, less weight) and also the point R (same weight, less drag). So point Q will be
eliminated. The Pareto front can be fit through the points P, R and other dominating points, which may
be generated by using an array of different values of α1 and α2 in the cost function to compute different
optimum shapes. With the aid of the Pareto front the designer will have freedom to pick the most useful
design.
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The problem of optimizing both drag and weight can be treated as a multi-objective function optimization.
A different choice of α1 and α2 will result in a different optimum shape. The optimum shapes should not
dominate each other, and therefore lie on the Pareto front. The Pareto front can be very useful to the
designer because it represents a set which is optimal in the sense that no improvement can be achieved in
one objective component that does not lead to degradation in at least one of the remaining components.

Figure 38 shows the effect of the weighting parameters (α1, α2) on the optimal design. As before, the
design variables are sweepback, span, chords, section thickness, and mesh points on the wing surface. In
Figure 38, each point corresponds to an optimal shape for one specific choice of (α1, α2). By varying α1 and
α2, we capture a Pareto front that bounds all the solutions. All points on this front are acceptable solutions,
and choosing the final design along this front depends on the nature of the problem and several other factors.
The optimum shape that corresponds to the maximum Breguet range is also marked in the figure. In this
test case, the Mach number is the current normal cruising Mach number of 0.85. We allowed section changes
together with variations of sweep angle, span length, chords, and section thickness. Figure 33 shows the
baseline wing. Figure 34 shows the redesigned wing. The parameter α2

α1
was chosen according to formula (13)

such that the cost function corresponds to maximizing the range of the aircraft. Here, in 30 design iterations
the drag was reduced from 137 counts to 117 counts and the structural weight was reduced from 546 counts
(88,202 lbs) to 516 counts (83,356 lbs). The large reduction in drag is the result of the increase in span
from 212.4 ft to 231.7 ft, which reduces the induced drag. The redesigned geometry also has a lower sweep
angle and a thicker wing section in the inboard part of the wing, which both reduce the structural weight.
Moreover the section modification prevents the formation of shock. The baseline and redesigned planforms
are shown in Figure 36, together with the planform which resulted from inviscid optimization. Overall,
the redesign with variation planform gives improvements in both aerodynamic performance and structural
weight, compared to the previous optimization with a fixed planform.

8 NACA0012-ADO Airfoil

Our next example optimization is based on a modified NACA0012 airfoil section. Here, we have adopted the
sharp trailing-edge closure of the Aerodynamic Design Optimization Discussion Group’s (ADO-DG) Case 1
airfoil [20]. We introduce an alternative method of performing lift-constrained optimizations based on the
capabilities of the open-source SU2 software [21, 22]. SU2 includes a variety of popular continuous adjoints,
such as that for lift, drag, and pitching moment. We also provide comparisons of gradients based on the
continuous adjoint, the discrete adjoint, and that through finite differencing. The discrete adjoint is auto-
matically generated using the CodiPack environment under development by Gauger and Albring [23]. The
implementation of CodiPack into SU2 is clean and efficient, and has proven to be very useful when introduc-
ing new cost functions into our daily industrial optimization studies. It has always been our experience that
the cost of solving a continuous adjoint is comparable to solving the flow equations. The discrete adjoint
provided by SU2 based on CodiPack also exhibits this level of efficiency, however, memory requirements are
significantly larger than that for the continous adjoint. The optimizer utilized for all optimizations of this
test case is the Squential Least-Squares Programming (SLSQP) of the SciPy package.

8.1 Aerodynamic Characteristics

In order to develop a lift-constrained drag minimization, whether it is for an airfoil or an aircraft, we will
first review some basic aerodynamic characteristics for these class of lifting geometries. Figure 39 illustrates
a typical relationship between lift and angle-of-attack, α. Here, the lift coefficient, CL, is nearly a linear
function of α. The airfoil design point for this inviscid test case is M = 0.8 and α = 1.25◦. These conditions
yield a design lift coefficient of C∗

L ≈ 0.347. This data point is highlighted in the figure with a large circle.
Also at the design point, the slope of the lift curve is C∗

Lα ≈ 0.274/◦. We will show how to utilize this slope
to drive both the analysis and adjoint solutions for fixed-CL optimizations. Finally, the problem statement
for this airfoil optimization is given as:

Minimize CD , s.t. CL = C∗
L. (14)

To keep this example extremely simple, we do not include any of the usual constraints on geometric thickness,
symmetry or aerodynamic pitching-moment, and yet, we have crafted this example problem such that it
exhibits all behaviours necessary to teach the alternative technique for lift-constrained optimization.
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Let’s now review the drag polar of Figure 40, represented by the black line with solid circle symbols.
By observation, note that CD is an increasing function of CL. As a consequence, optimizers will natuarally
try to reduce lift in an attempt to reduce drag. For a fixed-α optimization, this effect is embedded in the
gradient of drag, in that a ”hidden” part of the shape change primarily works to alter the lift, and hence to
change the drag. This part of the fixed-α drag gradient is undesirable, and it may take 10s of design cycles
before an optimizer can compensate for it accordingly. Hence, we seek a better approach.

8.2 Lagrangian Dual Cost Function

We introduce an alternative optimization problem, based on a Lagrangian dual cost fuction, defined as:

L ≡ CD − λCL. (15)

Here, λ is a Lagrange multiplier which physically represents the inverse of the slope of the drag polar at
the design point, i.e., λ = dCD

dCL
. However, since λ is not known a priori, it must be determined during the

course of optimization. Furthermore, λ may change with each airfoil throughout the design cycles. Figure 40
includes this dual cost function, depicted as a blue line with solid square symbols. Notice that the Lagrangian
naturally minimizes at the design point. Hence, dL

dCL
= 0 at C∗

L. Our problem statement for the Lagrangian
dual is now given by:

Minimize L , s.t. CL = C∗
L. (16)

When we set up our design space, we include α as a design variable. Since CL(α) is a well behaved
differentiable function, dL

dCL
= LαCLα, which in turn implies that L∗

α = 0 at C∗
L.

In a similar manner as the process we introduced in our first lecture for the Spider-Fly problem with an
active constraint, we first project the flow analysis into its allowable design space by adjusting α to drive CL

to C∗
L. This yields a converged flow solution at the design lifting condition. Then, we adjust λ during the

adjoint solution by driving Lα → 0 at C∗
L. This provides a converged adjoint solution for the Lagrangian

dual cost function with an appropriate value of λ. However, since neither α nor λ are known a priori, they
must be determined with a driver of some sort. We discuss our approach to developing these drivers next.

α-Driver

A Newton iteration that updates α to seek CL = C∗
L is given by:

αnew = αold − (CL − C∗
L)/CLα. (17)

Application of this driver is illustrated by Figure 41. Here, α is initialized to be 0◦, and is first updated at
4000 iterations, then every 2000 iterations after that. A fixed value of CLα = 0.274/◦ is used throughout.
(This value is estimated by the curve of Figure 39, but any reasonable estimate will do, provided it is greater
than or equal to half the actual slope.) In this figure, the blue line represents the history of α (left axis),
while the red line depicts the history of CL (right axis) as it approaches C∗

L ≈ 0.347. Note that α converges
to α∗ = 1.25◦ as expected.

λ-Driver

Now we will review what is required to drive λ to its appropriate value during the convergence of the adjoint
solution of the Lagrangian dual cost function. Since Lα = 0 at C∗

L, we use a Newton iteration to update λ
as given by:

λnew = λold − Lα/
dLα

dλ
. (18)

Hence, we need to determine an appropriate value for dLα

dλ
. If we differentiate Eqn (15), first by λ, and then

by α, we get:

dL

dλ
= −CL,

d2L

dλdα
=
dLα

dλ
= −CLα,
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and our Newton iteration driving λ becomes:

λnew = λold + Lα/CLα. (19)

Interestingly, the drivers of both Eqns (17 & 19) utilize (±) CLα as the slope for their Newton solves.
Figure 42 provides the convergence histories of λ and Lα for the NACA0012 airfoil. Here, λ is initialized to
zero and first updated at 4000 iterations, then every 2000 iterations after that. The blue line represents λ
(left axis), while the red line depicts Lα (right axis). Since the results are converged at 4000 iterations for
λ = 0, we note that dCD

dα
≈ 1.052/rad ≈ 0.0184/◦.

Before leaving the discussion on these drivers, we note that the process illustrated herein with updates
at 4000/2000 iterations is far from the most efficient option. It was strictly utilized here to cleanly show the
cause-and-effect of these step changes. A much more efficient technique would be to update α and λ every
1000 iterations, achieving fully converged results well within 5000 total iterations. In practice, converged
solutions based on these drivers can be as efficient as solutions with fixed α or λ.

8.3 Gradient Comparisons

The SU2 simulations use a (1025x1025) conformal mesh of Vassberg and Jameson [24]. This structured grid
is converted to an unstructured mesh, purely comprised of quadrilateral elements for the SU2 simulations.
As this level of resolution is far too dense to show, instead, a coarsened version of this mesh with dimensions
of (257x257) is provided in Figure 43.

The design space for this example problem utilizes α and 19 evenly-spaced Henne-Hicks bump functions
for both the lower and upper surfaces, respectively, and ordered from leading-to-trailing edges. This gives a
total of 39 design variables, ranging in index from 0 to 38. Here δ0 is α, while δ1-δ19 are bump amplitudes
on the lower surface, and δ20-δ38 are bump amplitudes on the upper surface. Per SU2 convention, a positive
amplitude pushes the H-H bump outward of the flowfield domain, or into the airfoil geometry. Remember
this when viewing the various gradients of SU2.

Continuous adjoint gradients for drag at fixed-α and fixed-CL have been incorporated into our version
of SU2. Discrete adjoint gradient for drag at fixed-α is also available. To help verify that the adjoints give
accurate gradients, a python script is utilized which cycles through the set of design variables to approximate
the sensitivities with forward-finite-differences; this is only possible because this case is a 2D problem with
a minimal number of design variables.

Figure 44 provides gradients of the various forms for comparison. In this figure, black lines/symbols
depict the gradient of CD at fixed-α, while the red lines/symbols provide the gradient at fixed-CL. The
solid lines represent continuous adjoint gradients, while the open symbols depict discrete or finite-differenced
gradients. As we noted earlier, there is a substantial difference between the fixed-α and fixed-CL gradients.
This difference represents the ”hidden” portion of the fixed-α gradient that affects lift to alter drag. Closer
inspection of these gradients reveals that the fixed-CL gradient works to add aft camber to the airfoil, while
the fixed-α gradient attempts to remove it. This is consistent with the aforementioned statement that the
fixed-α gradient will attempt to dump lift in order to reduce drag.

Next, we will show how the performance of an optimization to minimize drag is improved by using the
fixed-CL gradient.

8.4 Optimization Results

Figures 45-52 provide a complete set of results of the NACA0012 airfoil optimizations. Figure 45 illustrates a
comparison of airfoil sections. Here, the NACA0012 baseline is depicted with a red line, the optimum airfoil
based on the fixed-CL approach is shown as a blue line, and the optimum based on fixed-α is given as a
green line. Notice that the camber level of the Opt.Fixed-CL airfoil is greater than that of the Opt.Fixed-α
geometry.

Figure 46 provides a comparison of the pressure distributions, using the same color code as before.
Notice that the leading-edge pressure peak of the Opt.Fixed-CL airfoil is lower than that of the Opt.Fixed-α
geometry. This implies that the angle-of-attack, α, of Opt.Fixed-CL is less than that of Opt.Fixed-α. Indeed,
the angle-of-attacks for these optimum airfoils are α = 0.678◦ and 1.25◦, respectively.

From these figures, one may ask why the two optimum airfoils are noticably different from each other,
both in geometric shape as well as in pressure distributions. The answer is that their respective trajectories
through the design space, traveling from the baseline to their end states, take different paths. This occurs
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because the gradients of drag are distinctly different, as previously shown in Figure 44. Different trajectories
can lock into different local minima. Here, however, we specifically setup this test case to allow for an infinite
number of zero-drag possibilities. The baseline NACA0012 airfoil, at its design point, has a drag coefficient
of CD = 0.02233, or 223.3 counts. Since there are no constraints on airfoil thickness, the optimization
process keeps thinning the airfoil sections during the design cycles until no shock-drag is produced. Once the
optimizations achieve a shock-free flow, they have nowhere better to go, and realize they have converged.

Referring again to Figure 46, one can verify that both optimums have no shocks. When this state is
reached, for an inviscid 2D flow, all physical drag vanishes. Numerically, however, the discrete drag reaches
some small value which is indicative of the error of discretization. For this problem, on this mesh, and for
shock-free flows, the minimum discrete drag coefficient appears to be about 0.00007, or 0.7 counts.

Figures 47-48 provide colored isobars of field pressures about the NACA0012 and the Opt.Fixed-CL

airfoil sections, respectively. (For reference, at M = 0.8 the critical pressure coefficient is C∗
P = −0.43464.)

Note the strong shock on the upper surface of the NACA0012 and the weak shock on its lower surface. Now
observe the shock-free flow of the Opt.Fixed-CL geometry. Here, the pocket of supersonic flow over the
upper surface exhibits an isentropic recompression as it travels downstream. The overall flow features of the
Opt.Fixed-α airfoil are generically similar that those of the Opt.Fixed-CL geometry.

Figures 49-50 provide the histories of drag coefficients during the optimizations. The blue solid line
corresponds to the fixed-CL optimization, while the green chain-dot line represents the fixed-α history.
This plot is provided on a semi-log scale as the level of drag is reduced by over two-and-a-half orders-of-
magnitude from start to finish. Notice that the fixed-α optimization lags the fixed-CL optimization. The
fixed-CL optimization is fully converged in 13 design cycles, whereas the fixed-α optimization requires 16
design cycles. The performance benefit is actually more substantial than this, as the fixed-α optimization
requires two adjoints (CD and CL) to be solved per design cycle, while the fixed-CL optimization only
requires one (L). Since the computational cost to evaluate a flow solution is essentially the same as that of
an adjoint solution, the total cost of an optimization is directly proportional to the number of evaluations
required. Figure 50 illustrates that the fixed-CL optimization requires 32 evaluations for convergence, while
the fixed-α optimization demands 52 solutions. This confirms the anticipated 2:3 ratio in optimization costs.

In order to better understand why the fixed-α optimization lags behind, let’s review the CL histories
provided by Figures 52. Notice that the history of lift for the fixed-α optimization clearly indicates that,
initially, it is dumping lift in an attempt to reduce drag. This trend continues for the first 4 design cycles
and 13 function evaluations. At this point, the optimizer has gathered enough information to know that it
has to compensate for missing the constraint on lift, and in fact, it over compensates before beginning to
lock in on the target value. Even after 10 design cycles and 34 function evaluations, the lift coefficient of the
fixed-α optimization is only semi-converged to the constraint value of C∗

L ≈ 0.347. On the other hand, the
fixed-CL optimization starts out and remains at the constraint value for lift throughout.

The fixed-α optimization presented herein was done so without α being a design variable. We have con-
ducted an analogous optimization which includes α as a design variable, and the results exhibit substantially
the same trends. The only notable difference is that the CL history is able to better lock onto the C∗

L

constraint after 10 design cycles. This is enabled with the α design variable, and the final angle-of-attack
for this optimum is α ≈ 1.16◦.

This concludes our discussion on the NACA0012 test case and the alternative approach to conducting
lift-constrained optimizations. The next section continues to illustrate the differences between the fixed-α
and fixed-CL gradients, however, on a much more industrial-strength problem.

9 NASA CRM Wing/Body

In this section we showcase SU2’s ability to handle large-scale engineering problems of interest. Although we
do not perform yet another optimization, we continue our discussion on the differences between fixed-α and
fixed-CL gradients. The example of this section is taken from the Sixth AIAA Drag Prediction Workshop
(DPW-VI) Test Cases. For more information about DPW-VI, as well as to gain access to the CRM geometry
and various grids, please go to the DPW-VI website [25].

The concept of the NASA Common Research Model (CRM) was convieved by Vassberg and Wahls [26].
The CRM is representative of a contemporary transonic transport aircraft design. The high-speed cruise
configuration includes fuselage, wing, nacelle, pylon, and horizontal-tail components. Figure 53 provides an
image of the CRM wing/body configuration. Note the detail of the fuselage geometry at the cockpit region,
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as well as with the wing-body fairing. Also notice the side-of-body treatment of the after-body. This is to
ensure that the horizontal-tail remains sealed against the fuselage over its full range of incidence motion. The
CRM was originally intended to be used primarily for CFD validation efforts, but it has grown far beyond
that in utility. In addition to NASA’s CRM wind-tunnel model, other organizations around the world have
built their own CRMs, including JAXA, ONERA, and the University of Washington. It is being used as
the basis for icing studies on swept wings, as well as for the NASA Juncture Flow Model (JFM), currently
under development. Boeing has been recently supplied a low-speed, high-lift geometry definition to NASA;
this should become available to the public domain later this year. For additional information on the NASA
Common Research Model, including freely available wind-tunnel data and structural models, please refer to
the CRM website [27].

Available from the DPW-VI website are complete sets of grid families for a number of grid types. Each
grid family is populated with grids that range in size by an order-of-magnitude. These families have been
carefully constructed to be appropriate for grid-resolution studies. In particular, we downloaded the Tiny

unstructured mesh of merged elements for the CRM Wing/Body (WB AE2.75) configuration as provided
by NASA’s GeoLab group. The designation AE2.75 indicates that this grid is about the wing with an aero-
elastic deflection under the loads produced at the α = 2.75◦ flow condition, which closely corresponds to the
CRM’s design point of M = 0.8, CL = 0.5, and Ren = 5 million. This unstructured grid (ironically named
Tiny) is comprised of 20,472,098 field nodes, and 83,578,942 field elements. The field elements consist of
65,402,114 tetrahedra, 119,340 pyramids, and 18,057,488 triangular prisms. The flowfield boundary is defined
with 1,242,346 triangles and 34,222 quadrilaterals, hence, 655,395 nodes reside on the boundary. This grid
is sufficiently large to demonstrate our point that SU2 is capable of industrial-strength applications.

Figure 54 provides the surface pressures for the CRM WB configuration at M = 0.8, CL = 0.5, and
Ren = 5 million. In this figure, as well as those to follow, the upper surface of the CRM is shown at the top
of the image, while its lower surface is shown at the bottom of the image. Supersonic flow is depicted with
yellow-to-red coloring, while stagnation flow is shown as dark blue. Note the λ shock structure on the wing
upper surface. Also notice how the flow tends towards stagnation at the fuselage nose, cockpit windshields,
extremes of the wing-body fairing, and at the leading and trailing edges of the wing’s lower surface.

Figures 55-56 provide a comparison of the sensitivities of drag, CD, with geometry change for the fixed-α
and fixed-CL gradients, respectively. As shown, these gradients represent more than half-a-million design
variables. Recall SU2’s convention regarding gradients. Drag increases when you push the geometry inward
at positive sensitivities (green-yellow-red) and pull the geometry outward at negative sensitivities (green-
aqua-blue). At first glance, these gradients look very similar, and in fact, they do share many similarities.
However, upon closer inspection, one will notice some differences too. Let’s begin with the upper surface.
Here, the fixed-α gradient is generally more negative (darker blue) than that of the fixed-CL. The sensitivity
at the shock is clearly more positive for the fixed-CL gradient and the λ structure is more evident. Now,
let’s inspect the lower surface. With focus near the trailing-edge, notice that the fixed-α gradient is positive
(yellow-red), while that of the fixed-CL gradient is negative (aqua-blue). The combination of all of the
aforementioned differences indicate that, in order to reduce drag, the fixed-α gradient is trying to de-camber
the wing more so than does the fixed-CL gradient. Hence, the fixed-α gradient dumps lift to reduce drag.
This is consistent with what we learned in the NACA0012 example.

Figure 57 provides the sensitivity of lift, CL, with geometry change at fixed α. Generally speaking, the
upper surface is predominately negative (aqua-blue), while the lower surface is substantially positive (yellow-
red). This confirms that adding camber to the wing increases lift, or conversely, de-cambering it dumps lift
at fixed α.

Figure 58 provides the sensitivity of pitching moment, CMy , with geometry change at fixed α. We note
that SU2 adheres to the convention that a positive CMy represents a nose-up pitching moment. Generally
speaking, the upper surface is predominately positive (yellow-red), while the lower surface is substantially
negative (aqua-blue). This is especially true for the wing outboard of the planform break, where the center
of sectional lifts are behind the moment reference center. The reason the CMy and CL sensitivities appear
almost opposite of each other is that any increase in lift behind the moment reference center results in a
decrease in pitching moment.

This concludes our discussions for this Lecture.
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10 Conclusions

In this lecture, sample applications of aerodynamic shape optimizations are provided through five case studies
in aircraft design. These include the design of a Mars aircraft, a Reno Racer, a generic 747-class wing/body
configuration, an NACA0012 airfoil, and the NASA Common Research Model. The generic wing/body case
included a simple structure-weight model to allow aero-structural optimizations to be performed.

The utility of SYN107P has been demonstrated on the Mars Airborne Remote Exploration Scout. This
investigation has redesigned the baseline wing shape to improve its aerodynamic performance. The redesign
has yielded a 112-count reduction in total drag at its design point, and increased the lift-to-drag ratio 23%
from 10.4 to 12.8. The cruise flight condition of the MARES is M = 0.65, CL = 0.62, and Re = 170K. Drag
polars for the baseline and redesigned wing show that the performance improvement extends over all lifting
conditions and is well behaved at off-design points. All SYN107P calculations (analyses and optimizations)
are performed on very affordable computer equipment with fast turn-around times, due in part to parallel
processing. (In fact, SYN107P will currently reproduce the present Navier-Stokes optimization on a current
MacBookPro notebook computer within an hour.) Furthermore, essentially no additional set-up effort is
required to run optimizations once an analysis input deck is defined. The effectiveness of this aerodynamic
shape optimization has been made possible because the developers have addressed the adjoint-based gradient
calculation and the design-space traversal processes from the perspective of what is required in the infinite-
dimensional continuum, then taken the simple step towards discrete space.

Aerodynamic shape optimization methods were successfully applied to the design of a new unlimited class
Reno race plane. Very significant performance gains were achieved in very compressed time. Utilization of
this software also allowed global changes to occur at the aircraft level without adversely affecting the efforts
to aerodynamicly design its high-performance, transonic wing as new designs could be performed over night.
Normally, such major changes would have had a very disruptive effect on the design of the wing. Yet, the
evolution of the general layout was necessary for all of the design goals to be achieved.

Coupled aerodynamic-structural optimizations were performed on a generic 747-class wing/body con-
figuration. In this case study, a simple structure-weight model was developed and incorporated into the
aerodynamic shape optimization process. The cost function in this investigation is a blending of drag and
structure-weight coefficients. The coefficients of blending were determined to maximize range, as well as
were allowed to vary to provide a pareto front of optimum designs.

Application of the open-source SU2 software suite has been demonstrated on the NACA0012 airfoil
and the CRM wing/body configuration. Enhancements of SU2 include an automatically-generated discrete
adjoint based on CodiPack, and an alternative fixed-CL drag gradient based on a Lagrangian dual cost
function for lift-constrained optimizations.

All 3D optimizations utilized thousands of design variables and were carried out on affordable computers
systems. These were key to the success of this simulation-based design effort.

Exercises such as these have been very beneficial to the authors, as we get a better understanding and
appreciation of the chaos and schedule pressures that exist in real-world design environments. We are also
pleased that the aerodynamic shape optimization software have had dramatic and positive effects on the
outcome of the final designs.

11 Post Script

As can be seen from these studies, aerodynamic shape optimization can significantly streamline the design
process. In addition to the case studies presented herein, the present method has now been successfully
applied in a variety of projects, including the McDonnell-Douglas MDXX [28], the NASA HSCT studies,
the Boeing Blended-Wing-Body project, the Beech Premier [29], the original design of the NASA Common
Research Model [26], and many more recent and on-going aircraft development efforts.

There are many different examples on how aircraft design teams have utilized the rapidly provided in-
formation of aerodynamic shape optimization to make improvements to their aircraft configurations. The
diversity of these examples illustrate the artistic and creative nature of the thought processes by the design
teams. It is through these unpredictable paths in design direction that dramatic improvements of the
multi-disciplinary systems are accomplished. Further, because unforeseen directions may be required to
accomplished the design goals, it is highly unlikely that the designers will be replaced by a comprehen-
sive, multi-disciplinary optimization (MDO) method. On the other hand, there are very well established
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dependencies between certain disciplines that can and should be coupled for MDO.
Although the search method is only guaranteed to find a local minimum, it turns out in practice that

our aerodynamic optimizations are yielding results that are in the neighborhood of the known lower bounds
for aerodynamic drag, as determined by optimum span loading, flat-plate skin-friction, and minimum wave
drag. Furthermore, in practice, the designer’s goal is not to determine the absolute best design, but rather,
is tasked to make the most improvement to a design in a fixed amount of time specified by program schedule.

Aerodynamic shape optimization will not replace the judgement and insight of the aircraft designers.
Rather, it should properly be viewed as an enabling tool that allows the designers to focus their efforts on
the creative aspects of aircraft design, by relieving them of the need to spend large amounts of time exploring
small variations. By intelligent choice of the cost function to measure the aerodynamic performance and
perhaps also the deviation from a desired pressure architecture, one can essentially eliminate the need to carry
out detailed section design. Instead, the designers can concentrate their attention on large scale parameters
such as wing span, area and sweep, knowing that the optimization process will improve the performance for
any given choice of these parameters.
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Figure 1: CFD simulation of a commercial transport with aft-mounted engines.

Figure 2: CFD simulation of a commercial transport with wing-mounted engines.
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Figure 3: MARES Packaging in the Aerodynamic-Shell Capsule.

Figure 4: MARES Configuration in Flight, Top-View Rendering.
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Figure 5: MARES Configuration in Flight, Bottom-View Rendering.

Figure 6: MARES General Planform Layout.
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Figure 7: Comparison of Baseline and Euler Optimized Wing Pressure Distributions.

John C. Vassberg
COMPPLOT
Ver 2.00

COMPARISON OF UPPER SURFACE CONTOURS
MARS00A LANDER (GSP ORIGINAL WING WITH EXTRA STATIONS)

MACH = 0.650  ,  CL = 0.620
( Contours at 0.05 Cp )

Solution  1:    Baseline Geometr
ALPHA =  4.32  ,  CD =  0.03567

Solution  2:    Optimized Geomet
ALPHA =  4.17  ,  CD =  0.02912

Figure 8: Comparison of Baseline and Euler Optimized Wing Pressure Contours.

Vassberg & Jameson, VKI Lecture-II, Brussels, Belgium, 16-20 May, 2022 32 of 59



0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

0 5 10 15 20 25 30 35 40 45 500

Mach = 0.65  ,  CL = 0.62  ,  REN = 170K

MARES Wing Design

SYN107P Drag Minimization

Design Cycle

T
ot

al
 D

ra
g

Figure 9: History of Drag Minimization during Navier-Stokes Optimization.

10.0

10.5

11.0

11.5

12.0

12.5

13.0

0 5 10 15 20 25 30 35 40 45 500

Mach = 0.65  ,  CL = 0.62  ,  REN = 170K

MARES Wing Design

SYN107P Drag Minimization

Design Cycle

L
if

t 
/ D

ra
g 

 R
at

io

Figure 10: History of Lift-to-Drag Ratio during Navier-Stokes Optimization.
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Figure 11: Comparison of Baseline and Navier-Stokes Optimized Wing Pressure Distributions.
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Figure 13: Comparison of Baseline and Navier-Stokes Optimized Wing Drag Loops.
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Figure 16: Comparison of Baseline and Navier-Stokes Optimized Wing Root Airfoil Sections.
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MARES Wing Design
Airfoil Geometry -- Camber & Thickness Distributions
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Figure 17: Comparison of Baseline and Navier-Stokes Optimized Wing Mid-Span Airfoil Sections.
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Figure 18: Comparison of Baseline and Navier-Stokes Optimized Wing Outboard Airfoil Sections.

Vassberg & Jameson, VKI Lecture-II, Brussels, Belgium, 16-20 May, 2022 37 of 59



Figure 19: Miss Ashley II and Rare Bear en Route.

Figure 20: Reno Race Course Layout.
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Figure 21: Side View of Body-Prop Design.

Figure 22: Rendering of Body-Prop Design in Flight.
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Figure 23: Pressure Distributions of Shark1 Baseline Wing.
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Figure 24: Comparison of Shark5 Wing on Baseline Fuselage with Baseline Configuration.
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Figure 25: Comparison of Shark52 Wing on Stretched Fuselage and Baseline Configuration.
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Figure 26: Comparison of Shark52 and Shark1 Wing Drag Loops.
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Figure 27: Comparison of Shark52 and Shark1 Wing Pressure Contours.
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Figure 28: Result of Navier-Stokes Inverse Design.
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Final Shark Wing
Airfoil Geometry -- Camber & Thickness Distributions
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Figure 29: Final Wing Airfoil Geometry - Thickness & Camber Plots.
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Figure 30: Structural Model for a Swept Wing.
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Figure 31: Statistical Correlation of Total Wing Weight and Box Weight.
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Figure 32: Wing Planform Design Variables.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.533                                                     
CL:  0.449    CD: 0.01270    CM:-0.1408    CW: 0.0542                           
Design:  30    Residual:  0.5305E+00                                            
Grid: 257X 65X 49                                                               
LE Sweep:42.11   Span(ft):  212.43                                              
c1(ft):  48.17   c2:  29.11   c3:  10.79                                        
I:  0.02089                                                                     

Cl:  0.373    Cd: 0.05530    Cm:-0.1449   T(in):66.1586                         
Root Section:  13.6% Semi-Span

Cp = -2.0

Cl:  0.647    Cd: 0.00557    Cm:-0.2398   T(in):23.8498                         
Mid Section:  50.8% Semi-Span

Cp = -2.0

Cl:  0.431    Cd:-0.02153    Cm:-0.1873   T(in):12.1865                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Baseline (Dashed) / Redesign (Solid).

Figure 33: Wing-Section Optimization of Generic 747 at Fixed Baseline-Planform.
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B747 WING-BODY                                                                  
Mach: 0.850    Alpha: 2.287                                                     
CL:  0.448    CD: 0.01167    CM:-0.0768    CW: 0.0516                           
Design:  30    Residual:  0.3655E+00                                            
Grid: 257X 65X 49                                                               
LE Sweep: 36.61  Span(ft):  231.72                                              
c1(ft):  47.17   c2:  28.30   c3:  10.86                                        
I:  0.01941                                                                     

Cl:  0.347    Cd: 0.06011    Cm:-0.1224   T(in):74.0556                         
Root Section:  12.7% Semi-Span

Cp = -2.0

Cl:  0.582    Cd: 0.00213    Cm:-0.2154   T(in):25.3014                         
Mid Section:  50.5% Semi-Span

Cp = -2.0

Cl:  0.390    Cd:-0.01648    Cm:-0.1736   T(in):12.0445                         
Tip Section:  92.5% Semi-Span

Cp = -2.0

Figure 34: Complete Optimization of Generic 747 to Maximize Breguet Range.
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(a) Isometric (b) Front View

(c) Side View (d) Top View
Baseline (Green) / Redesigned (Blue).

Figure 35: Geometry Changes of Complete Navier-Stokes Optimization.

Figure 36: Comparison of Euler-Redesigned (Red) and NS-Redesigned (Blue) Planforms.
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Figure 37: Cooperative Game Strategy with Drag and Weight as Players.
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Figure 39: NACA0012 Lift Curve; M = 0.8, α∗ = 1.25◦, C∗
L ≈ 0.347.

Figure 40: NACA0012 Drag Polar; M = 0.8, α∗ = 1.25◦, C∗
L ≈ 0.347, C∗

D ≈ 0.02233.
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Figure 41: NACA0012 Alpha Convergence; M = 0.8, C∗
L ≈ 0.347.

Figure 42: NACA0012 Lambda Convergence; M = 0.8, α = 1.25◦, CL ≈ 0.347.
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Figure 43: NACA0012 Airfoil (256x256) Conformal Mesh.

Figure 44: Comparison of NACA0012 Gradients; M = 0.8, α = 1.25◦, CL ≈ 0.347, C∗
D ≈ 0.02233.
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Figure 45: Comparison of NACA0012 and Optimum Airfoil Sections; M = 0.8, CL ≈ 0.347.

Figure 46: Comparison of NACA0012 and Optimum Airfoil Pressure Distributions; M = 0.8, CL ≈ 0.347.
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Figure 47: NACA0012 Flow Field Pressures; M = 0.8, CL ≈ 0.347, C∗
D ≈ 0.02233.

Figure 48: Opt.Fixed-CL Flow Field Pressures; M = 0.8, CL ≈ 0.347, C∗
D ≈ 0.00007.
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Figure 49: NACA0012-to-Optimum Drag History; M = 0.8, C∗
L ≈ 0.347, CD : 0.02233→ 0.00007.

Figure 50: NACA0012-to-Optimum Drag History; M = 0.8, C∗
L ≈ 0.347, CD : 0.02233→ 0.00007.
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Figure 51: NACA0012-to-Optimum Lift History; M = 0.8, C∗
L ≈ 0.347, CD : 0.02233→ 0.00007.

Figure 52: NACA0012-to-Optimum Lift History; M = 0.8, C∗
L ≈ 0.347, CD : 0.02233→ 0.00007.
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Figure 53: NASA Common Research Model (CRM) Wing/Body Configuration.

Figure 54: Common Research Model Surface Pressures; M = 0.85, CL = 0.5, Ren = 5 million.
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Figure 55: CRM WB CD Sensitivities at Fixed α; M = 0.85, CL = 0.5, Ren = 5 million.

Figure 56: CRM WB CD Sensitivities at Fixed CL; M = 0.85, CL = 0.5, Ren = 5 million.
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Figure 57: CRM WB CL Sensitivities; M = 0.85, CL = 0.5, Ren = 5 million.

Figure 58: CRM WB CM Sensitivities; M = 0.85, CL = 0.5, Ren = 5 million.
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