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High-fidelity simulations of flow over a smooth sphere at high Reynolds numbers ranging
from 1.0 × 105 to 3.0 × 105 are performed using the high-order flux reconstruction method (FR)
implemented in the massively parallel high-order solver PyFR. The main goal of this study
is to numerically predict the range of drag crisis of smooth spheres and validate the results
against experimental data to assess the efficiency of high-order methods for such problems.
To ensure that the range for critical Reynolds number is predicted accurately, simulations
are performed using 12 meshes with different computational mesh sizes and mesh types at
𝑅𝑒 = 1.0 × 105, 𝑅𝑒 = 2.0 × 105 and 𝑅𝑒 = 3.0 × 105. The results show that drag crisis can be
predicted numerically with an almost DNS boundary layer grid resolution and with high (p)
polynomial orders. The simulations predict drag coefficients of 𝐶𝐷 = 0.4635 and 𝐶𝐷 = 0.1292 at
𝑅𝑒 = 2 × 105 and 𝑅𝑒 = 3 × 105, respectively, which confirms that 𝑅𝑒 = 2 × 105 and 𝑅𝑒 = 3 × 105

are in the range of subcritical and critical Reynolds number. The flow analysis shows that at
subcritical 𝑅𝑒, laminar separation occurs without reattachment, whereas at critical 𝑅𝑒, there
is laminar boundary layer separation, turbulent boundary layer reattachment and turbulent
boundary layer separation.

I. Introduction
Drag crisis is a well-known phenomenon in fluid dynamics that is characterized by a drop in drag coefficient of

bluff bodies, e.g., cylinder and sphere, due to boundary layer transition to turbulence. During the drag crisis, the
mean drag coefficient of a sphere decreases from about 0.5 to its minimum, which is around 0.1 [1]. Based on the
drag coefficient, the flow over sphere is classified into four regimes [1]: (I) sub-critical at which the drag coefficient
is around 0.5 and boundary layer is laminar (𝑅𝑒 < 105), (II) critical regime where the boundary layer transition and
drag crisis occurs, which is our interested regime, (III) super-critical where drag remains almost constant around 0.1,
and (IV) transcritical regime (𝑅𝑒 > 5 × 105) in which the boundary layer transition point moves towards upstream and
drag increases. Although the critical drag force has been measured experimentally by many researchers, the literature
concerning the drag crisis is sparse. For example, the critical Reynolds number, i.e., the Reynolds number at which the
drag crisis starts, ranges from 1.2 × 105 to 4 × 105. [1–4]. The reason for this discrepancy is the high sensitivity of the
flow to the surface roughness and experimental setup. It has been observed that the flow is greatly affected by surface
roughness, free stream turbulence, tunnel blockage, and method of support[2, 5]. For example a surface roughness of
𝑘/𝐷 ≈ 10−5 or an isolated roughness can significantly reduce the critical Reynolds number [2, 6]. On the other hand,
the numerical prediction is exacting due to the resolution requirements imposed by a very thin (possibly transitioning)
boundary layer and a broad wake combined with the low-frequency content. Consequently, most of previous numerical
studies focused on subcritical or super-critical regimes [7, 8] and there is a lack of numerical studies on predicting the
drag crisis. Nevertheless, due to the recent development of high-order methods and improvement of computational
resources using modern GPUs, the numerical prediction of the drag crisis might be feasible. It is in this context that we
aim to address this issue by employing high-fidelity simulations based on high-order discretization methods.

In this study, the open-source software PyFR [9] for high-order massively parallel computations is employed to
simulate the unsteady turbulent flow over a smooth sphere at high Reynolds numbers, ranging from 300K> 𝑅𝑒 >100K
to accurately predict the drag crisis. This manuscript is organized as follows. In §II the governing equations and
numerical method for solving the flow equations are illustrated briefly. The simulation and case setup are presented in
§III, and the results are presented in §IV.
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II. Methodology
In this study, we use PyFR, in which the compressible Navier–Stokes equations are solved with a multidimensional

Flux reconstruction (FR) approach. PyFR is an open-source software that can solve the compressible Navier–Stokes
equations on mixed unstructured grids and is designed to target a range of modern hardware platforms, including
heterogeneous mixtures of CPUs and GPUs, via C/OpenMP, CUDA, HIP, and OpenCL backends [9, 10]. The FR
approach introduced by Huynh [11] is a nodal numerical formulations for solving hyperbolic partial differential equations.
The method has been further developed by several groups [12–14] for advection-diffusion problems and extended to
mixed unstructured grids [10, 15]. In addition, high-order FR method has proved successful for a number of large eddy
simulations based on the implicit approach [16] as shown in [17–20] and more recently based on the Partially Averaged
Navier-Stokes equations (PANS) in Dzanic et. al [21]. Interested readers about the FR method can consult the following
reviews [22, 23].

Here, we briefly present the FR method. Navier-Stokes equations can be written in a conservative form as follows,

𝜕u
𝜕𝑡

+ ∇ · f = 0, (1)

where u = u(x, 𝑡)= (𝜌, 𝜌𝑣𝑥 , 𝜌𝑣𝑦 , 𝜌𝑣𝑧 , 𝐸), is the solution, 𝜌 is the density, v = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧) are the fluid velocity
components in 𝑥, 𝑦, 𝑧 directions, respectively, and 𝐸 is the total energy per volume of the fluid. Here, f = f (u,∇u) = f𝑖−f𝑣
is the flux with f𝑖 the inviscid flux given by

f𝑖 =

©«

𝜌𝑣𝑥 𝜌𝑣𝑦 𝜌𝑣𝑧

𝜌𝑣𝑥
2 + 𝑝 𝜌𝑣𝑥𝑣𝑦 𝜌𝑣𝑥𝑣𝑧

𝜌𝑣𝑥𝑣𝑦 𝜌𝑣𝑦
2 + 𝑝 𝜌𝑣𝑦𝑣𝑧

𝜌𝑣𝑥𝑣𝑧 𝜌𝑣𝑦𝑣𝑧 𝜌𝑣𝑧
2 + 𝑝

𝑣𝑥 (𝐸 + 𝑝) 𝑣𝑥 (𝐸 + 𝑝) 𝑣𝑧 (𝐸 + 𝑝)

ª®®®®®®®¬
, (2)

where 𝑝 is the pressure which is for an ideal gas is

𝑝 = (𝛾 − 1) (𝐸 − 1
2
𝜌 | |v| |2), (3)

where 𝛾 = 𝑐𝑝/𝑐𝑣 , where 𝑐𝑝 and 𝑐𝑣 are specific heat capacities at constant pressure and volume, respectively. The
viscous flux (fv) is

f𝑣 =

©«

0 0 0
𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦

𝜏𝑥𝑧 𝜏𝑦𝑧 𝜏𝑧𝑧

𝑣𝑖𝜏𝑖𝑥 + Δ𝜕𝑥𝑇 𝑣𝑖𝜏𝑖𝑦 + Δ𝜕𝑦𝑇 𝑣𝑖𝜏𝑖𝑧 + Δ𝜕𝑧𝑇

ª®®®®®®®¬
. (4)

In the above we have defined Δ = `𝑐𝑝/𝑃𝑟 where ` is the dynamic viscosity and Pr is the Prandtl number. The
components of the stress–energy tensor are given by

𝜏𝑖 𝑗 = `(𝜕𝑖𝑣 𝑗 + 𝜕 𝑗𝑣𝑖) −
2
3
`𝛿𝑖 𝑗∇ · v. (5)

Using the ideal gas law, the temperature is

𝑇 =
1
𝑐𝑣

1
𝛾 − 1

𝑝

𝜌
. (6)

In the current study, values of 𝛾 = 1.4 and 𝑃𝑟 = 0.71, and flow Mach number is 𝑀 = 0.1 were employed.
PyFR is based on the high-order flux reconstruction approach of Huynh [11]. In the present work, third-order

polynomials were used to represent the solution within each element of the mesh, thus nominally achieving fourth-order
accuracy in space. A Rusanov Riemann solver was used to calculate the interelement inviscid fluxes, the local
discontinuous Galerkin [24] approach was used to calculate the inter-element viscous fluxes, an adaptive time-step
Runge-Kutta (RK45) scheme [25] was utilized to advance the solution in time.
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Fig. 1 Computational domain, and different sphere surface mesh types: c) type 1: quad surface mesh, d) type 2:
diagonalized triangles, f) type 3: 6 domain delaunay triangle, and g) 24 domain delaunay triangle.

III. Setup
In this section the simulation setup is explained. The simulation setup is presented in Fig. 1. There are four types of

surface mesh and two types of domains generated for the grid sensitivity study. First mesh type is composed of only
hex meshes. In this mesh, the sphere surface is meshed with quadrilaterals that has been extruded along the normal
direction with 41 elements which resulted in a O-O type grid with diameter of about 52𝐷 (Fig. 1c). The rest of meshes
are unstructured meshes with a cylindrical domain of radius of 25D and length of 100D. The sphere is located at 25D of
the inflow (Fig. 1a) and the wake the sphere is refined up to 𝐿 = 10𝐷 with tetrahedral mesh (Fig. 1b). The surface mesh
is triangular surface mesh (Fig. 1d, e). Three types of triangular surface mesh are generated i) diagonalized triangles
(Fig. 1d), ii) 6-zones delaunay triangles (Fig. 1f), and iii) 24 zones triangles (Fig. 1g). The boundary layer mesh is
prism which has been generated by extruding the surface cells along the radius for at least 11 layers.

It should be noted that all mesh are curved and generated with Pointwise. For each mesh types, multiple grids with
different mesh sizes are generated, which are reported in Table 1. Here, the first element’s height ranges from 0.0007𝐷
to 0.002𝐷 (Table 1). Among these meshes, mesh 10 has the highest grid resolution, with ∼9.75 million prisms and
∼9.7 million tetrahedra for a total of ∼19.45 millions elements. This corresponds to ∼583 million degrees of freedom
(DOF) per equation.

The numerical 𝑦+ is plotted for mesh 10 at 𝑅𝑒 = 3 × 105, based on the closest p-3 solution point to the wall at
conventional time 𝑡 = 71𝑈/𝐷 in Fig. 2. The contour of instantaneous 𝑦+ shows that the the maximum 𝑦+ of the first
solution point is less than 1.3. Figure 2b presents the plot of the averaged 𝑦+ along azimuthal angle. It can be seen that
mean 𝑦+ is less than 0.6. Moreover, the maximum edge length 𝑙𝑐 along the circumference of the sphere ranges between
0.001258𝐷 to 0.004754𝐷, which corresponds to a maximum element aspect ratio of 𝑙𝑐/ℎ < 6.7 on the sphere.

The simulations are initiated from a freestream initial condition (𝑢𝑥 = 1, 𝑢𝑦 = 0, 𝑢𝑧 = 0), with 𝜌 = 1 and Mach
number=𝑀 = 𝑈/𝑐 = 0.1 resulting in the nondimensional atmospheric pressure of 𝑝 = 71.4285. Riemann-invariant
boundary conditions are applied on the farfield and no-slip adiabatic boundary condition is applied on the surface of the
sphere. All of the simulations started with a first-order polynomials (second-order accuracy) for at least 60 convective
time (𝐷/𝑈), afterwards, they are restarted for at least 35𝐷/𝑈 with a third-order polynomials and the averaged data is
obtained from the final 20𝐷/𝑈. Here, mesh 10 has the highest grid resolution. Thus, the results are discussed based on
this mesh.
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Fig. 2 Numerical 𝑦+ of mesh 10 at 𝑅𝑒 = 3 × 105 based on instantaneous flow at 𝑡 = 71𝑈/𝐷. (a): contours of
instantaneous 𝑦+, (b): profile of averaged 𝑦+ along constant azimuthal angle (\)

IV. Results and discussion
In this section the results of the simulations are presented. In §IV.A mean force coefficients are plotted against the

experimental data. Later, in §IV.B, the instantaneous flow field and turbulence statistics are presented.

A. Force coefficients
The drag coefficient for three Reynolds number: 𝑅𝑒 = 1.0×105, 𝑅𝑒 = 2.0×105, and 𝑅𝑒 = 3.0×105 (𝐶𝐷 =

4𝐹𝐷

0.5𝜌𝑈2 𝜋𝐷2 ,
𝐹𝐷: the drag force) based on p3 simulation is plotted in Fig. 3 and compared against the previous experiments of
Norman and McKeon [3], Achenbach [1], Wieselsberger [4], and Deshanpe et al. [26]. The 𝐶𝐷 plot shows a great
discrepancy in both experiments and numerical results, in particular at 𝑅𝑒 ≥ 2.0 × 105. The classical experiments of
Achenbach [1] predicts that the Reynolds number for the critical regime is approximately 3.3 × 105 ≤ 𝑅𝑒 ≤ 4.4 × 105

while the experiment of Norman and McKeon [3] reports the critical 𝑅𝑒 as 2.6 × 105 ≤ 𝑅𝑒 ≤ 3.5 × 105. At However,
all experiments agree well at the subcritical range 𝑅𝑒 < 2× 105. Similarly, the results of simulations are grid insensitive
at 𝑅𝑒 = 105, e.g., 𝐶𝐷 ranges from 0.4952 to 0.5124 which is in the range of values reported in the literature [1, 3].
Nevertheless, at 𝑅𝑒 = 2.0 × 105, the drag force prediction becomes grid dependent when the surface mesh is not
sufficiently resolved. For example, comparing the drag force of meshes 7 and 8 reveals that 𝐶𝐷 can change significantly
by only increasing the number of surface cells. The 𝐶𝐷 of fine meshes (9 and 10) are almost similar at 𝑅𝑒 = 2.0 × 105

and they are in good agreement with the experimental measurements [3, 26]. Nevertheless, there is about 22.3%
discrepancy at 𝑅𝑒 = 3× 105 comparing drag of mesh 9 and 10. Here, at 𝑅𝑒 = 3× 105, flow is in the critical regime (Fig.
3), similar to the experiment of Norman and McKeon [3].

To present the force coefficients quantitatively and see the effect of high-order polynomial calculations, the value of
𝐶𝐷 , 𝜎𝐶𝐷

, 𝐶𝑦 , and 𝐶𝑧 are presented in Table 2 for both p1 and p3 simulations. Here, 𝜎𝐶𝐷
is the standard deviation of

𝐶𝐷 , 𝐶𝑦 and 𝐶𝑍 are force coefficients along 𝑦 and 𝑧 axis, respectively. There is about 5.6% discrepancy in the drag
coefficient at 𝑅𝑒 = 2.0 × 105 of mesh 9 and 10. At 𝑅𝑒 = 3.0 × 105, the 𝐶𝐷 varies by 22.4% for p3 simulations since 𝐶𝐷

is in the critical range. The side forces 𝐶𝑦 and 𝐶𝑧 are nonzero which is probably due to insufficient averaging. The
non-zero force coefficient along circumferential directions is reported in the previous studies [3, 7].

The sudden drag drop at 𝑅𝑒 = 3.0 × 105 is due to a delay in boundary layer separation, where the separation point
can be quantified by the skin friction coefficient 𝐶 𝑓 =

𝜏𝑤
𝜌𝑈2

√
𝑅𝑒, i.e., 𝑐 𝑓 < 0. Figure 4 presents the time-averaged skin

friction (𝐶 𝑓 ) and pressure coefficient (𝐶𝑝 =
𝑝−𝑝∞

0.5𝜌𝑈2 ) averaged along a constant azimuthal angle (0 ≤ \ ≤ 180) for both
p1 and p3 simulations with the finest mesh (mesh 10). The zero 𝐶 𝑓 represent the separation point and the negative 𝐶 𝑓

shows the recirculation zone. The profile of 𝐶 𝑓 (Fig. 4) shows that at 𝑅𝑒 = 2 × 105, the flow becomes separated at
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Table 1 Mesh names, types and sizes. Number of surface cells refers to the number of quadrilateral or triangles
on the surface of the sphere.

Mesh number Mesh type Number of surface cells Wall normal spacing
1 Type 1 15000 0.002D
2 Type 1 60000 0.002D
3 Type 2 14700 0.002D
4 Type 2 120000 0.001D
5 Type 3 24622 0.002D
6 Type 3 50254 0.002D
7 Type 3 50254 0.001D
8 Type 3 204154 0.001D
9 Type 3 458769 0.0008D
10 Type 3 810166 0.0007D
11 Type 4 51245 0.001D
12 Type 4 203568 0.001D

\ = 86.2𝑜 and does not reattach as 𝐶 𝑓 remains negative. Comparaing p1 and p3 simulations, it can be observed that 𝐶 𝑓

plot of p1 simulation has small discrepancy near the separation points, e.g., separation point is 91.2. The separation can
also be observed in the 𝐶𝑝 profile. A plateau is generated at the separation zone. It can also be observed that the 𝐶𝑝

profile is in good agreement with the experiment of Achenbach at 𝑅𝑒 = 1.6 × 105 although 𝑅𝑒 is not identical to the
present study. At the critical Reynolds number, 𝑅𝑒 = 3 × 105, the separation point moves towards downstream, i.e.,
\ = 103.4𝑜 (for p3 simulation). After the separation, the separated shear layer becomes turbulent and reattaches due the
enhanced momentum and creates a turbulent boundary layer. The generation of the turbulent boundary layer can be
observed by the sharp enhancement in the 𝐶 𝑓 at \ = 119𝑜. The attached boundary layer, later, separates at \ = 143𝑜.
Comparing the p1 and p3 results, a high discrepancy can be observed near the separated zone \ > 102.0. The laminar
separation and turbulent reattachment has been reported in the experiment of Deshpande et al. [26] at 𝑅𝑒 = 3.72 × 105

though they observed the critical 𝑅𝑒 ranging from 3.4 × 105 to 4.4 × 105 (see Fig. 3). At crtitcal regime, 𝑅𝑒 = 3 × 105,
the 𝐶𝑝 profile is similar to the experiment of Deshanpe et al. at 𝑅𝑒 = 3.72 × 105, however, it has a discrepancy with
Achenbach experiment at 𝑅𝑒 = 3.1 × 105 high azimuthal angle \ > 90𝑜 because the boundary layer was laminar at
𝑅𝑒 = 3.1 × 105 [1].

Table 2 Force coefficients.

Mesh number p-order 𝑅𝑒 𝐶𝐷 𝜎𝐶𝐷
𝐶𝑦 𝐶𝑧

8 p3 1.0 × 105 0.5124 0.0552 -0.0086 0.0093
9 p1 2.0 × 105 0.4813 0.03054 0.0015 0.022
9 p3 2.0 × 105 0.4787 0.0449 0.0009 0.0052
10 p1 2.0 × 105 0.5013 0.0296 -0.0137 0.0183
10 p3 2.0 × 105 0.4635 0.0417 0.0052 0.0103
9 p1 3.0 × 105 0.1129 0.019 0.0132 -0.0014
9 p3 3.0 × 105 0.0940 0.0210 -0.0086 0.0009
10 p1 3.0 × 105 0.1145 0.0354 0.0243 0.0156
10 p3 3.0 × 105 0.1272 0.0206 0.0023 -0.0017
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Fig. 3 Drag coefficient against Reynolds number for different meshes.

B. Flow visualization
The instantaneous wake of the sphere is presented for two 𝑅𝑒 by the contours of out-of-plane vorticity in Fig. 5

for mesh 10. It can be observed that by increasing the Reynolds number the sphere wake becomes smaller as the
flow separation point moves towards the downstream. The thin boundary layer separates and creates a turbulent wake.
However, at 𝑅𝑒 = 3 × 105, the separation is delayed and separation zone is smaller compared to the lower 𝑅𝑒 case due
to the further turbulent reattachment.

The sphere wake is also presented by the contours of streamwise velocity at two planes along the streamwise
direction, i.e., 𝑥 = 0.3 and 𝑥 = 0.4 from the center of the sphere, in Fig. 6. Comparing the wake of the sphere at different
𝑅𝑒 shows greater reverse flow at critical 𝑅𝑒, which agrees with the vorticity visualization in Fig. 5. Furthermore, at
𝑥 = 0.4, the turbulent wake is clearly visible for both cases. However, at 𝑥 = 0.4, a turbulent wake is generated for the
sub-critical 𝑅𝑒 case due to the flow separation at upstream, but there is no reverse flow at higher 𝑅𝑒 case.

V. Conclusions and Future work
The Critical Reynolds number of a smooth sphere is numerically predicted using the high-order flux reconstruction

method (FR). Simulations are performed at three Reynolds number, 𝑅𝑒 = 105, 𝑅𝑒 = 2 × 105 and 𝑅𝑒 = 3 × 105. The
simulations predict drag coefficients of 𝐶𝐷 = 0.4635 and 𝐶𝐷 = 0.0948 at 𝑅𝑒 = 2 × 105 and 𝑅𝑒 = 3 × 105, respectively,
which demonstrates that 𝑅𝑒 = 2 × 105 and 𝑅𝑒 = 3 × 105 are in the range of subcritical and critical Reynolds number,
respectively. The predicted range is in good agreement with Norman and McKeon experiments [3] and the pressure
coefficient profile at critical Reynolds number agrees well with the experiment of Deshanpe [? ]. The similarity of drag
coefficient and profile of the pressure coefficient with these experiments shows the capability of high-order methods for
accurate prediction of turbulence transition for complex geometries at high Reynolds numbers. The flow analysis shows
that at subcritical 𝑅𝑒, laminar separation occurs without a reattachment, whereas at critical 𝑅𝑒, the laminar boundary
layer separates, reattaches further downstream and create a turbulent boundary layer. Nevertheless, understanding the
turbulent transition mechanism of flow over smooth sphere requires further analysis which is a part of the future work.
In addition, more simulations are required at 𝑅𝑒 > 3 × 105 and 2 × 105 < 𝑅𝑒 < 3 × 105 to estimate the 𝐶𝐷 profile
against 𝑅𝑒.
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Fig. 5 Contours of out-of-plane vorticity in the wake of the sphere at 𝑡 = 74.001.
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Fig. 6 Contours of streamwise velocity at different steamwise sections at 𝑡 = 74.001.
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