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Nomenclature
AR Wing Aspect Ratio = b2 MLL Maximum Length Line = Chordline
. Sref N, NDV  Number of Design Variables
b Wing Span

RANS Reynolds-Averaged Navier-Stokes
Re Wing Reynolds number based on Cef
Srey  Wing Reference Area

B Shape Function Basis
CFD Computational Fluid Dynamics
Cp Drag Coefficient = _Drag

dooSref TE Trailing-Edge Point = %(TEU +TE;)
Cr  Lift Coefficient = qiéfif TFEpgase Trailing-Edge Base Height = yte, — yte;
Cy  Pitching-Moment Coefficient = %i‘/fsi{i% Tmax Maximum Thickness of an Airfoil
Cmazxr Maximum Camber of an Airfoil WRP Wing Reference Plane
Cref Wing Reference Chord x, y, z Spatial Coordinates
count Drag Coefficient Unit = 0.0001 xept, yept  X-Y Coordinates of a Control Point
DTE Divergent Trailing Edge g Dynamic Pressure = %PV2
FRP Fuselage Reference Plane A Wing Taper Ratio = %
I Objective or Cost Function Ac/s  Wing Quarter-Chord Sweep
K Order of Bezier or B-Spline Curve 7 3.141592654...
LE Leading-Edge Point per MLL oo Infinity
MAC Mean Aerodynamic Chord O(x) Order of

1 Introduction

This is the third of three lectures prepared by the authors for the von Karman Institute that deal with the
subject of aerodynamic shape optimization. In this lecture we briefly discuss several items related to the
parameterization of an aerodynamic design space. These items include the advantages and disadvantages of
using: 1) absolute vs. perturbed geometry definition, 2) global vs. local shape control, and 3) large vs. small
dimensional design spaces. We also review desirable design characteristics that one should consider when
formulating the parameterization of a design space. One will find that this formulation is strongly influenced
by the basic approach of optimization as well as the cost of function evaluations. Stated differently, in
general there is no one best approach to design-space parameterization. In fact, the first author employs a
very diverse set of optimization methods on a regular basis to address a very diverse set of routine design
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challenges. Aspects of these diverse applications will be touched on in the early sections of this lecture.
However, since both authors share a common expertise on detailed aerodynamic shape optimization, this
lecture will concentrate primarily on this task. Nonetheless, the ensuing discussions should provide useful
insight to help one develop a well-formulated design-space parameterization for a wide variety of problems.

We have stated this before, and we will repeat it again, as it is an important point. In an airplane design
environment, there is no need for an optimization based purely on the aerodynamics of the aircraft. The
driving force behind (almost) every design change is related to how the modification improves the vehicle,
not how it enhances any one of the many disciplines that comprise the design. And although we focus our
lectures on the aerodynamics of an airplane, we also include the means by which other disciplines are linked
into and affect the aerodynamic shape optimization subtask; some of these will be addressed again in this
lecture. Another characteristic of the problems we typically (but not always) work, is that the baseline
configuration is itself within 1-2% of what may be possible, given the set of constraints that we are asked
to satisfy. This is certainly true for commercial transport jet aircraft whose designs have been constantly
evolving for the past half century or more. On the other hand, the first author also develops advanced
concepts which are mostly in the embryonic phase of design. These efforts have a completely different set
of requirements and expectations that are imposed on the optimization methods employed. Specifically,
improvements to an existing commercial aircraft may require high-fidelity flow solutions (RANS) and high-
dimensional design spaces, whereas an advanced concept may substantially benefit with low-fidelity analyses
and low-dimensional design spaces, but may require that a global optimum is to be located.

Quite often the problem of design is very constrained; this is the case when the shape change is required
to be a retrofitable modification that can be applied to aircraft already in service. Occasionally, we can begin
with a clean slate, such as in the design of an all-new airplane. And the problems cover the full spectrum
of studies in between these two extremes. Let’s note a couple of items about this setting. First, in order
to realize a true improvement to the baseline configuration, a high-fidelity and very accurate computational
fluid dynamics (CFD) method must be employed to provide the aerodynamic metrics of lift, drag, pitching
moment, spanload, etc. Even with this, measures should be taken to estimate the possible error band of the
final analyses; this discussion is beyond the scope of these lectures. The second item to consider is related to
the definition of the design space. A common practice is to use a set of basis functions which either describe
the absolute shape of the geometry, or define a perturbation relative to the baseline configuration. In order
to realize an improvement to the baseline shape, the design space should not be artificially constrained by
the choice of the set of basis functions. This can be accomplished with either a relatively small set of very-
well-chosen basis functions, or with a large set of reasonably-chosen basis functions. The former approach
places the burden on the user to establish an adequate design space; the latter approach places the burden
on the optimization software to economically accommodate problems with large degrees of freedom. Over
the past two decades, the authors have focused on solving the problem of aerodynamic shape optimization
utilizing a design space of very large dimension. The interested reader can find copious examples of the
alternative approaches throughout the literature.

Over the past four decades CFD has matured to the level that very accurate aerodynamic performance
analyses are now possible for complete aircraft configurations, provided that the flow of the viscous shear
layers remain predominately attached to the geometry surfaces. Fortunately, this is usually the case for
well-designed aircraft at their intended cruise flight conditions.

Concurrent with the advancement of CFD, aerodynamic shape optimization, and multi-disciplinary opti-
mization have also matured to the stage that they have been successfully incorporated into the aircraft
design environment, and now perform crucial roles. However, the costs associated with these optimizations
can be quite large, and even prohibitive, for many problems of practical interest. These costs include both
computational resources as well as engineering labor hours needed to set up the problems for optimization.
Although advancements in computer hardware continue to track Moore’s Law, so do the size of our CFD
models. As a consequence, research directed towards improving the efficiency of optimization continues.

This paper is organized in the following manner. The first few sections are fairly generic to the formulation
of a well-constructed design space. The remaining sections address the influence of parameterization of
the design space with a focus on aerodynamic shape optimization. Section 2 describes the optimization
techniques employed. Section 3 describes two additional CFD methods applied in this work; one is used
by two of the optimization processes, while the other is used for independent cross-analysis evaluations.
Section 4 provides a deep dive into the anatomy of airfoils and wing geometries, as well as surveys common
requirements imposed on an aerodynamic design space. Section 5 describes the set of design spaces utilized
herein. Sections 6-8 provide discussions on three example model problems, two of which are Test Cases of
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the Aerodynamic Design Optimization (ADO) Discussion Group workshop. Hence, a large amount of data
will soon become available on these model problems from a diverse set of research activities. In each of these
examples, a statement of optimization, a description of the geometry, and results are provided. Tables of
data are embedded within the text, while all figures are appended to the end of the lecture.

2 Aerodynamic Optimization Methods

Several different approaches have been applied to perform various aerodynamic shape optimizations for the
sample model problems under discussion. The methods specifically used by the authors include MDOPT,
CMA-ES, SYN83 and SYN107. Additional optimization methods are discussed by drawing on the work of
others with their permission and with references provided. Descriptions of methods employed by the authors
are included below.

MDOPT [1] is a Boeing multidisciplinary design optimization framework for very general air vehicle
design and analysis. The system contains a collection of technology modules for performing optimization
studies by means of a Graphical User Interface (GUI), and combining robust numerical optimization schemes
with higher-order computational analysis. A variety of multidisciplinary objective and constraint functions
are available, including aerodynamic, weight, mission performance, and stability and control characteristics.
MDOPT’s GUI environment helps manage the tasks of: 1) design-space set-up, 2) establishing a design of
experiments, 3) fitting the response surface, 4) navigating the response surface to the optimum state, 5)
perturbing field grid points, and 6) enforcing a variety of nonlinear constraints. MDOPT can be exercised
in two modes, the first being based on response surfaces, and the second being a direct-driven quasi-Newton
method. In this lecture, only results from the response-surface approach are discussed. The CFD method
utilized herein for MDOPT is OVERFLOW.

CMA-ES [2] is a Covariance Matrix Adaptation Evolution Strategy. The basic idea of the approach
is that the design vector is initialized at an arbitrary location in the design space. For the first iteration,
a random, isotropic sampling of the local terrain around the mean is performed. Based on the evaluated
objective function at these random locations, the mean design vector shifts towards the weighted centroid
of the best results from the random sampling. The method also accounts for combinations of individual
design-variable displacements by utilizing a covariance matrix to rotate the search from the principle axes
of the design vector and introduce anisotropy. The covariance matrix and standard deviation are updated
after each iteration and control the random search process. The CFD method utilized herein for CMA-ES
is OVERFLOW.

SYN83 [3] utilizes a continuous adjoint to the Euler equations to compute the gradient of the objective
function with respect to the design space. Here, a free-surface design space is automatically generated by
SYNS83. This full parameterization corresponds to the highest dimensional space supported by the discrete
points of the grid defining the geometry. Hence, the performance of the resulting optimum airfoil could
provide a limit to what is achievable, unless the optimization locates a local optimum that is quite degraded
from the globally best design. SYNS83 solves both the Euler equations and its adjoint on an internally-
generated C-mesh. A typical mesh of (768x128) cells is shown in Figure 1; it provides 513 points on the
free-surface to define the airfoil design space. The optimization process begins by solving converged solutions
on both the Euler equations and its adjoint for the baseline airfoil shape. Then its design space is navigated
in the reverse direction of the gradient projected into an allowable Sobolev space. This continues until the
magnitude of the constrained gradient vanishes. Upon completion of the run, a locally-optimum airfoil is
found and a converged solution of the Euler equations on this shape is known. In practice, the complete
SYNBS83 optimization process costs only about one-order-of-magnitude more than the cost of a single analysis.
However, for the degenerate problem of Section 6, we ran 1,000 design cycles with small steps to converge
to the local optimum shapes. In this mode, the cost of optimization was about two-orders-of-magnitude
greater than that of a single analysis. Nonetheless, the expense of these optimizations is acceptable as the
basic analysis is an inexpensive 2D Euler flow solution.

SYN107 [4] is a RANS-based aerodynamic shape optimization method which utilizes a continuous adjoint
to the RANS equations to efficiently compute the gradient of the objective function with respect to the design
space. It fully integrates grid generation of a C-H-mesh, the FLO107 CFD code, the ADJ107 adjoint solver,
an automatically-generated free-surface design space, mesh perturbation, and gradient-based optimization.
SYN107 is capable of handling wing-body and wing-alone configurations. In addition to free-surface designs,
SYN107 has been recently enhanced to include a geometry engine based on 3"%-order B-Splines and IGES
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output, which provide a bridge to CAD without loss of information. In a similar manner to SYN83, SYN107
uses a smoothed-steepest-descent (Sobolev) approach to maneuver through the allowable design space. A
local optimum is found when the constrained gradient vanishes. In practice, a complete SYN107 optimization
process is only about one-order-of-magnitude greater in cost than the cost of a single analysis.

The next section provides brief descriptions of two additional CFD methods utilized herein.

3 CFD Analysis Methods

In the present study, two well-validated CFD methods are utilized, namely OVERFLOW and FLO82. The
OVERFLOW code is used within the MDOPT and CMA-ES optimization environments as the function call.
FLO82 is used to perform extremely-accurate and independent cross-analysis assessments of the NACA0012
designs of Section 6.

We cannot emphasize the importance of conducting independent cross-analyses of any/all designs defined
by an optimization process. Optimizers prey on the weaknesses of the CFD method and will exploit these
deficiencies to find improvements that are not real. No matter how well one thinks his CFD method has
been validated, validation comparisons can benefit from compensating errors, while an optimizer will align
errors to realize an artificial gain. Hence, perform the cross analyses! Especially if your design is to be used,
such as for a wind-tunnel or flight test.

OVERFLOW [5] is a general-purpose CFD method developed by NASA in the early 1990s. OVERFLOW
is capable of solving either the three-dimensional Euler or RANS equations using multiple overset structured
grids. It can be applied to very complex geometries. For the NACA0012 model problem, OVERFLOW
is used to solve the two-dimensional inviscid compressible flow about symmetric non-lifting airfoil sections.
Here, only the upper-half plane of the grid is used, and a symmetry boundary condition is applied along the
x-axis forward and aft of the airfoil.

FLOS82 [6] is a cell-centered Euler method based on an O-mesh. Upwinding is provided by the H-CUSP
dissipation scheme of Jameson [7]. FLO82 also has a provision to enforce symmetric flow solutions if an input
flag regarding geometric symmetry is enabled and if the angle-of-attack is identically zero. We make use of
this feature for the solutions of Section 6. In particular, the analysis process used herein is based on that of
Vassberg [8, 9]. Here, an extremely dense and high-quality conformal O-mesh is constructed about the airfoil.
The cells of this mesh are unity in aspect ratio. Figure 2 provides a typical O-mesh with cell dimensions
of (256x256). Although not shown, the farfield boundary resides about 150 chord-lengths away from the
airfoil. A sequence of grid levels is used to establish grid-convergence data, which is then post-processed
with Richardson extrapolation to estimate continuum results. The finest grid in this sequence is dimensioned
(2,048x2,048) cells. Note that this finest mesh is equivalent to inserting an additional chess-board of (8x8)
cells inside each cell of Figure 2. Figures of FLOS82 results are presented on this finest mesh. Tables of
FLOS82 data include drag levels for a grid sequence of ni = nj = [256 , 512, 1024 , 2048 , Continuum)].
Figure 3 provides typical convergence histories for FLO82 for each of these four discrete grids. These plots
include convergence of residuals (R), lift (L), drag (D), and number of supersonic points (S). In the case of
lift and drag, ”Error” is defined as |C; — Cipast| and |Cq — Cyrast|, respectively. Note that the residuals
reach machine-level zero for all grid levels. Further, drag is converged to within 0.01 counts of the final value
when the drag curve falls below Log(Error) < —6. Although these convergence histories are representative
for normal cases, some of the designed airfoils of Section 6 experienced convergence stall of residuals on the
4-million cell mesh. For the NACA0012 cross-analyses, the FLO82-based process provides a very accurate,
independent assessment of the aerodynamic performance of the various airfoils under discussion.

The next section describes in some detail the anatomy of an airfoil and how a stack of airfoils is as-
sembled to define a wing geometry, and provides some practical and aerodynamic considerations for the
parameterization of an aerodynamic design space.

4 Anatomy of Airfoil Sections

In order to be effective in architecting the parameterization of a design space, one must fully understand the
geometric characteristics which are important to capture. However, this is problem dependent, so one must
find his own way for his particular situation. To help illustrate the process, we provide an in-depth review
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of the anatomy of an airfoil and how a stack of airfoils is assembled to define a wing geometry. We also
address some of the practical issues associated with common practices for geometric definitions of airfoils and
wings. Finally, we consider some aerodynamic requirements for good design that we want to build directly
into our design space and its parameterization. This awareness of the requirements will ultimately aid us in
developing parameterizations of aerodynamic design spaces that will be well suited for our needs.

Airfoil Stack Background

Airfoil sections are the most important building block of aerodynamic geometry. Airfoils are used to define
wings, pylons, nacelles, struts, winglets, feathers, horizontal stabilizers, verticals, propellors, turbomachinery
blades and stators, cowls, blimps, sailboat sails, keels and ballast-bulbs, cascades, helicopter rotors, fins,
chines, strakes, vertical/horizontal-axis wind turbines, flaps, frisbees, and boomerangs. Such broad use of
airfoils to define aerodynamic geometry is accompanied with a diverse set of requirements. To start with,
an airfoil section is planar; more specifically, it is not a generalized three-dimensional space curve such as
that of a wing-body intersection line! It is comprised of a chordline, upper- and lower-surface contours, a
leading-edge point and a trailing-edge point. The average of the upper and lower surfaces define the airfoil’s
camber line. The absolute difference of the upper and lower surfaces define the airfoil’s thickness distribution.
Airfoils are often characterized by their maximum thickness and maximum camber values. Max-thickness and
cross-sectional area affect structural weight and fuel volume. Camber levels influence high-speed performance
metrics such as %. Leading-edge radius and max-thickness affect low-speed performance metrics such as
Crimaz- Surface curvatures might be limited by manufacturing processes. And the list of considerations go
on and on.

A wing geometry is defined in the wing reference plane (WRP). In the WRP, the projection of the wing
leading-edge line, wing trailing-edge line, and theoretical tip define the wing planform. The wing planform
extends to the symmetry plane. It is customary to place the symmetry-plane-leading-edge-point at the
origin. Wing planforms are typically characterized by leading-edge sweep, quarter-chord sweep, planform
breaks, wing span, wing area, taper ratio, mean-aerodynamic chord (MAC), etc. Some of these quantities
are reference values that are defined differently from company to company. For example, the wing area
and MAC might be based on the gross planform, or the outboard trapezodial planform extended to the
symmetry plane, and other conventions exist. In any case, the detailed geometry is defined by affixing a
stack of airfoils to the planform in the WRP. The stack of airfoils are provided at a minimal set of distinct
defining stations. It is customary for the first defining station to be at (or near) the symmetry plane, and the
last defining station to be at the wing’s theoretical tip. These defining stations are constant spanwise cuts in
the WRP; the corresponding airfoil defining planes are perpendicular to the WRP. Each nondimensionalized
2D airfoil is rotated by an incidence, translated to the defining station leading edge, then scaled to match the
projected planform chord. The airfoil stack is typically sheared vertically (normal to the WRP) to conform
to some desired trait, such as to accommodate a straight hinge-line for a control surface, or to minimize
spanwise surface wavyness, or some combination thereof. Wing bending can be approximated with a simple
shearing of the airfoil stack in the WRP. Surfacing the wing in the spanwise direction of the airfoil stack
is handled in a number of manners. A common practice is to linearly loft the surface between each pair of
rigged airfoils of neighboring stations. Alternatively, one can perform nonlinear lofts across all rigged airfoils
of defining stations between planform breaks. If no planform breaks are present, then a nonlinear loft from
root-to-tip is possible. Once the wing surface is fully defined in the WRP, it is then transformed to the
fuselage reference plane (FRP) with dihedral rotation and rigging translations. Once rigged into the FRP,
the wing-body intersection line is established, and the unexposed wing is trimmed away.

Now that a basic overview of airfoil and wing geometry definitions has been provided, some additional
practical issues are now considered.

Practical Considerations

So where do we start? Will a pristine analytic geometry be handed to us? Probably not. Rather, existing
geometry comes in all forms and fashions. For example, in the classic book by Abbot and von Doenhoff [10],
a number of NACA airfoils are defined by analytic equations, and other analytic geometry definitions can
be found in CAD parts, and IGES or STEP files. Yet not all geometry definitions are analytic, and not all
analytic definitions are clean. Various AGARD Reports and websites provide airfoil geometries in discrete
forms via a table of point coordinates for upper and lower surfaces.
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For example, consider the RAE2822 airfoil as defined in table form by the UTUC Airfoil Database [11].
Figure 4 illustrates the discrete set of 65 upper and 65 lower airfoil coordinates as provided by this website.
Implied in their table is that the airfoil leading-edge (LE) point resides at the origin, and its trailing-edge
(TE) point coincides with (z,y):. = (1,0). Not all discrete data comes in such clean form. It is common for
collaborators to share wing geometry definitions via surface grids which were generated for CFD analysis
without explicitly maintaining a grid line along the leading edge. This can become problematic if your
design-space parameterization assumes that the leading-edge and trailing-edge points are accurately defined.
Conversely, if your parameterization does not make use of any knowledge of where the leading-edge point is,
then other issues can arise.

So the first basic element of airfoil anatomy that we will address is how we define the chordline which
connects the leading- and trailing-edge points. Firstly, we do not assume that the trailing-edge geometry
closes to a point, but rather, and in general, that it can terminate with a finite blunt base. Note that this
definition accommodates a sharp trailing edge if the base height is zero. It also allows for the possibility
of buildable divergent trailing-edge (DTE) shapes. Hence, to allow for a blunt base, we define the trailing-
edge point as the average of the upper and lower airfoil surface termination points. Secondly, we define
the true leading-edge point as the point on the continuous airfoil contour that maximizes the chordline.
However, as noted above, our discrete set of airfoil coordinates may not contain the true leading-edge point,
and therefore, will not capture the true max-length-line (MLL) chord. Since it is important to accurately
identify the true chordline, we outline a process that reconstructs it from a set of discrete points. This
procedure is second-order accurate and seems to be quite adequate in practice.

Figure 5 illustrates a zoomed-in view of the leading-edge region with 9 discrete airfoil-defining points
depicted by asterix symbols. We first scan the set of discrete points to locate the discrete point which
is farthest from the trailing-edge point. In the figure, this is labeled as Discrete LE; this also defines the
Discrete MLL. We then fit a circle through the Discrete LE point and its upper- and lower-surface neighboring
points. The farthest point from the trailing-egde point to the resulting 3-point-fit circle is now assumed to
be the true leading-edge point for the airfoil. This True LE point is located by constructing a line which
connects the trailing-edge point with the center of the fit circle, and then extending this line forward by the
radius of the circle. This extended line is now used as the True MLL chord for the discrete set of points. It
is important to note that by this definition, where the concept of a MLL is used to define the LE point, an
airfoil contour cannot extend beyond its containment circle. This containment circle is centered at the TE
and its radius is the airfoil chord-length. Hence, the combined contour of an airfoil with an ice-horn shape
cannot be defined in this design space.

Once the true chordline has been identified, it is a simple matter to transform the planar airfoil shape into
nondimensional form by translating the LE point to the origin, then rotating it to align the chordline with
the x-axis, and then scaling it by the inverse of the chord-length. This puts the TE point at (z,y):. = (1,0).
It is convenient to put the airfoils of a stack into their nondimensionalized system as certain geometric
constraints are fairly constant in nondimensional form. For instance, the optimum trade between wing
sweep, nondimensionalized thickness/camber and lift coefficient for a cruise Mach number is fairly constant
across large variations of aircraft sizes and types. Other constraints can be considered such as the 1-in-10 rule
near the trailing edge to preserve structural integrity. Once the set of nondimensional geometric constraints
have been enforced on the airfoil geometry, the airfoil stack is transformed back to its rigged position in the
WRP system. Here, remaining constraints such as enforcing a straight hinge-line can be adhered to with
vertical shearing of the airfoil stack. Finally, the wing is resurfaced and rigged into the FRP system.

Refer to Figure 6 and Eqn (1) as we continue our discussion on the anatomy of airfoils. Specifically, these
data are associated with our best-fit B-Splines for the RAE2822 airfoil coordinates as provided by the UITUC
website. In the figure, the bold lines depicit the airfoil geometry, the large-radius circular arc at the leading
edge is the containment circle, the very-small-radius circle captured inside the airfoil contour at the leading
edge is the osculating circle; this conveys leading-edge radius, Ry . The curve above the airfoil upper surface
is the thickness distribution. Displayed on this curve is a tic mark which shows location and value of T'max.
Just below this tic mark is a vertical line that connects the airfoil upper and lower surfaces, also providing
information regarding Tmaz. The straight horizontal line connecting leading- and trailing-edge points is the
chordline. Close to and above the chordline is the camber line; in between these lines is a small vertical line
which gives location and value of Cmax. Finally, the inflection point of the airfoil lower-surface contour is
indicated by a tic mark. Values of these properties of the RAE2822 are provided Eqn (1).
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Rrg = 0.008554,

(X,T)rmaz = (0.379526, 0.121108),
(X,C)emax = (0.757536, 0.012641),
(X,Y,0) nfiec = (0.65848, —0.02927, 8.29056°). (1)

Recall that we start the design process with some form of geometry definition being provided. No matter
the initial state of this definition, once we extend the effort to put the geometry into a nice, clean form,
we will want to keep it in a clean and transferable form for the duration of our design work, as well as to
share the geometry with others, and for archival purposes. To emphasize, all of this should occur without
incurring any loss-of-translation during any of the transfers of geometry. In order to comply with this
requirement, for all practical purposes, this essentially requires that the absolute geometry be analytically
defined. We note that an accurate representation of an absolute geometry can require a parameterization
of relatively-high dimension. This can pose a real dilemma if the cost of optimization adversely scales with
design-space dimension; this is the case with many popular optimization methods. Therefore, it may be
necessary to utilize a coarse parameterization to perturb the design variables of the dense parameterization,
which is needed for the accurate absolute geometry representation. Fortunately, many techniques have been
developed to address this issue, and they are well documented in the literature.

With some of the practical considerations now understood, we now turn our attention to understanding
some basic aerodynamic requirements.

Aerodynamic Considerations

A good aerodynamic design is usually characterized by smoothly-varying pressure distributions throughout
the flowfield domain. For transonic or supersonic flows, it may be impossible to remove all shocks from the
field. Nonetheless, beyond the local proximity of shocks, it is still advantageous to achieve flowfields with low
pressure gradients wherever possible. In subsonic regions of the flowfield domain, the local surface pressure
is strongly dictated by the local streamwise curvature of the surface. In supersonic regions, the local surface
pressure is driven primarily by the local streamwise slope of the surface. In both flow types, spanwise slope
or curvature has little effect on surface pressures. Hence, to accommodate both types of flows, it is desirable
(or even essential) that curvature continuity is explicitly built into the parameterization of an airfoil shape.
In addition, it is desirable that the property of local control be built into the parameterization of the design
space. These two properties can be achieved with cubic B-Splines, or a string of cubic Bezier curves which
preserve curvature across end-points. Use of higher-than-third-order curves is not necessary for aerodynamic
reasons, and the extent of control grows with curve order, therefore, cubics provide an optimal capability for
aerodynamic geometry representation.

Now that we understand the basics of airfoil and wing geometry, and have considered some practical
issues, as well as thought through a few basic aerodynamic requirements, it is time to get into the details of
parameterizing the aerodynamic design space.

5 Design Space

This section provides a brief overview of three types of design spaces utilized in the sample cases of this
lecture. In order to show why the property of local control is desirable for the parameterization of a design
space, we provide a counter example where a parameterization with global control is utilized instead. In
the Bezier Family described below, a single Bezier curve defines the airfoil. Degree Elevation is used to
increase dimensionality of the design-space parameterization. This ensures that any airfoil geometry in an
M-space also exists in the N-space, where 3 < M < N. Specifically, this design-space parameterization
was developed to challenge the robustness of MDOPT’s Response-Surface-based optimization capabilities.
The second design space is a full parameterization of the geometry by means of a free surface. The third
design-space parameterization discussed herein is based on cubic B-Splines. The last two parameterizations
have the property of local control.
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Bezier Design-Space Family

Bezier curves are utilized specifically for the NACA0012-ADO model problem of Section 6. Following the
approach of Vassberg [12], a baseline Bezier curve for the NACA0012-ADO airfoil is established. Here, the
thickness distribution of the NACA0012-ADO airfoil, given by Eqn (12) over the interval 0 < z < 1, is
optimally approximated by a 4*"-order Bezier curve as follows.

Consider a 2D Bezier curve parameterized by 0 < u < 1, where u = 0 represents the airfoil leading edge
(LE), and u = 1 its trailing edge (TE). Also constrain the slope of this curve to be vertical at the LE, hence
% = 0 and % #0at u=0. A 4"-order Bezier curve conforming to these conditions has control-point
coordinates:

xepto =0, xept; =0, xepty =1,
yepto =0, yepts #0,  yepty =0 (2)

This leaves 5 free variables in control-point coordinates that can be manipulated to define a best-fit curve.

Now let I be a cost function that provides a measure of the geometric difference between the Bezier curve
and the NACA0012-ADO airfoil, defined as:

1
I= / (1) — v ((w))]? du 3)

Here, yr and yx are the best-fit Bezier curve and NACA0012-ADO equations, respectively. A minimization
of this cost function yields a best-fit 4*"-order Bezier curve, which we have designated Bez4-0012-ADO. The
control points of Bez4-0012-ADO are provided in Table 1. Figure 7 illustrates the Bez4-0012-ADO airfoil
shape, and its corresponding control points and hull. Note that the y-coordinate is amplified for clarity.

Table I:

Bez4-0012-ADO Control Points.

| n || xepty, | yept,-Fit |
0 {| 0.0000000 0.0000000
1 || 0.0000000 0.0256211
2 || 0.0308069 0.0438166
3 || 0.1795085 0.1135797
4 (| 1.0000000 0.0000000

The control points of Table I minimize the cost function of Eqn (3) as:
Lin = 0.9497 % 1075, (4)

A 4% _order Bezier curve defined by the control points of Table I provides a close approximation of
the NACA0012-ADO airfoil. Figure 8 provides the geometric difference between this Bezier curve and
the NACA0012-ADO airfoils. Since only the 3 interior control points are allowed to vary, this represents
a design space of 3 dimensions. However, in order for the design space of the present work to exactly
include the NACAO0012-ADO airfoil, a perturbation technique is applied instead of an absolute geometry
representation. Here, the x coordinate of the control points of Table I are retained, while the y coordinates
define a perturbation Bezier curve which is added to Eqn (12) to define an airfoil shape. Hence, airfoil
geometries within the Bezier design space are defined as:

yp(u) = yp(u) + yn(z(w)), (5)

where yp defines the design shape, yp is the perturbation Bezier curve, and yy represents the baseline
NACAO0012-ADO geometry. Note that the baseline airfoil is recovered when the design vector is zeroed.

In order to enforce a thickness distribution constraint, where the design airfoil is at least as thick as
the baseline section, the perturbation Bezier curve, yp, must be non-negative over the interval 0 < u < 1.
Hence,

yp(u) >0 ; 0<u<l. (6)
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A fall out of Eqn (6) requires that the first and last design variables are strictly non-negative.
yept; >0, yepty > 0. (7)

Here, ycpt is the y value of the Bezier control point, and N is the dimension of the design space, where the
order of the Bezier curve is K = N + 1. For instance, a 4**-order Bezier curve has N = 3 and K = 4.

Note that these control points are defined with respect to the absolute geometry of the baseline design.
As we will find, the optimum shapes of Section 6 are not efficiently represented by this x-distribution of
control points. In retrospect, a much more effective parameterization of this design space would have been
based on a more uniformly-distributed set of control points. Since the approach adopted here to define the
design geometries is based on the perturbation of Eqn (5), for the 4"-order Bezier curve, this would only
require that the xcpts of the interior control points be placed at quarter-chord intervals.

Bezier Degree Elevation

To achieve higher dimensionality, an infinite family of design spaces is constructed. This family has the
property that all possible airfoil shapes supported by its M-space are fully contained in its N-space, where
3 < M < N. Recall the Bez4-0012-ADO airfoil with control points given in Table I. For the aerodynamic
shape optimizations performed in this study, only the internal ycpts (yept,,1 < n < N) are used as design
variables. Here, N is the dimension of the design space, and K = N + 1 is the order of the Bezier curve
associated with the N-space. For example, a 4'"-order Bezier curve is defined by 5 control points (0 < k <
K = 4). Since only the internal ycpts (yept,; 1 < n < N = 3) are used as design variables, an arbitrary
4th_order Bezier curve pinned at the LE and TE end-points with fixed zcpts locations given by Table I defines
our 3-space.

In order to satisfy the property that any M-space is a subset of any N-space, where 3 < M < N, we utilize
a recursive degree elevation of the Bez4-0012-ADO baseline airfoil. This process is illustrated in Figure 9,
where the control points of Bez4-0012-ADO are elevated from its native 3-space to an equivalent airfoil in
4-space. In general, elevating a K*"-order Bezier curve to (K + 1)*-order has control points given by the
following recursive formula.

(K+1) _ (_k (K) | (BEAL-kY 00, <<
B, —<K+1>Bk1+< K1 B,"; where0 <k < K+1. (8)

Here, BY) and BE+Y represent the control points of the K*"-order and (K + 1)*t-order Bezier curves,

respectively. Note that while B(fi) and B%i)l do not exist, their weighting factors per Eqn (8) are zero.

Free-Surface Design-Space

SYNS83 and SYN107 perform optimizations on a free surface, where every surface point in the grid is allowed
to be independently perturbed normal to the surface geometry. If the airfoil surface is defined by N sur-
face points within the grid, then the free surface has N design variables defining the design space. This
represents the highest supported design space possible by the discrete grid, and is commonly referred to
as full-parameterization throughout the literature. The SYN83 and SYN107 results presented herein use
N =513 and N = 5,313, respectively.

There are both advantages and disadvantages to using a free surface for the design space. On the plus
side, a full parameterization does not artificially constrain the design, and therefore, can provide the best
performance possible in a design optimization. However, this is not always the case, as it can also provide
more local minima on which a gradient-based optimization can converge. Other disadvantages include
difficulties in the rigorous enforcement of geometric constraints, as well as in the loss-of-translation when
transferring the optimum free-surface shapes to CAD or other tools utilized in the design process.

B-Spline Design-Space

In order to provide an interface with CAD systems, without loss due to translation, SYN107 has been recently
enhanced to include a high-dimensional B-Spline surface representation. The B-Splines are defined in the
airfoil’s 2D nondimensionalized coordinate system. Each airfoil section is split into upper- and lower-surface
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curves. Third-order B-Splines of 33 control points are utilized to define each surface. The xcpt coordinates
of both are preset by a cosine distribution, as per Eqn (9).

zepty = 0,

1 n—1
rept, = 3 1 — cos

w>] 1<n<32 9)

Since the leading- and trailing-edge points are pinned, the first and last control points have ycpty = 0, and
ycptzo = :l:%TEBase. The remaining ycpt coordinates of each B-Spline are defined with a least-squares fit
of their corresponding grid points. These curve-fits are constrained such that the upper-lower B-Spline-pair
preserve curvature continuity at the leading edge. Curvature continuity at the LE requires ycpty = —ycpt].
Finally, the original free-surface points are projected to the B-Spline representation and the optimization
process continues as normal. This capability provides SYN107 with an internal, mathematically-rigorous
representation of the wing geometry. This geometry representation is analytically interrogated for airfoil
thickness, camber and curvature distributions, which are then used to enforce any of the typical geometric
constraints imposed on wing design. SYN107 results presented herein, based on its B-Spline geometry engine,
use N =2 x 31 x 33 = 2,046 adjustable control points.

Figure 10 illustrates the B-Spline fit of the RAE2822 airfoil coordinates from Figure 4. The corresponding
control points that result from this best-fit are shown in Figure 11. To illustrate the extent of control that
a control point has on the curves, Figure 12 depicts a grid overlaying the RAE2822 B-Splines. Each curve
segment between grid lines is influenced by only 4 control points, which are located approximately at the
intersection of the vertical-grid-lines and the B-Spline curves. Figure 13 provides a close-up view near the
RAE2822 leading-edge region and includes the original discrete coordinates (small asterix), the control point
(bold dots), the B-Spline curves (bold lines), the curve-segment grid, the chordline, and the osculating circle
at the leading-edge point. Figure 14 provides a close-up view near the RAE2822 trailing edge with similar
data, plus it includes the thickness distribution, and the camber line with its maximum value and location
indicated. Figure 15 provides the same close-up view near the RAE2822 trailing edge, however with only
the original airfoil coordinates and the curve-segment grid shown. The reason for showing this last figure is
to touch on a point about the least-squares-fit process. Since the cubic B-Splines have the property of local
control, it is essential that the discrete coordinate data that is being fit have sufficient coverage. Figure 15
clearly shows that there are about two discrete airfoil coordinates per curve segment per surface, whereas the
absolute minimum coverage necessary is one discrete point per surface per curve segment. Hence, the data
sampling provided by the UTUC website is more than sufficient for our least-squares fit to be well behaved.
If insufficient discrete data is available, an over-sampling of the data may be required for a best-fit to be
possible.

This concludes our introductory and backgound discussions on parameterizing an aerodynamic design
space. We now turn our attention to reviewing three investigations of aerodynamic shape optimization. The
first of the three sample cases is presented next.

6 NACAO0012-ADO Invisicd Non-Lifting Airfoil

This section provides the first of three sample cases being discussed within this lecture. At first glance, this
sample case would appear to be the simplest of the three. After all, it is a 2D inviscid-flow problem, whereas
the other sample cases involve 3D viscous flows. As it turns out, this is far from being a simple test case, and
as such, it is the subject of on-going research by members of the AIAA Aerodynamic Design Optimization
(ADO) Discussion Group. In addition to our research, please see studies by Bisson [13] and Carrier [14].

Model Problem

The model problem of this optimization is to mimimize the drag of a symmetric airfoil, for an inviscid
transonic flow at the condition of M = 0.85, and a = 0°, subject to the geometric constraint:

yOptimum(x) Z YBaseline (I) ; 0 S X S 1. (10)
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Eqn (10) requires that the thickness distribution of the baseline airfoil is maintained at every point along
the chord. Note that the flow physics of this model problem is such that the only true source of drag is
that associated with any shocks that may arise. The problem is based on one crafted by Vassberg [12],
with an anticipation that a shock-free design at these flow conditions and under these geometric constraints
is unachievable. This two-dimensional inviscid compressible flow problem is chosen to provide a nonlinear
objective function, yet one that only requires moderate computational costs to evaluate. With the inexpensive
nature of computing the objective function, it is feasible to survey a wide range of design-space dimensions.
However, as we will show in our results, this simple optimization problem turns out to be a pathologically
difficult test case. This test case was developed by the first author with the intent to challenge (break)
aerodynamic optimization methods; more specifically, to expose their weaknesses and identify where further
research is required. In this respect, this test case has been quite successful.
The next section describes the baseline NACA0012-ADO geometry.

NACAO0012-ADO Baseline Geometry

This section provides a description of the baseline airfoil utilized in this study. This geometry is based on

the symmetric NACAO0012 airfoil section, however with the closed trailing-edge modification suggested by

Nadarajah [15], which is an improvement to that originally proposed by Vassberg [12] in earlier work.
Abbott and von Doenhoff [10] give the analytic equation defining the NACA0012 airfoil as:

0.12

yn(z) = iﬁ

(0.2969+/z — 0.1260z — 0.35162” + 0.2843z" — 0.1015z"), 0 <a < 1. (11)
The numerator of the lead terms in Eqn (11) (i.e., 0.12) is the maximum thickness of the airfoil. The standard
NACAO0012 airfoil is defined over the interval: 0 < z < 1. However, at & = 1, the y coordinate does not
vanish, and therefore, the trailing edge is not sharp, but rather has about a 0.42%-thick blunt base.

In order to avoid issues related to the solution of inviscid flows about aft-facing steps, Vassberg [12]
extended the airfoil chord to the local root of Eqn (11) which occurs at z ~ 1.0089. For this ADO test
case, Nadarajah [15] suggested instead that the airfoil definition of Eqn (11) be modified by changing the
coefficient of the z# term such that a sharp trailing-edge is recovered at x = 1. The resulting analytic
equation which defines the NACA0012-ADO airfoil shape is:

0.12
ya(x) = £ (02969 — 01260z — 0.35162% + 0.28432° — 0.10362), 0 <z <1. (12)

NACA0012-ADO Results

A fairly significant effort has been devoted to this test case, and many optimizations have been performed
by a number of researchers. At first impression, this model problem seems trivial. As it turns out, this is
instead a very difficult problem. The flow about the resulting optimum airfoils becomes nearly singular, and
as such, presents many issues uncommon to our regular applications of aerodynamic shape optimization. In
fact, it seems that the better the optimization, the more pathological the problem becomes. To this end, we
document optimization runs with MDOPT, CMA-ES evolution strategy, SYN83, as well as include select
results from other investigations. Cross-analyses of several of the optimum designs are provided by FLOS&2.

MDOPT Results

Included in this section are previously-attained results by Vassberg, et.al. [12]. Although the model problem
of this previous study is not exactly that of the NACA0012-ADO test case, it is so similar that the influence of
parameterization on each problem yields very similar characteristics. Furthermore, this prior work described
a situation that one should avoid when formulating the design space. This trap will be discussed here for
the reader’s benefit. The original study was conducted in three chronological phases. The first phase was a
discovery exercise for the first author (and colleagues) to become familiar with MDOPT. The second phase
introduced a SYN83 optimization to provide an optimum airfoil from a very-high-dimension design space.
This effort was performed independently by the second author without knowledge of the Phase-I results.
The performance of this optimum airfoil was then used as a goal to achieve in Phase-III. The third phase
revisited the MDOPT investigations, however, this time with insight of the results of SYN83 in Phase-II.
This extra knowledge made a significant difference.
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As noted above, the first phase was a discovery exercise. Here, many complete optimizations were
conducted (and completely disposed of) before self-consistant results were attained. Note that the optimum
drag level obtained in any N-space should be no worse than that achieved in any M-space, if 3 < M < N.
Initially, to obtain this behavior (or close to it) required much effort. Specifically, the range of the design
variables had to be manipulated. If the user-defined range of a design variable (DV) is set too small, or
not well centered, then the region of the design space studied may not contain the global optimum. Yet,
if the ranges of the DV's are too large, then the response surface from the design of experiments (DOE)
can become so inaccurate that only false optimums are pursued. Unfortunately, the pertinent information
required to set such ranges is occasionally not known a priori; it is accumulated with applied experience on
a given class of problems.

As DOEs and Response Surfaces are frequently used thoughout the literature, a note about how their
computational expense scales with design-space dimension is in order. The number of coefficients defining
a quadratic response surface is: NCoef = w. Further, the computational effort required to
determine the coeflicients for a response surface scales with the number of unknowns cubed. Hence, the build
time of the DOE response surfaces is O(NDV®). Collected data are tabulated in Table I and illustrated in
Figure 16. This figure shows that the asymptotic slope of the trendline is 6.0, and hence, is consistent with
that expected. Note that the data of Table II does not include the time required to evaluate the objective
functions of the DOE, where the number of cases in a DOE must be greater-than or equal-to the number of
the unknown coefficients. Hence, NDOE = O(NDV?).

Table II: DOE Response-Surface Build Times.
| NDV || NCoef | No. DOE Cases | CPU (sec) |

6 21 121 7
12 78 256 157
24 300 929 3,341
36 666 1,369 38,042

Figure 17 shows a comparison of the convergence histories of best airfoil shapes for [6,12,24,36] design
variables. In this figure, note that the starting point of each curve represents the number of cases in the
initializing DOE. As aforementioned, the size of the initial DOE scales as NDV?2. In general, note that as
the design-space dimension increases, the number of cases required beyond the initial DOE for convergence
also increases, while the drag of the optimum geometries improve, at least until the 36-space result. The
interesting characteristic of this trend is that the drag of the optimum in 36-space is worse than that found
in 24-space. Since all supported geometries in 24-space are fully contained in 36-space, one explanation for
this reversal is that the optimization process simply has not yet found the optimum geometry, even after
2,324 cases have been analyzed. This could also be a consequence of the user-specified range on DV's in
36-space inadequately capturing the pertinent geometries of the 24-space run.

In the second phase, the last author conducted an independent SYN83 optimization on the model problem.
This effort was performed without knowledge of the MDOPT results of Phase-I, and therefore, was conducted
as a blind test. Since the design space for SYNS83 is essentially the highest dimensional space supported by
the discrete grid, it was anticipated that the performance of the resulting optimum airfoil could provide a
limit to what is achievable. Figure 18 provides a FLOS82 solution for the optimum airfoil derived by SYNS83.
This airfoil has been designated BJ5XE. The shock strength of the optimum airfoil is much diminished
relative to the baseline. According to SYN83, the drag coefficient for the BJ5XE optimum airfoil is about
104.4 counts, yielding a total reduction of more than 350 counts relative to the baseline airfoil. This finding
is significantly better than anything discovered in Phase-I.

Due to the large disparity between the results of the first two phases, a third phase was initiated to
reopen the MDOPT study of Phase-I. Comparison of the BJ5XE airfoil with optimum geometries of Phase-I
uncovered the issue. The TE included-angle of BJ5XE was much larger than that of any of the Phase-I
optimum airfoils. While the optimum airfoils of Phase-I came close to the TE included-angle constraint,
they did not reside on this constraint boundary. As a consequence, it was not obvious at the time that this
constraint was an issue. By relaxing the constraint on the TE included-angle, as well as implementing other
lessons learned, the results of Phase-I11 now align well with those of Phase-II. Although our final results from
the last two phases compare well with each other, yielding designs with drag levels of just over 100 counts,
we will see that more recent optimizations have produced airfoils with much less drag.
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Figure 19 shows a comparison of the convergence histories of the best airfoils for [3,6,12,24,36] design
variables in Phase-III. In general, as the design-space dimension increases, the drag of the optimum geometries
monotonically improves. Further, the number of cases required to achieve convergence increases with NDV'.

Table III tabulates the final optimum-drag values obtained in Phase-III as a function of design-space
dimension. The baseline airfoil result corresponds to NDV = 0.

Table III: Phase-III MDOPT Results.

| NDV || No. Cases | Optimum Case | Cpopt |
0 1 - 468.9
3 546 359-1 312.5
6 1,349 1281-1 221.5
12 1,787 1729-1 139.5
24 2,377 2315-1 117.6
36 3,034 3020-1 103.8

Figure 20 provides a comparison of the baseline airfoil (solid line, no symbol), with the best airfoil shapes
for [3,6,12,24,36] design variables (open symbols), and includes the SYN83 BJ5XE airfoil (solid symbol). The
Y coordinate is amplified to enhance visual comparison. It was gratifying to see that the optimum airfoils
of Phase-IIT were approaching BJ5XE as the dimension of the design space increases.

Figure 21 provides a comparison of the pressure distributions of the baseline airfoil with those of the
optimum shapes for [3,6,12,24,36] design variables. It is interesting to note that the shock strengths of each
of these geometries appear to be essentially the same. The pressure level just upstream of the shock is
Cp ~ —0.9 and jumps to a level of C}, ~ +0.1 just downstream of the shock. Yet the drag levels of these
airfoils range from about 100 counts to about 470 counts. To understand how this can be, one must inspect
the flowfield, not just the properties on the airfoil surface. Figures 18 & 22 illustrate the flowfield Mach
contours for the BJ5XE and the baseline NACA0012-ADO airfoils, respectively. Note that the shock of the
NACAO0012-ADO airfoil extends about 75% of a chord-length off the surface into the flowfield. Whereas
the shock system of the BJ5XE airfoil is comprised of two parts: 1) a strong normal shock adjacent to and
extending from the airfoil to about 5% of a chord-length into the flowfield, and 2) a weak curved shock which
extends from about 5%-t0-75% of a chord-length off the surface into the flowfield.

CMA-ES Results

For all optimizations based on CMA-ES, the Bezier design space was used and the design (perturbation) vec-
tor was initialized as a zero-vector with an isotropic search. Due to wall-clock constraints, higher-dimension
optimizations were unable to be completed. Figure 23 illustrates the convergence histories for N = [3,6,9].
Table IV and Figure 24 provide the convergence of optimum drag levels as the dimension of the Bezier design
space is increased. Table V gives the resulting optimum design vectors for N = [3,6,9].

Table IV:
CMA-ES/OVERFLOW Results (Cy in counts).

| N || Iterations | Population | Total Runs | Chopt | ACy |

0 - - 1 | 483.70 -

3 161 7 1,127 | 319.17 | -164.53

6 378 9 3,600 | 212.27 | -271.43

9 400 10 4,000 | 135.74 | -347.96

Table V:
CMA-ES Optimum Design Perturbation Vectors in Bezier Space.
[N yepts ] yepty | yepts | yepty | yepts | yepts | yepty | yepts | yepto |

3 || 0.054596 | -0.050248 | 0.026009
6 0.000000 | 0.111226 | -0.168611 | 0.182871 | -0.152965 | 0.085558
9 || 0.000000 | 0.094056 | -0.084422 | 0.049105 | 0.085296 | -0.237675 | 0.295685 | -0.239163 | 0.123469
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A curious behavior of this optimization method is that running a single iteration does not necessarily im-
prove the design. While sudden increases in the objective function are observed throughout the optimization
process, it is most pronounced for the first iterations. This appears to be the result of the random search
process being isotropic at this point with the standard deviation of the search being significantly larger than
what would be used for gradient estimation. During these first iterations, the algorithm is essentially em-
barking on a drunkard’s walk through the neighborhood around the initial vector until enough information
is gathered to meaningfully adapt the covariance matrix and begin the descent. Increases in drag later in
the optimization are the result of locally sharp changes in the gradient between iterations, which cannot be
efficiently navigated by a relatively large search area. The mean vector then overshoots the desired path,
and the algorithm needs to shrink the standard deviation and properly rotate the covariance matrix.

SYN83 Results

Two SYNS83 optimizations are presented on the NACA0012-ADO test case. The first initialized the seed
airfoil with the baseline NACA0012-ADO section, whereas the second used a well-designed airfoil as the
starting point. The resulting SYN83 design airfoils are referred to as SYN-NADOVO01 and SYN-NADOV02,
respectively. Note that both are local optimum designs. The SYNS83 optimizations are performed on a
C-mesh with cell dimensions of (768x128). Under this setup, these SYN83 optimizations required about 40
minutes of CPU time on a deskside computer with Intel Core i7 CPU 3.20GHz processors. Figure 1 provides
a close-up rendering of this mesh. In the first optimization run, SYNS83 reports the initial drag of the
NACAO0012-ADO airfoil as 456.34 counts, and the drag of the SYN-NADOVO01 section as 103.71 counts. In
the second optimization run, SYN83 computes a drag coefficient of 101.79 counts for the well-designed seed
airfoil, and 79.31 counts for the SYN-NADOVO02 optimum design. These SYN83 data as well as pertinent
deltas are provided in Table VI.

Table VI
SYN83 Results (Cy in counts).
| Airfoil | Cd | ACd |
Seed | NACA0012-ADO || 456.34 -
Design | SYN-NADOV01 103.71 | -352.63
Seed SEEDO02 101.79 | -354.55
Design | SYN-NADOVO02 79.31 | -377.03

Figures 28-29 provide surface-pressure distributions and field isobars about the SYN-NADOVO01 and SYN-
NADOVO02 designs, respectively. Examining these figures from a global perspective, it is interesting that
the resulting optimums are tending towards fore-aft-symmetric designs, where surface pressure distributions
and field isobar patterns are roughly mirror images of each other about /¢ = 0.5. Another interesting
observation is that the recompression of the Cp-peak near the leading edge is essentially isentropic; this is
accomplished by means of a very weak oblique shock. These characteristics of the optimum designs carry
through to the works of others, as will be shown at the end of this section.

FLO82 Drag Assessments

With all of the optimizations and flow solutions performed on this test case, one thing is evident, the
flowfield about any of the optimized airfoils is extremely sensitive to just about everything. This includes
grid, flow condition, discretization stencil, governing equation, etc. In an attempt to provide independent,
grid-converged drag levels for a complete set of airfoils under study, the FLO82 aerodynamic assessment
process of Vassberg [9] for inviscid transonic airfoils is utilized. For this test case, FLO82 is run with
upper-lower symmetry enforced. Table VII provides FLOS82 results for each airfoil on a grid sequence of
ni =nj = [256, 512, 1024, 2048 , Continuum], where the continuum result is a Richardson extrapolation
of the other data.
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Table VII:
FLO82 Drag Assessment (Cy in counts).

| Airfoil [ N256 | N512 | N1024 | N2048 | Continuum | ACy |
NACA0012-ADO [ 470.19 | 470.09 | 471.13 | 471.23 471.27 -
NADOTI01 || 487.50 | 488.20 | 488.48 | 488.58 488.62 | +17.35
CMAES03 206.90 | 204.30 | 204.66 | 204.79 204.88 | -176.39
CMAES06 194.24 | 189.00 | 189.48 | 189.68 189.82 | -281.45
CMAES09 116.85 | 103.95 | 101.78 | 101.77 101.77 | -369.50
SYN-NADOVOL || 153.78 | 123.24 | 119.03 | 118.34 118.21 | -353.06
SYN-NADOVO02 || 109.25 | 86.87 | 84.68 | 84.50 84.48 | -386.79
SYNTI101 122.22 | 99.20 | 96.75 | 96.64 96.63 | -374.64
SIVAFOIL 118.60 | 72.95 | 51.56 | 46.56 45.03 | -426.24

Under this setup, these FLO82 analysis runs required about 3 hours of CPU time on a deskside computer.
Also given in this table is the sensitivity of drag with respect to airfoil thickness for the baseline NACA0012-
ADO section. Here, the NADOT101 airfoil is the baseline thickness scaled by a factor of 1.01. Notice that
this 1% increase in thickness increases drag by 17.35 counts or by 3.68%. Hence, the flowfield about the
baseline geometry reacts in a nonlinear manner. A similar sensitivity is computed for the SYN-NADOV02
airfoil using SYNT101. In this case, a 1% increase in thickness increases drag by 12.15 counts or by 14.38%.
In nondimensional terms, drag for this airfoil is almost 4 times more sensitive than the baseline.

In spite of our best efforts, recent progress by other investigations on the NACA0012-ADO test case have
yielded airfoils with much reduced levels of drag. Select results from two of these studies are presented next.

Other Recent Progress

During the 2014 ATAA SciTech Conference, a special session on the ADO test cases was organized. With
permission, we present some select results from friends and colleagues based on the NACA0012-ADO test case
and pertinent to this lecture on the influence of shape parameterization on aerodynamic shape optimizations.

Figure 30 is a FLOS82 cross analysis of an optimum airfoil developed by Bisson and Nadarajah [13]. This
cross analysis was performed independently by the first author and is consistent with all of the FLO82 results
presented in this lecture. The drag data is included in Table VII above, labeled as SIVAFOIL. Note that this
airfoil has almost 50 counts less drag than the best design discovered by the authors. Another interesting
characteristic of the SIVAFOIL is that it exhibits a tight-double-shock system, as can be seen in Figure 30.

The work of Carrier, et.al. [14] is shown in Figures 31-33. The left side of Figure 31 provides the conver-
gence histories of drag for two similar optimizations where the distribution of control points were modeled
after Vassberg [12]. In both cases, 6 design variables were used. In one case, the shape parameterization was
a Tt"-order Bezier curve with 6 adjustable control points. In the other case, the same 6 adjustable control
points were used, however for a cubic B-Spline instead. The difference is quite astonishing; the optimum
Bezier airfoil converged to about 346 counts, whereas the B-Spline airfoil optimized at about 126 counts.
Although a complete understanding of the root cause for this is pending, we believe that much of it is
attributed to the global control of the Bezier curve as opposed to the local control of the B-Spline. The
right side of Figures 31 repeats this comparison, however, with evenly-spaced control points. Note that both
Bezier and B-Spline based airfoils improved. The Bezier airfoil is now reduced to about 201 counts, while
the B-Spline drops to about 91 counts. Figures 32-33 illustrate another systematic study showing how the
dimensionality of the design space affects final results. Here, N = [6, 12, 24, 36, 48, 64, 96]. These data
indicate that a minimum number of design variables needed to achieve reasonable designs is about 36. This
can be seen in the convergence of both pressure distributions as well as geometry, as depicted in Figure 33.

Recently, the authors have revisited this problem. However, this time with an updated version SYN82,
which is based on an O-mesh, whereas SYN83 is based on a C-mesh. We wondered if this might have an
affect, since the optimum airfoils for the problem tend towards having a nearly rounded trailing edge. As
it turns out, this has a dramatic affect on the outcome. In retrospect, the C-mesh topology is reducing
both the quality and resolution of the mesh near the trailing edge as the TE-included-angle gets very large.
As a consequence, SYN83 optimizations were prematurely stalling in their drag reductions. When we tried
this optimization with SYN82, the very first run reduced the drag to about 22 counts, and the only thing
required to reduce it further was to increase the number of design cycles. Figure 34 illustrates the result of

Vassberg & Jameson, VKI Lecture-III, Brussels, Belgium, 16-20 May 2022 15 of 55



a SYN82 optimization based on a (2560 x 512) O-mesh topology after 2500 design cycles. For this run, the
drag has been reduced to just under 5 counts. We have run cases out much further and the improvement
monotonically approaches zero drag. An interesting artifact of these optimizations is that we have not been
able to verify the low-drag-branch solution at M = 0.85 with any other mesh than on the mesh used for
optimization, and we have tried numerous variations of O-meshes. When we perform a Mach sweep from
above, the dragrise trends towards the low-drag value, but it jumps to the high-drag branch just before
reaching the design Mach number. The investigations on this problem may never end.

This concludes our discussion on the NACA0012-ADO test case. The next section provides a discussion
on an ONERA-MG6 sample problem.

7 ONERA-M6 Non-Lifting Viscous Wing

The second example case we present in this lecture is a three-dimensional non-lifting viscous-flow problem
based on the benchmark ONERA-M6 wing at flow conditions M = 0.923, a = 0°, and Ren = 20z106.
Here, we conduct three drag minimizations with varying thickness constraints. In all three optimizations,
the maximum thickness of each airfoil section is maintained, however the chordwise thickness distribution is
only partially maintained. For the purpose of this demonstration, SYN107 is run with its B-Spline design
space and arbitrarily terminated after 50 design cycles. The objective is to minimize total drag, subject to
the following geometric constraints.

Tmazx g,
[0.95, 0.90, 0.50] * T'dist - (13)

Tmazqpt

2
Td?;Stopt Z

Figure 35 provides the convergence history of total drag as a function of design cycle. Initially, the drag
drops in a comparable manner for all three optimizations over the first 5 design cycles, then the 0.95 % T'dist
optimization departs while the other two remain comparable until the 10" design cycle, after which the
three histories assume unique paths. This behavior is caused because the T'dist constraints become active at
various stages of the optimization. In fact, the 0.50*T'dist constraint is inactive throughout its optimization,
however the T'max constraint is always active.

Figure 36 provides a comparison of the pressure distributions between the baseline ONERA-M6 and
optimized wings. Note that the first and second optimizations yield pressure distributions with double-shock
systems. The presence of the forward shock is a consequence of the T'dist constraint. The third optimization
is characterized with a fairly-weak single-shock system made possible by the inactive T'dist constraint.

Figure 37 provides drag-loop comparisons as a complement to Figure 36. We note that drag loops relate
to pressure drag only, and not to skin-friction drag. Since drag loops are foreign to many readers, we will
provide a short discussion on this topic. For this lesson, lets extract the drag loops of the 81.3% semispan
station of Figure 37. Figures 38-39 illustrate the drag loops for the ONERA-M6 and [Tmaz + 0.50 * T
wings, respectively. However, these loops have been color-coded to distinguish the portions of the loops that
integrate drag (red) from the portions that integrate thrust (green). Notice that the optimized wing has
substantially less drag (red) than the baseline M6 wing. If you are wondering why it seems as if the optimized
wing loop has more thrust (green) than it has drag (red), it is because it does. This is possible because
of the influence of the inboard wing. In practice, outboard sections frequently exhibit negative sectional
pressure-drag coeflicients.

Figure 40 displays a side-by-side comparison of the upper-surface isobars, with the baseline M6 wing on
the left and the [T'max + 0.50 * T] optimum on the right. Referring to the baseline isobars of this figure, if
one had to perform an aerodynamic shape optimization on this wing, but with a very small number of design
variables, more than likely he would concentrate the DVs along the baseline’s shock pattern. This would be
partially correct, however, Figure 41 clearly shows that most of the geometric change occurs on the inboard
wing near the leading-edge and mid-chord regions. Upon studying the outcome of this optimization, it is clear
that SYN107 is primarily manipulating the wing’s x-cut area distribution, aka area ruling. Figures 42-44
provide chordwise-thickness-distribution comparisons at semispan stations of 6%, 50%, and 87%, respectively.
Close inspection of these (especially 6%) shows where the T'dist constraints are active. For completeness,
spanwise distributions of thickness and leading-edge radius are provided in Figures 45-46.

This concludes our discussion on the ONERA-M6 test case. We now turn to our third and last sample
case which is based on the CRM wing.
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8 Common Research Model Lifting Viscous Wing

Model Problem

The model problem for our third test case is based on the NASA Common Research Model (CRM) developed
by Vassberg, et.al. [16]. Here, the wing of the CRM Wing/Body configuration has been extracted from the
DPW-V [17] theoretical geometry definition and transformed by Osusky [18] as follows. The exposed wing
of the CRM WB configuration is translated in the negative span direction to place the root airfoil at the
symmetry plane, y = 0. The wing is also translated in = and z to place the root leading-edge point
at the origin. Finally, this geometry has been scaled down by its mean aerodynamic chord (MAC). We
refer to this geometry as ADO-CRM-Wing, and in its system, the reference quantities are: Cref = 1.0,
Sref/2 =3.407014, Xref = 1.2077, Yref = 0.0, Zref = 0.007669, with a semispan of % = 3.75820.

The objective is to minimize the drag of the ADO-CRM-Wing at the flow condition of M = 0.85, and
Re = 5 x 10°, considering a fully-turbulent flow, and subject to the following constraints.

Cr, = 05
Cvy > —0.17 (14)
Volume > Volumeinitial

where, Volume refers to the internal volume of the wing.

SYN107 Results

A number of SYN107 optimizations have been performed during this study, however for the sake of brevity,
only the two most pertinent ones will be presented. Both of these conform to the problem statement of
Eqn (14), however, these optimizations slightly over-constrain the design as it imposes a geometric constraint
to maintain the cross-sectional area distribution of the wing with respect to the baseline ADO-CRM-Wing,
not just its volume. In addition, these optimizations were performed using an objective function comprised
of blending absolute drag and level of pitching-moment violation. The first optimization is a single-point
design at Cr, = 0.5. The resulting geometry of this optimization is referred to as CRMADOV09. This single-
point design required about 2.3 hours of elapsed time, running in parallel on 4 cores, on a deskside computer
with Intel Core i7 CPU 3.20GHz processors. The second SYN107 optimization is an evenly-weighted multi-
point design at C, = [0.50,0.55,0.45]. The resulting geometry of the second optimization is referred to as
CRMADOV10. This triple-point design required about 7.0 hours of elapsed time, running in parallel on 4
cores, on a deskside computer. In both of these optimizations, the seed wing is the ADO-CRM-Wing.

SYN107 uses an internally-generated C-H-mesh with dimensions (257x65x49). Here, 257 points wrap
around the complete airfoil/wake contour, with 161 points defining each airfoil section in the grid. For
viscous flow calculations, the grid spacing at the wing in the normal direction is approximately y* = 1.
There are 65 points in this direction from the wing to the farfield. The spanwise dimension of the grid is
49, with 33 K-planes residing on the wing. Hence, the free-surface is comprised of 161 x 33 = 5,313 design
variables. In these optimizations, the internal B-Spline geometry representation is invoked, which is defined
with 2 x 33 x 33 = 2,178 control points.

A by-product of the SYN107 optimization process is a set of force and moment sensitivities, includ-
ing: %, %, ng, and %Y. In order to provide a more accurate estimate of the force and moments
at the true constrained-lift condition of C'r, = 0.5, the raw data is corrected to this condition using these
sensitivities. These data are provided in Table VIII.

Figure 47 illustrates the SYN107 flow solution of the initial seed ADO-CRM-Wing at the design condition
of M =0.85, Re =5 x 105, o = 2.215°, C;, = 0.5005, Cp = 218.8 counts, and Cp; = —0.1843. Correcting
to a Cf, of 0.50, the drag is Cp = 218.5 counts, and Cp; = —0.18416 Note that this baseline wing violates
the pitching-moment constraint of Eqn (14).

Figure 48 provides the results of the first SYN107 optimization. Here, the CRMADOV09 wing at o =
2.539° has force and moments of C, = 0.4989, Cp = 207.4 counts, and Cp; = —0.1696. Correcting to a
Cy, of 0.50, the drag is Cp = 207.9 counts, and Cj; = —0.16993 With the cross-sectional area distribution
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maintained, this optimization yields a drag reduction of about 10.6 counts. An independent cross-analysis
of the CRMADOV09 design using OVERFLOW shows a drag improvement of 10.0 counts. These two
estimates of the performance improvement are in close agreement.

Figure 49-51 provide the results of the second SYN107 optimization. Here, the CRMADOV10 wing at
« = 2.518° has force and moments of C, = 0.4993, Cp = 207.4 counts, and Cp; = —0.1702. Correcting to a
Cy, of 0.50, the drag is C'p = 209.2 counts, and Cy = —0.17043 This optimization provides a drag reduction
of about 9.3 counts at the design point. Hence, the triple-point design gives back about 1.3 counts at the
design point relative to the single-point design.

Table VIII:
SYN107 Optimizaions at Cp, = 0.5, M = 0.85, Re = 5 x 106,
| WING || CL | CD | CA[ | dCD/dCL | dCA{/dCL | ODCO’I’ | OMCOT |

BASELINE 0.5005 | 0.02188 | -0.1843 0.05355 -0.34786 | 0.02185 | -0.18416
CRMADOVQ9 || 0.4989 | 0.02074 | -0.1696 0.04375 -0.33373 | 0.02079 | -0.16993
CRMADOV10 || 0.4993 | 0.02089 | -0.1702 0.04364 -0.30294 | 0.02092 | -0.17043

A comparison of pressure distributions for the three wings is provided in Figure 52. Here, pressure
distribution are over-laid at 8 span stations on the wing. Note that due to the pitching-moment constraint
of Eqn (14), the optimized wings have reduced aft-loading throughout and increased foreward-loading on
the inboard wing. Figure 53 compares the spanload and sectional lift-coefficient distributions for the three
wings. Note that the CRMADOV10 multi-point design has slightly migrated the spanload inward. This is
most likely to trade a slight increase in induced drag for a larger reduced shock drag at the higher lifting
condition of C';, = 0.55. Figure 54 illustrates the SYN107 convergence histories of drag for the CRMADOV09
single-point and the CRMADO10 multi-point designs. Although not shown here, monitoring the pitching-
moment during the design cycles shows that in the early stages, the optimization aggressively attacks drag
until it starts to level out, then it addresses the pitching-moment violation with increasing attention.

To better understand the off-design performance of these wings, a small drag polar is presented in
Figure 55. The baseline polar correspond to an a-sweep from 1°-to-3°, at every 0.2°. The polars for the
designed wings correspond to an a-sweep from 1°-t0-3.25°, at every 0.05°. Notice that the baseline ADO-
CRM-Wing polar is well behaved, whereas the CRMADOV09 designed wing exhibits a character typical of
single-point optimizations. Finally, the CRMADOV10 three-point design recovers a well behaved drag polar.
Per flow condition, each analysis required about 4.2 minutes of elapsed time, running in parallel on 4 cores,
on a deskside computer.

Figures 56-57 provide comparisons of lift curves and pitching-moment polars, respectively. Note that
the baseline wing violates the pitching-moment constraint, whereas the two optimized wings appropriately
conform to it.
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Figure 1: Close-up view of the SYN83 C-mesh about the NACA0012-ADO.

Figure 2: Close-up view of the NACA0012-ADO 256x256 O-mesh.
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Figure 3: FLO82 Convergence Histories at M = 0.85, a = 0°.
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Figure 9: Degree Elevation of Bez4-0012-ADO Curve from 4*" to 5" Order.
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CODER NO3 OPTIMUM AIRFOIL
MACH 0.850 ALPHA 0.0000000
CL 0.000000000 CD 0.029479301 CM 0.000000000

GRID 2048x 2048 NCYC 500 RED -6.89
MACH: MIN 00000203 MAX \1.46§4242 OURS 0.06Q

Figure 25: FLO82 Solution for CMAES-N03 Airfoil at M = 0.85, a = 0°.
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CODER NO6 OPTIMUM AIRFOIL

MACH 0.850 ALPHA 0.0000000

CL 0.000000000 CD 0.018968012 CM 0.000000000
GRID 2048x 2048 NCYC 500 RED -5.78

MACH: MIN 0.0000209] MAX11.6408291 CONTOURS “0.060

Figure 26: FLO82 Solution for CMAES-NO06 Airfoil at M = 0.85, a = 0°.
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CODER NO9 OPTIMUM AIRFOIL

MACH 0.850 ALPHA 0.0000000

CL 0.000000000 CD 0.010177293 CM 0.000000000
GRID 2048x 2048 NCYC 500 RED -4.32

MACH: MIN 0.0000175 MAX} 16420754 CONTOURS 0.860

Figure 27: FLO82 Solution for CMAES-N09 Airfoil at M = 0.85, a = 0°.
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NADOV01 OPTIMUM AIRFOIL
MACH 0.850 ALPHA 0.0000000
CL 0.000000000 CD 0.011834217 CM 0.000000000

GRID 2048x 2048 NCYC 500

MACH: MIN 0.0000631| MAX \1.6084§83 VS?NTOURS 0,060

Figure 28: FLO82 Solution for SYN83-NADOVO01 Airfoil at M = 0.85, a = 0°.
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NADOV02 OPTIMUM AIRFOIL

MACH 0.850 ALPHA 0.0000000

CL 0.000000000 CD 0.008449573 CM 0.000000000
GRID 2048x 2048 NCYC 500

MACH: MIM 0.0000566 | MAX 11.57§8200 &ONTOURS D060

Figure 29: FLO82 Solution for SYN83-NADOV02 Airfoil at M = 0.85, a = 0°.
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SIVAFOIL OPTIMUM AIRFOIL J
MACH 0.850 ALPHA 0.0000000 A |
CL 0.000000000 CD 0.004655680 CM 0.000000000 \
GRID 2048x 2048 NCYC 500 RED -4.65 0\

3
MACH: MIN 0.0001408 | MAX 1{5(9063 CDNTO RS 0.070

Figure 30: FLO82 Solution for the Bisson-Nadarajah Airfoil at M = 0.85, o = 0°.
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Figure 31: Carrier, et.al Results: Bezier and B-Spline Comparisons.
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Figure 32: Carrier, et.al Results: Systematic Study showing Drag-Convergence Comparisons.
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Figure 33: Carrier, et.al Results: Systematic Study showing Geometry and Pressure Comparisons
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JXN7 AIRFOIL (OPTIMIZED AT MACH .84995)
MACH 0.8500 ALPHA 0.0000

CL 0.000000 CD 0.000493 CM -0.000000
GRID 2560X 512 NCYC 2500 RES 0.237E-09

Figure 34: Recent SYN82 O-Mesh Results: Geometry, Pressures and Mach Contours
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Figure 35: SYN107 Design History of Drag on the ONERA-M6 Wing.
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
ONERA M6 WING SYN107 OPTIMIZATIONS
REN = 20.00 , MACH =0.923 , ALPHA = 0.00
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Figure 36: Comparison of ONERA-M6 Baseline and Optimized Wings Surface Pressures.
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Figure 37: Comparison of ONERA-M6 Baseline and Optimized Wings Drag Loops.
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Figure 38: ONERA-M6 Baseline Sectional Drag Loop at n = 0.813.
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Figure 39: ONERA-M6 Optimum Sectional Drag Loop at n = 0.813.
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Figure 40: Comparison of ONERA-M6 Baseline and Optimized Wings Isobars.
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Figure 41: Surface AZ of ONERA-M6 Wing (Optimized - Baseline).
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Figure 42: Comparison of ONERA-M6 Airfoil Sections at n = 0.06.
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Figure 43: Comparison of ONERA-M6 Airfoil Sections at n = 0.50.
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Figure 44: Comparison of ONERA-M6 Airfoil Sections at n = 0.87.
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Figure 45: Comparison of ONERA-M6 Baseline and Optimums Thickness Distributions.
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Figure 46: Comparison of ONERA-M6 Baseline and Optimums Leading-Edge Radius Distributions.

Vassberg &

VKI Lecture-III, Brussels, Belgium, 16-20 May 2022

Jameson,

43 of 55



- Cp=-20 + +
ADO-CRM-Wing

Mach: 0.850 Alpha 2.215 Re: 5.00
CL:0.5005 CD:0.02188 CM:-0.1843
Design: 00 L/D: 22.88 Red: -4.9 7
Grid: 257 X 065 X 049
Contours: 0.050

—% Tip Section: 73.8% Semi-Span
Cl: 05814 Cd:-0.00658 Cm:-0.2636

— Cp=-20 - + |5 Cp=-20 v E
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Q

Root Section:  6.2% Semi-Span Mid Section: 49.2% Semi-Span
Cl: 0.3904 Cd: 0.07033 Cm:-0.1383 Cl: 05704 Cd:-0.00291 Cm:-0.2448

Figure 47: Baseline ADO-CRM-Wing Solution.
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ADO-CRM-Wing-R01 OPT09
Mach: 0.850 Alpha 2.539 Re: 5.00
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Figure 48: CRMADOV09 Wing Solution.

Vassberg & Jameson, VKI Lecture-I1II, Brussels, Belgium,

16-20 May 2022

45 of 55



ADO-CRM-Wing-R01 OPT10
Mach: 0.850 Alpha 2.518 Re: 5.00
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Cl: 05768 Cd:-0.00261 Cm:-0.2354

Figure 49: CRMADOV10 Wing Solution, SYN107 Results at M = 0.85, O, = 0.50, Re = 5 x 106.
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ADO-CRM-Wing-R01 OPT10
Mach: 0.850 Alpha 2.853 Re: 5.00
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Figure 50: CRMADOV10 Wing Solution, SYN107 Results at M = 0.85, O, = 0.55, Re = 5 x 106.
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ADO-CRM-Wing-R01 OPT10
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Figure 51: CRMADOV10 Wing Solution, SYN107 Results at M = 0.85, O, = 0.45, Re = 5 x 106.
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COMPARISON OF CHORDWISE PRESSURE DISTRIBUTIONS
ADO-CRM-WING SYN107 OPTIMIZATIONS
MACH = 0.850

-151
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Figure 52: ADO-CRM Pressure Comparisons, SYN107 Results at M = 0.85, C, = 0.50, Re = 5 x 106.
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Figure 53: ADO-CRM Spanload Comparisons, SYN107 Results at M = 0.85, C, = 0.50, Re = 5 x 106.
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Corrected Drag Coefficient, CDcor

ADO-CRM Drag Convergence
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Figure 54: ADO-CRM Drag Reduction Histories, SYN107 Results at M = 0.85, C, = 0.50, Re = 5 x 10°.

Lift Coefficient, CL

Figure 55: ADO-CRM Drag Polars, SYN107 Results at M = 0.85, Re = 5 x 10°.
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Figure 57: ADO-CRM Pitch Polars, SYN107 Results at M = 0.85, Re = 5 x 10°.
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10 Appendix: Notes on Standard Cubic B-Splines

A standard B-Spline is defined with a set of control points, a knot vector, and basis functions. The control-
point index range is k = [0, kmax], hence there are (kmax + 1) control points defining the B-Spline. Let
morder be the polynomial order of the B-Spline curve segments. The knot vector is parameterized by t.
A non-periodic knot vector of (kmaxz + morder + 1) values begins with the first morder values being set
to 0, the next (kmax + 1 — morder) values increasing by 1, and the last morder values set to (tmax =
kmaz + 1 — morder). The number of curve segments comprising the B-Spline is the interger value of tmax.
If the knot index begins at 0, then the last value of 0 is located in knot(morder — 1), and the first value of
tmaz is located in knot(kmax).

For example, the B-Splines described in Section 5 are comprised of 30 cubic curve segments based on 33
control points. Here, kmaxz = 32, morder = 3, and (0 < ¢t < 30). The x-coordinates (zcpty) of the control
points are prescribed by Eqn (9). The y-coordinates (ycpty) of the first and last control points are pinned
by the leading-edge and trailing-edge points. The remaining 31 y-coordinates are design variables of the
optimizations. The knot vector has values of (0,0,0,1,2,3,...,28,29, 30, 30, 30). From begining to end, the
B-Spline is C2 continuous, and therefore G2 continuous as well.

What remains to be discussed is the set of basis functions, B}*(t). A popular method used to compute
the basis values is the deBoor algorithm. This method initializes the basis array with the 0t"-order values,
then recursively elevates the basis array to the polynomial order desired. While this algorithm is useful
for computation, it is somewhat difficult to see what is going on. For clarity, we will dive into this a little
further. We will restrict this discussion on the cubic B-Spline. However, and in general, what happens near
the boundaries is different than in the interior of the B-Spline. For a cubic B-Spline, the interior is spanned
by (2 <t < tmaz — 2). Outside this range on ¢, special basis functions arise. Note that there are at most
(morder + 1) non-zero basis values, and that the summation of them equals 1. One can view these basis
values as weighting parameters acting on the control points to define the continuous analytic spline.

Boundary Curve (0 <t < 1)

For the first curve segment, where (0 < ¢ < 1), define (v = ¢t — 0). The corresponding basis functions are
then given by:

Bi(u) = —u®+3u?—-3u+1=(1-u)?
Bi(u) = +£u3 - gu2 + 3u,

Bg(u) = —%u3 + gu2,

Biw) = +gu

Bi(u) = +0; k>3

Near-Boundary Curve (1 <t < 2)

For the second curve segment, where (1 < ¢ < 2), define (u =t — 1). The corresponding basis functions are
then given by:

3 3 1
7 ) 1 7
3 _ a3 2,2, _
Bolw) = Hqu—qw t ety
1 1 1 1
1
BZ(U’) = +6u37
Bi(u) = +0; k=0, k> 4.
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Interior Curves (2 <t < tmaz — 2)

For all of the interior curve segments, where (2 < ¢t < tmax — 2), define (u = ¢ — i), where i = integer(t).
The corresponding basis functions are then given by:

1 1 1 1 1
Blio(u) = —6U3+§U2—§U+g = 6(1—@3,
B i(u) = +1u3 —u? + 2
1+1 2 35
1 1 1 1
B} y(u) = —§U3 + §U2 + SU + 6’
1
B'?+3(u) = +6u37
Biu) = 40;k<i, k>i+3.

Near-Boundary Curve (tmax —2 <t < tmax — 1)

For the second-to-last curve segment, where (tmax — 2 < t < tmaz — 1), define (u = t — i), where i =
integer(t). The corresponding basis functions are then given by:

1 1 1 1 1

83 —  __,3 -2 Z—Z(1— 3
1 2

Bgmam—3(u) = +§u3 - u2 + §7
7 1 1 1

3 _ .3 =2 - -

Bkmam—Q(u) - 12“ =+ 2“’ =+ 2u+ 6’
1

Bgmam—l(u) = +Zu35

Bi(u) = +40; k < kmaz — 4, k = kmaz.

Boundary Curve (tmax — 1 <t < tmax)

For the last curve segment, where (tmax —1 < ¢ < tmax), define (u = t — i), where ¢ = integer(t). The
corresponding basis functions are then given by:

1 1 1 1 1
Bgmam—3(u) = ——U3+—u2——u+—: _(1—11:)35

3 —_— —_ -_—— -_—— —_
Bkmam—Q(u) - +12u 4u 4u+ 12’
7 3 3 1
Bgmam—l(u) = _Eug =+ Z’U’Q =+ Zu + Zv
Bgmam—O (u) = +u37
Bi(u) = +0; k < kmaz — 3.

First and Second Derivatives of a Cubic B-Spline

As it turns out, derivatives of B-Splines can be easily created by taking the deltas of the control points to
form a new set of control points, and recognizing that the derivative is also a B-Spline with polynomial order
reduced by 1. And, as expected, there is special treatment near the boundaries that need to be applied.
Note also that the number of control points of the derivative spline is reduced by 1. However, the number
of curve segments remain the same.

Let’s define the following.

Qr = (zepty,yepty, zepty, ...); k=0, kmaz,
AQr = Q41— Qr; k=0,kmax — 1.

However, near the boundaries, AQy needs to be adjusted, and this adjustment depends on morder.
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If morder = 3, then:

AQr = 3AQy; k=0, k= kmax — 1,

AQr = gAQk; k=1, k= kmazx — 2.
If morder = 2, then:

AQr = 2AQk; k=0, k= kmaz — 1.

If morder = 1, then no adjustment is required.

To be clear, morder and kmaz are the values associated with the curve being differentiated. The
differentiated curve has values of morder — 1 and kmax — 1. If a second derivative is desired, then a recursive
processing of the first derivative can be performed, however, be sure to send the appropriate values of order
and count to your subroutine.

Curvature

In general, the absolute curvature of a 3-dimensional space curve is given by:

e = 1991
QI
For a planar curve with z-constant, we have the following.
o i jk 4
QxQ = | y 0|=(@j—Ighk,
@ g 0
QI = @ +9")2

Note that when Q and Q are aligned, the curvature K vanishes and an inflection point exists in the curve.

Osculating Circle of a Planar Curve

In order to determine the osculating circle of a z-constant planar curve, let’s define a local coordinate system
(&,m,¢) with the origin at a point on the curve. Here, £ is tangent to the curve and in the direction of
increasing t. Also in the plane of the curve is the normal coordinate 7, and perpendicular to the plane is (.

. (@)
& —,

1l
L (@] -9
! o
i - K

Note that the radius (p) of the osculating circle is equal to the inverse of the curvature (). In 2D, it is
convenient to maintain a sign on curvature, and therefore also radius. In this work, we use the convention
that a positive curvature points inward to the airfoil contour. Since both the lower and upper airfoil surfaces
begin at the leading edge and end at the trailing edge, we introduce a signed unit factor as follows.

o (1'72+y2)%. . +1 Upper
p(t) = s1gn * m, sign = _1 LO’U}@T‘
with the signed curvature being simply:
K(t) = —
p(t)
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Curvature at the Leading Edge

In order to enforce G2 continuity at the leading edge point, ie. at ¢ = 0, let’s investigate the first and second
derivatives there.

trp = 3(XQ1—XQo) =0,
3(YQ1—-YQo) =3YQq,
(
(

YLE

irg = 3(2XQo —3XQ1+ XQ2) = 3XQo,
jre = 3(2YQo—3YQ1+YQ2)=3(YQ2—3YQu).
Hence,
_ (3YQuv)? _ (3YQu)?
pre (BXQow *3Y Q1) (BXQar*3Y Q1)
XQw = +XQar,
YQuv = -YQir.

This shows that the only constraint required to maintain G2 continuity at the leading edge for our B-Spline
setup is the last relationship above. [Aside: In order to maintain C2 continuity at the leading edge, we must
also enforce that YQoy = —Y Q2]

Least-Squares Fit

Consider fitting a B-Spline through a set of scatter data, such as a set of discrete points that define an airfoil.
Let this set of N points be P, = (2, yn);n = 1, N. For the moment, assume that N >> K = kmax. Then,
a least-squares fit of these data can be found by minimizing the summed error, defined by:

5 [(Era) -

n=1

2

Here, By, is shorthand for By (t,), and where ¢,, is determined from z,, of the scatter data. Differentiating
the summed error £ with respect to each control point @, gives (kmax + 1) equations which should all be
set to 0 for the least-squares fit.

g [fna) -

Put into matrix form, this system of equations is given as follows.

=0; m =0, kmax.

Zn B(%n Zn BO;WBL” Zn BO;WBZW ot Zn BO:"BKJI QO Zn BO,nPn
Zn Bl,nBO,n Zn B%n Zn Bl,nBZ,n v Zn Bl,nBK,n Ql Zn Bl,npn
Zn BZ,nBO,n Zn 82,7181,71 Zn B%)n cee Zn B2,nBK,n Q2 J— Zn BQ,nPn
Zn BK,nBO,n Zn BK,nBI,n Zn BK,nBQ,n s Zn B%(m QK Zn BK,nPn

Note that the B matrix is symmetric and without negative terms.

Obviously, a sufficient sampling of scatter data must be available to yield a valid least-square fit of any
kind. However, in the case of a B-Spline, the scatter data must sufficiently support each curve segment.
For example, a cubic B-Spline should have at least 4 data points, P,, influencing each control point, Q.
Otherwise, the system of equations above could become singular.

To Be Continued...
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