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For the sake simplicity it is often desirable to restrict the number of feedbacks in a
controller. In this case the optimal feedbacks depend on the disturbance to which the
system is subjected. Using a quadratic error integral as a measure of the response,
three criteria of optimization are considered:

1. The response to a given initial disturbance.

2. The worst response to an initial disturbance of given magnitude.

3. The worst comparison with the unconstrained optimal system.

It is shown that for each of these criteria the gradient with respect to the feedbacks can
be calculated by a uniform method. The solution may then be found either directly or
by descent procedure. The method is illustrated by an example.

1 Introduction

There exists a well-developed theory for the optimal regulation of a linear system [1]. The
optimal controller incorporates feedbacks from every state variable. It thus generates the control
signal from the minimum amount of information necessary to predict the motion of the system.
If some of the state variables cannot be measured they may be reconstructed from the available
measurements by an observer [2] or, if the measurements are noisy, by an optimal estimator
[3]. Such systems are complex. The engineer, however, generally wishes to produce the simplest
acceptable system. In fact, it is often possible to produce an acceptable system, with sufficient
stability in all modes, by incorporating just a few feedbacks. Another reason for eliminating
feedbacks is that the linear equations may only approximately represent a system which is
actually nonlinear. If, for example, the lateral motion of an aircraft is represented by a linearized
equations, the resulting optimal control includes a feedback from the roll angle. It is evident that
such a signal should either be excluded, or else limited, when the roll angle is large. Both because
of practical considerations of this kind, and in order to assess the trade-off between performance
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and complexity, it is thus often desirable to consider the design of a specific optimum controller
[4, 5] with a pre-determined feedback configuration. The solution of this problem for several
different criteria of optimization is the subject of this paper.

If the performance criterion is a quadratic error integral, the unconstrained problem, re-
viewed in Section 3, has a solution which is optimal for all initial conditions of the system. The
required feedbacks vary with time unless the system is optimized over an infinite interval. When,
however, the configuration of the controller is constrained, a solution which is independent of
the initial conditions can no longer be found, and it is then not fruitful to permit time varying
feedbacks. With constant feedbacks the problem is reduced to an ordinary minimum problem
in the parameter space of the feedbacks, for which the necessary condition of optimality is that
the gradient with respect to each allowed feedback must vanish. It is shown in Section 4 how
to calculate this gradient for a fixed initial condition. If the system is to operate satisfactorily
for a range of initial disturbances, it may not be clear which is the most suitable to choose for
optimization. This difficulty can be avoided by choosing the worst case as the critical design
case. It then becomes necessary to consider min-max criteria. Sections 5 and 6 treat optimiza-
tion for two such criteria, the worst response to an initial disturbance of given magnitude, and
the worst comparison with the unconstrained optimal system. In each case it is shown that the
gradient can be represented by a suitable specialization of the formulae derived in Section 4. The
solution for a fixed initial condition and for both the min-max criteria can thus be computed
by a uniform method. This is the principal result of the paper. A simple example is solved
in Section 7, to illustrate the influence of the performance criterion, and the application of the
results of Sections 4-6.

2 Mathematical formulation

Consider a linear system:
ẋ = Ax + Bu, x(0) = x0, (1)

where the n vector x represents the state, and the m vector u is the control. Let the output be
the p vector:

y = Cx (2)

and take as a measure of performance the quadratic integral:

J =
∫ T

0

(
yT Qy + uT Ru

)
dt, (3)

where Q and R are positive definite. Suppose that it is desired to use a feedback control:

u = Dx, (4)

where there may be restrictions on the allowed feedbacks Dij . Then

ẋ = Fx, x(0) = x0, (5)

where
F = A + BD. (6)
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Also

J =
∫ T

0
xT Sxdt, (7)

where
S = CT QC + DT RD. (8)

If (5) is integrated and substituted in (7), then J can expressed as a quadratic form in the initial
conditions:

J = xT
0 P (0)x0, (9)

where it can be verified by differentiating the performance index measured from t to T with
respect to t and using (5) that:

−Ṗ = F T P + PF + S, P (T ) = 0. (10)

If the system is constant, and is to be optimized over an infinite interval, then as long as the
feedbacks are such that the system is stable, P approaches a constant value which may be
determined by setting

Ṗ = 0

in (10) and solving the resulting Lyapunov matrix equation.

3 Review of results in the absence of constraints

When a small variation δD is made in the feedback matrix, (9) and (10) yield:

δJ = xT
0 δP (0)x0, (11)

where

−δṖ = F T δP + δPF + δDT
(
BT P + RD

)
+
(
BT P + RD

)T
δP, δP (T ) = 0, (12)

δP and δJ can then be determined by integrating (12). Note that if:

D = −R−1BT P, (13)

then according to (12) :
δP = 0.

This is Kalman’s solution [1] for the case when there is no restriction on the allowed feedbacks.
According to (11) it is optimal for all initial conditions. It may be computed by substituting
(13) in (10) and integrating backwards the resulting matrix Riccati equation:

−Ṗ = AT P + PA + CT QC − P T BR−1BT P, P (T ) = 0. (14)

It is easily shown that Kalman’s solution is in fact the global minimum. If a variation ∆D,
not necessarily small, is made in D, then by comparison of (10) and (14):

−∆Ṗ = F T ∆P + ∆PF + ∆DT R∆D, ∆P (T ) = 0. (15)
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Combining (15) and (5) :

− d

dt

(
xT ∆Px

)
= x∆T DT R∆Dx.

Since ∆P vanishes at the upper boundary, it follows on integrating this equation that:

∆J = xT
0 ∆P (0)x0 =

∫ T

0
xT ∆DT R∆Dx dt

and because R is positive definite:
∆J ≥ 0.

In general the optimal feedback gains vary with time. If however, the system is constant,
and is optimized over an infinite interval, the elimination of Ṗ from (10) leads to its elimination
from the variational equations. The optimal feedback gains are then constant, and may be
determined by setting

Ṗ = 0

in (14) and finding the positive-definite solution of the resulting matrix equation [1].

4 Optimization with given initial condition

When there is a restriction on the allowed feedbacks Kalman’s solution (13) - (14) is no longer
available. Then according to (12) δP will not vanish, but it is necessary for optimality that:

δJ = xT
0 δP (0)x0 = 0.

The solution will thus in general depend on the initial condition.

Given a particular initial condition x0, the optimal control signal u(t) of the open-loop
system can be determined. If the number of allowed feedbacks is greater than the dimension of
u, and the feedbacks are allowed to vary with time, then this signal can be generated in infinitely
many ways by choosing some of the feedbacks arbitrarily and solving for the remainder. We
therefore only consider systems with constant feedbacks. Let G be the gradient matrix with
elements :

Gij =
∂J

∂Dij
.

If the constrained configuration is optimal, it is necessary that Gij vanish for each allowed
feedback Dij .

To determine G it is convenient to introduce the outer product:

X = xxT .

In terms of X the system differential eqns. (5) become:

Ẋ = FX + XF T , X(0) = x0x
T
0 (16)
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and the expression for the performance index (7) becomes:

J =
∫ T

0
tr (SX) dt. (17)

Thus

δJ =
∫ T

0

{
tr (SδX) + 2 tr (δDT RDX)

}
dt. (18)

Also it follows from (16) that :

δẊ = FδX + δXF T + BδDX + XδDT BT , δX(0) = 0. (19)

Equations (10) and (19) are an adjoint pair. Remembering that:

tr (AB) = tr (BA),

for any two matrices A and B, they can be combined to give:

d

dt
tr (PδX) = 2 tr (δDT BT PX) − tr (SδX).

Since PδX vanishes at both boundaries, it follows on integrating this equation that:∫ T

0
tr (SδX) dt = 2

∫ T

0
tr (δDT BT PX) dt.

Substitute this result in (18) :

δJ = 2
∫ T

0
tr
{
δDT (BT P + RD)X

}
dt,

whence

G = 2
∫ T

0
(BT P + RD)X dt. (20)

If the system is constant, and is to be optimized over an infinite interval, then P is constant
and

G = 2(BT P + RD)W, (21)

where
W =

∫ ∞

0
X dt.

Integrating (16), it is found that:

FW + WF T + x0x
t
0 = 0. (22)

For a simple system the optimal feedbacks may be found by solving the equations which
are obtained when the gradient with respect to each allowed feedback is required to vanish.
Generally, however, this is impractical, and one has to search directly for the minimum in the
parameter space of the feedbacks. The gradient may then be used to determine a favourable
direction for each step. The most effective procedures of this kind seem to be the conjugate
gradient method [6] and the Fletcher-Powell-Davidon method [7].
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5 Optimization of worst response to an initial disturbance of
given magnitude

It has been shown that the optimal feedbacks of a constrained configuration depend on the
initial disturbance, and it is not at all certain that a system optimized for one disturbance will
be satisfactory for another. For any choice of feedbacks there will be a least favourable initial
disturbance of given magnitude, which will maximize J . To ensure the acceptability of the
system for all initial disturbances we can use the response in this worst case as a more stringent
criterion of optimization [4, 8]. Instead of J we then minimize:

M = max
x0

J

xT
0 x0

= max
x0

xT
0 P (0)x0

xT
0 x0

. (23)

It is well known [9] that this ratio is equal to the maximum characteristic value of P . In fact,
since P is symmetric, it has real characteristic values λi, and its characteristic vectors vi may
be formed as an orthonormal set. If V is the characteristic matrix with columns vi, then

V T V = I

and
V T PV = Λ,

where Λ is a diagonal matrix with elements λi. Suppose that:

x0 = V z.

Then
J

xT
0 x0

=
zT V T PV z

zT V T V z
=

zT Λz

zT z
=
∑

i λiz
2
i∑

i z
2
i

and since
λmin

∑
i

z2
i ≤

∑
i

λiz
2
i ≤ λmax

∑
i

z2
i ,

it can be seen that both that :
M = λmax(P ) (24)

and that :
min
x0

J

xT
0 x0

= λmin(P ).

The gradient of M with respect to the feedbacks can also easily be determined. Consider
first the variation of the characteristic values when P is varied [9]. If v is a characteristic vector
of unit length then the corresponding characteristic value is:

λ = vT Pv. (25)

Let v + δv be the new characteristic vector when P is varied. If v + δv is also of unit length
then:

δvT v = 0
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and it follows from (25) that:

δλ = δvT Pv + vT δPv + vT Pδv

= λδvT v + vT δPv + λvT δv

= vT δPv.

Thus :
δM = vT δP (0)v,

where v is the characteristic vector of unit length corresponding to the maximum characteristic
value of P(0). Comparing this formula with (11), it is apparent that the gradient of M can be
determined by (20), where the initial condition of (16) is now taken as:

X(0) = vvT .

The procedure described in §4 for the solution with a fixed initial solution can thus be carried
over to the solution fo the min-max criterion (23).

6 Optimization of worst comparison with the unconstrained op-
timal system

The index M is a measure of the response to the worst initial disturbance of given magnitude.
The normalization, and consequently M , will depend of the system of units used in formulating
the system equations. This difficulty may be avoided by comparing, at the least favourable initial
condition, the actual performance index J and the unrestricted optimal index Jopt obtained from
the Kalman solution, that is, by minimizing [5]:

L = max
x0

J

Jopt
= max

x0

xT
0 P (0)x0

xT
0 Popt(0)x0

, (26)

where Popt is determined from the matrix Riccati eqn. (14). If the system is controllable and
observable Popt is positive definite and can be factored as KT K, where K is non-singular. Setting

x0 = K−1z

the performance index becomes:

L = max
zT (K)−1PK−1z

zT z
= λmax

{
(KT )−1PK−1

}
.

But if
(KT )−1PK−1v = λv,

then, multiplying by K−1:
P−1

optPw = λw,

where
w = K−1v.
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Thus
L = λmax

(
P−1

optP
)

.

By a similar argument :

min
x0

J

Jopt
= λmin

(
P−1

optP
)

.

It is easily verified that these expressions are invariant under a transformation of state variables.

To obtain the gradient of L with respect to the feedbacks we note that in this case if v is a
characteristic vector of unit length then:

δλ = vT
(
KT

)−1
δPK−1v = wT δPw.

Thus (20) can be again be used, but now the initial condition of (16) should be:

X(0) = wwT ,

where w is the characteristic vector corresponding to the maximum characteristic value of P−1
optP ,

and the length w is determined by the requirement that v is of unit length, or

vT v = wT Poptw = 1.

The method of §4 thus suffices for the criterion (26) also.

7 Example: modification of a harmonic oscillator

As an example consider the use of feedbacks to modify a harmonic oscillator

ÿ + y = 0.

The equations can be formulated as:[
ẋ1

ẋ2

] [
0 −1
1 0

] [
x1

x2

]
+

[
1
0

]
u,

where
y = x2

and
u = d1x1 + d2x2 = d1ẏ + d2y.

Let the initial condition be:

x0 =

[
a1

a2

]
and consider the minimization of

J =
∫ ∞

0
(8y2 + u2)dt.
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First suppose that there are no constraints on the configuration. Since the optimization
interval in infinite the matrix Riccati equation reduces to the matrix quadratic equation:[

0 1
−1 0

] [
P11 P12

P21 P22

]
+

[
P11 P12

P21 P22

] [
0 −1
1 0

]
+

[
0 0
0 8

]
−
[

P 2
11 P11P12

P21P11 P 2
12

]
= 0,

whence

Popt =

[
2 2
2 6

]
.

The optimal feedbacks are then :
d1 = −2, d2 = −2.

The natural frequency of the optimal system is thus raised to
√

3 radians per second, and its
damping ratio is 1/

√
3.

Suppose now that it is desired to optimize the system using rate feedback only, so that:

u = d1ẏ = d1x.

The system is stable if:
d1 < 0

and P can then be determined from the Lyapunov matrix equation:[
d1 1
−1 0

] [
P11 P12

P21 P22

]
+

[
P11 P12

P21 P22

] [
d1 −1
1 0

]
+

[
0 0
0 8

]
+

[
d2

1 0
0 0

]
= 0.

The solution is:

P =

 −
(

d1
2 + 4

d1

)
4

4 −
(

9d1
2 + 4

d1

)  .

The gradient matrix is:

[
g1 g2

]
= 2

{[
1 0

] [ P11 P12

P21 P22

]
+
[

d1 0
]}[ W11 W12

W21 W22

]
,

where [
d1 −1
1 0

] [
W11 W12

W21 W22

]
+

[
W11 W12

W21 W22

] [
d1 1
−1 0

]
+

[
a2

1 a1a2

a2a1 a2
2

]
= 0.

Thus

2W =

 a2
1+a2

2
d1

−a2
2

−a2
2

a2
1+a2

2

d2
1

−a2
2d

2
1 + 2a1a2


and

g1 = 2 (P11 + d1) W11 + 2P12W21 =
(

4
d2

1

− 1
2

)
a2

1 +
(

4
d2

1

− 9
2

)
a2

2.
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If d1 is optimal then g1 must vanish, whence

d1 = −2

√
2a2

1 + 2a2
2

a2
1 + 9a2

2

.

If the system has an initial velocity but no initial displacement, then

a2 = 0, d1 = −2
√

2 = −2.828,

and the damping ratio of the close loop system is 1.414. If it has an initial displacement, but
no initial velocity, then

a1 = 0, d1 =
−2

√
2

3
= −0.943,

and the damping ratio of the second loop system is 0.471. The optimal closed loop system thus
changes substantially when the initial condition is changed.

To optimize the worst response to an initial disturbance of given magnitude, or the index
M (23), the characteristic values of P may be determined from the characteristic equation:

λ2 + λ

(
5d1 +

8
d1

)
+

9d2
1

4
+ 20 +

16
d2

1

= 0.

The roots are :
λmax(P ) = −

(
5
2
d1 +

4
d1

)
+ 2

√(
d2

1 + 4
)

= M,

and
λmin(P ) = −

(
5
2
d1 +

4
d1

)
− 2

√(
d2

1 + 4
)
.

The characteristic vector of unit length corresponding to λmax is:

v =
1√

c2 + 1

[
c
1

]
,

where

c =
d1

2
+

√√√√(d2
1

4
+ 1

)

The gradient of M with respect to d1, is found by substituting v for the initial condition. Thus

g1 =

[(
4/d2

1

)
− 1

2

]
c2 +

(
4/d2

1

)
− 9

2

c2 + 1
=

4
d2

1

− 5
2
− 2√[(

4/d2
1

)
+ 1

]
as may be verified in this case by direct differentiation. Substituting

d1 =
−2√(

4
3 + 7

3 cos θ
)
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it is found that the gradient vanishes when

cos 3 θ =
89
343

yielding for the optimal rate feedback:

d1 = −1.077.

The closed loop system then has a damping ratio of 0.539. Also

λmax = 10.950

and
λmin = 1.863

Thus over the range of all initial vectors of unit length:

1.863 ≤ J ≤ 10.950.

Note that when both feedbacks are allowed:

λmax (Popt) = 4 + 2
√

2 = 6.828

and
λmin (Popt) = 4 − 2

√
2 = 1.172,

so that over the same range:
1.172 ≤ Jopt ≤ 6.828.

The worst comparison with the unconstrained optimal system is represented by the index
L (26), or the maximum characteristic value of:

P 1
optP =

[
3
4 −1

4
−1

4
1
4

] −
(

d1
2 + 4

d1

)
4

4 −
(

9d1
2 + 4

d1

) 
=

 −
(

3d1
8 + 1 + 3

d1

)
9d1
8 + 3 + 1

d1

d1
8 + 1 + 1

d1
−
(

9d1
8 + 1 + 1

d1

) 
The characteristic equation is then:

λ2 + λ

(
3d1

2
+ 2 +

4
d1

)
+

9d2
1

32
+

1
2

+
2
d2

1

= 0,

with roots :

λmax

(
P−1

optP
)

= −(2 +
√

2)

(
3d1

8
+

1√
(2)

+
1
d1

)
= L

and

λmin

(
P−1

optP
)

= −(2 −
√

2)

(
3d1

8
− 1√

(2)
+

1
d1

)
.
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The characteristic vector w corresponding to λmax with length such that:

wT Poptw = 1,

is

w =
1√

(2c2 + 4c + 6)

[
c
1

]
,

where

c = −
(√

2 − 1
) 3d1 + 4 + 2

√
2

d1 + 4 − 2
√

2
.

Substituting w for the initial condition, the gradient with respect to d1 is found to be:

g1 =

[(
4/d2

1

)
− 1

2

]
c2 +

(
4/d2

1

)
− 9

2

2c2 + 4c + 6
=
(
2 +

√
2
)( 1

d2
1

− 3
8

)
The optimal rate feedback according to this criterion is:

d1 = −2
√

2
3

= −1.633

and the corresponding damping ratio is 0.816. Also then:

λmax

(
P−1

optP
)

=
(√

2 + 1
) (√

3 − 1
)

= 1.767

and
λmin

(
P−1

optP
)

=
(√

2 − 1
) (√

3 − 1
)

= 1.132

so that as the initial condition is varied

1.132 ≤ J

Jopt
≤ 1.767.

The figure shows the variation of J over the range of initial vectors of unit length when
the system is optimized for different criteria. The unconstrained optimal solution sets the lower
limit of J throughout the range. It can be seen that if the system is only allowed to use a rate
feedback, and it is optimized for a unit initial velocity, then J becomes quite large for other
initial disturbances. The high level of damping which limits the effect of an initial velocity in
fact causes a slow return to equilibrium after an initial displacement. The optimal systems for
the min-max criteria have a better balanced response over the range of initial disturbances.
Comparing the two, it can be seen that the slightly higher level of damping of the system
which optimizes the worst comparison with the unconstrained optimal system results in a better
response to an initial velocity, but a worse response to an initial displacement.

8 Conclusion

If there are restrictions on the feedback configuration the feedbacks which minimize a quadratic
error integral depend on the initial state of the system. It is then better to optimize the
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worst response to an initial disturbance of given magnitude, or else the worst comparison with
the unconstrained optimal system. If the error integral is represented as a quadratic form in
the initial conditions with matrix P , then these measures can be computed as the maximum
characteristic values of P and P−1

optP . The gradient of any of these measures with respect to
the feedbacks can be represented in terms of P and the outer product xxT . The solution for a
simple system may then be found by equating to zero the gradient with respect to each allowed
feedback. For more complex systems it is necessary to resort to a descent method using the
gradient. It remains an open question whether any of these measures may possess local minima
as well as a global minimum in the feedback space.
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