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Conditions are derived for the construction of total variation diminishing difference schemes with multi-point 
support. These conditions, which are proved for explicit, implicit, and semi-discrete schemes, correspond in a 
general sense to the introduction of upwind biasing. 

1. Introduction 

It is natural that the rapid evolution of increasing powerful computers should inspire attempts 
to solve previously intractable problems by numerical calculation. One might imagine that within 
a fairly short time, advances in processing speed and memory capacity ought to reduce the 
simulation of physical systems governed by partial differential equations to a matter of routine. 
The numerical computation of solutions of nonlinear conservation laws has proved, in fact, to be 
perhaps unexpectedly difficult. Discontinuities are likely to appear in the solution, and schemes 
which are accurate in smooth regions tend to produce spurious oscillations in the neighbourhood 
of the discontinuities. These oscillations can be eliminated by the use of strongly dissipative first 
order accurate schemes, but these schemes severely degrade the accuracy and usually produce 
excessively smeared discontinuities. 

The scalar nonlinear conservation law in one space dimension 

8u /Ot  + O f ( u ) / O x  = 0 (1) 

provides a model which already contains the phenomena of shockwave formation and expansion 
fans. Thus it can be used to provide insight into the likely behavior of numerical approximations 
to more complex physical systems, while it is still simple enough to be fairly easily amenable to 
analysis. A rather complete mathematical theory of solutions to (1) is by now available [1-3]. 

Equation (1) describes wave propagation at a speed 

a(u) = a f / a u .  

The solution is constant along the characteristic lines 

O x / a t = a ( u )  

provided that they do not interact to form a shock wave. Tracing the solution backward along 
the characteristics, it can be seen that the total variation 

TV(u) = foo 
-oo ~x dx 

is constant prior to the formation of a shockwave, while it may decrease when the shockwave is 
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formed. Corresponding to this property it may be observed that no new local extrema may be 
created, and that the value of a local minimum is nondecreasing while the value of a local 
maximum is nonincreasing. It follows that an initially monotone profile continues to be 
monotone. 

It seems desirable that these properties should be preserved by a numerical approximation to 
(1). This will guarantee the exclusion of spurious oscillations in the numerical solution. Harten 
[4] has recently introduced the concept of total variation diminishing (TVD) difference schemes, 
which have the property that the discrete total variation 

TV(u)= : ]uk-uk_,] 
x_=_% 

of the solution vector u cannot increase. Harten also devised procedures for constructing both 
explicit and implicit TVD schemes [4,5]. 

The purpose of this paper is to state and prove conditions for the construction of multi-point 
TVD schemes. Conditions are derived for explicit, implicit, and also semi-discrete operators to 
be TVD. The conditions are both necessary and sufficient in the case of the explicit and 
semi-discrete schemes. The reasoning is a modification and extension of the reasoning used by 
Lax [5, Appendix]. The results were first presented in a lecture at ICASE in March 1984. The 
present paper is an amplification and revision of a Princeton University report issued under the 
same title in April 1984 [6]. In the intervening period Osher and Chakravarthy have given 
another proof that conditions (3.12) are sufficient for an explicit scheme to be TVD [7]. 

2. Conditions for reduction of the 1, norm 

One-dimensional difference operators act on doubly infinite sequences 

U={Uk}, -co<k<cQ. 

The I, norm of such a vector u is defined as 

lull= f IUkl. 
-cc 

(2.1) 

(2.2) 

The space of all vectors u with finite I, norm is denoted by I,. 
A difference operator maps I, into I, and is of the form 

A(& = CU,%,. (2.3) 

The coefficients a, depend on k, either explicitly or through dependence on u. In either case we 
write 

a,, = aj( k). 

Theorem A. The operator A defined by (2.3) satisfies 

IA(u) I1 G lull 
for all u in I, if and only if 

Cl++;)1 ~1 

(2.4) 

(2.5) 

for all h. 

An operator A satisfying (2.4) is a contraction. 
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Proof. The signum function is defined for every real u by 

i 

1 for u>O, 
Signum u = 0 for u=O, 

-1 for u-=0. 

Now set 

sk = Signum Am; 

(2.6) 

(2.6*) 

then, by definition (2.2) of the I, norm and definition (2.6) of Signum we have 

I44 II = c I44k I = C+44k 

=~~~~“j~~~u~~j=~uj(h+i)Sh+jUh=~Whu~4~~~hl I”hl> 

k j h.j h h 

where 

(2.7) 

wh = &j( h +j)sh+j. 

j 

(2.7’) 

Since sk takes on the values f 1 or 0, it follows from (2.7) that 

lWhl qCIaj(h+j)I. 

/ 

It follows therefore from assumption (2.5) that 

IWhl ql 
for all h. Setting this into (2.7) we deduce that (2.4) holds for all u in I,. 

To show the necessity of (2.5) suppose on the contrary that it fails for some h = h,. Set u(O) 
equal to 

(2.8) 

For this u(O) it follows from (2.3) that 

L+(O)), = a,_&) 

and so 

1 A(“‘o’) 11 = c I Ab’“‘)k 1 = c 1 %-h,,@) I 

= ;: I uj(ho +j) I :1 (2.9) 

since ho was so chosen that (2.5) is violated. On the other hand, it is obvious from (2.8) that 

(zP)ll=l. 

This combined with (2.9) shows that (2.4) fails for u(O). 0 

For use in implicit schemes the following result is needed. 

Theorem B. Define the operator B by 

By = Cbj(‘)Uk-1. (2.10) 
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B satisfies 

IHuH+ lull 

for all u in I, if 

b,(h)- C lbj(h+j)) >,I. 

, f 0 

An operator B satisfying (2.11) is called an expansion. 

Proof. We define 

sk = signum uk. 

Since 1 sk 1 < 1, 

I %4 I, = c I WA. I 2 CGwk- 
h h 

Analogously to (2.7), (2.7’) we have 

C&J+& = Z:%% 
A h 

where 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.15’) 

It follows readily from (2.12) that if uh z 0, 

IWhl al. 

Using (2.13) we get 

signum wh = Signum uh. 

These two imply that 

CWh%? lull. (2.16) 

Combining (2.14), (2.15), and (2.161 we get (2.11). q 

We remark that (2.12) is far from being necessary for B to be expansive. For example, take the 
right shift operator T, with 

h ( 
1 forj=l, 

I=\ 0 forjfl. 

Clearly, T is an isometry: 

Vu), = lulr, 

but condition (2.12) is utterly violated. 
Theorem A has a continuous analogue: 

meorem C. Let u( t ) be a differen?iable function oft real whose values lie in I,, and which satisfies a 
differential equation of ihe form 

du/dt = C(u), (2.17) 
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where C is a difference operator, i.e., an operator of the form 

C( ~)k = Ccjuk-j. (2.18) 

The coefficients ci may depend on k and t either directly or through a dependence on u. Then 
) u(t) 1, is a noni&rea.sing function of t if and only if for all h and all t 

c,(h) + C 1 cj(h +j) 1 < 0. 

j#O 

Proof. Define Sk(t) by 

Sk(t) = Signum uk(t). 

Then 

I u(t) I1 = C%Ak(t). 
k 

Since each sk is piecewise constant, 

2 1 dt) II = ~sk(t,$ 
k 

According to (2.17), 

% = &j(k)uk_j. 
i 

Setting this into the right in (2.22) we get, after relabelling the index of summation, 

$ I U(t) 11 = CSkCCj(k)Uk-j = C”‘hUh 
k j h 

where 

Wh = ccj( h +j)s,+j. 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

Suppose u,, # 0; then by (2.20), s,, # 0. Multiply (2.25) by sh; using assumption (2.19) we get 

shwh = ca( h) + c cj( h +j)+~,,+~ < 0. 
j#O 

Since by definition, sh and uh have the same sign, it follows that for all h 

u,,wh < 0; 

this relation clearly holds also when uh = 0. Setting this into (2.24) we obtain 

d I u(t) I,/dt < 0; 

this proves that I u(t) I 1 decreases as t increases. 
Next we indicate why condition (2.19) is necessary. Suppose it is violated at t,, h,. Let u(t) 

be that solution of (2.17) whose value at t, equals 
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Using (2.23) we get 

z+(t, + e) = &h,, + ‘CC/(k)&.h,] + O(e2), 

Summing with respect to k gives 

&(t() + 6) = 1 + E&;(h, +j) + 0(c2). 
k .i 

Since condition (2.19) is violated at t,, h, we conclude that for e small enough positive, 

CIUk(to+L)I =1+ec,(h,)+r~ Ic,(h,+j)I+o(~*)>I. 
k I’0 

Thus 

laI+4I,‘1 
while 

IaJI,=1. 
This shows that 1 u(t) I 1 is not a decreasing function of t, completing the proof of Theorem C. 
0 

3. Construction of total variation diminishing schemes 

Theorems A, B, and C may be used to find conditions on the coefficients of a difference 
operator which guarantee that the total variation of a solution does not increase for 

(E) explicit schemes, 
(I) implicit schemes, 
(S) semi-discrete schemes. 
The total variation of a vector u is 

Using the right shift operator T 

Tb)I, = Uk-1 

we can express TV(u) as 

TV(u) = [(I- T)ul,. 

We turn now to explicit (2J + 1) point schemes 

(3.1) 

U n+l = D(p) (3.2) 

where 

D(u)k = f: d,(k)&,. 
-J 

(3.3) 

We assume that the difference operator D preserves constants. In view of (3.3), this is the case if 

(3.4) 
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for all k. Schemes (3.3) satisfying this condition can be written in the form 

D(& = uk + c ej(k)(uk-j- uk-J-l) (3.5) 
-J<j<J 

or in operator notation 

D=I+E(l- T), 

where 

E = cejTj. 

(3 -6) 

(3.6’) 

We want to find conditions which guarantee that D is TVD, i.e., satisfies for all u 

TV@) <TV(u). (3.7) 

Using (3.1) this is the same as 

!(I-- T)Dul, < l(I- T)ul,. 

Using formula (3.6) we can write 

(I- T)D= (I+ (I- T)E)(I- T) =&I- T), 

where 

(3.7’) 

(3.8) 

A=I+(I-T)E. 

We now set (3.8) into (3.7’); denoting 

(I- T)u=u* 

(3.8’) 

we obtain the equivalent inequality 

IAu*li< lu*li. (3.9) 

This is certainly the case if A is an I, contraction, for which we have derived in Section 2 the 

criterion (2.5): 

C I ‘jCh +j) I G 1 (3.10) 

where 

(AU)~= Caj(k)uk_j* (3.10’) 

It follows from (3.8’) that the coefficients aj of A can be expressed in terms of the coefficients ej 
of E as 

and 

u,,(k) = 1+ e,(k) - e_,(k- 1) (3.11) 

aj(k)=ej(k)-ej_l(k-l), j+O. 

It follows from these relations that 

&zj(h +j) = 1; 

(3.11’) 

but then (3.10) can hold if and only if for all j and k 

uj(k) >, 0. 



342 A. Jameson, P.D. Lax / Total variation diminishing schemes 

Using (3.11), (3.11’) we can express this condition as follows: 

e_,(k-l)>e_,(k--2)> s-f >e_,(k-J)>O, 

-e,(k)> -e,(k+l)> ... 2 -e,_,(k+J-l)>O, 

1 + e,(k) - e_,(k - 1) z 0. 

(3.12) 

Thus we have proved the following theorem. 

Theorem E. The explicit scheme (3.3) is TVD if conditions (3.12) are satisfied for all k, where e, 
are the coefficients appearing in formula (3.5) for D. 

We turn next to implicit schemes: 

F( u”+l) = un. (3.13) 

We take F to be a 2 J + 1 term difference operator that preserves constants. Such an F can be 
written in the form 

F=I+G(I-T) (3.14) 

where 

G(&= c g,(k)u,-,. (3.14’) 
-J<j<J 

We want to find conditions under which scheme (3.13) is TVD, i.e., for all u 

TV( FM) > TV(u). 

Using formula (3.1), this is the same as 

I(I- T)Ful, > [(I- T)ul,. 

Using formula (3.14) we can write 

(I- T)F= (I+ (I- T)G)(I- T) =B(I- T) 

where 

B=1+(I- T)G. 

We set (3.16) into (3.15’); denoting 

(I- T)u= u* 

(3.15) 

(3.15’) 

(3.16) 

(3.16’) 

we obtain the equivalent inequality 

IBU*li 2 Iu*l]. (3.17) 

This is the case if B is an expansion. In Theorem B we have derived criterion (2.12) that 
guarantees that an operator B is an expansion: 

b,(h)> c P,(h+Al+l. (3.18) 
J+o 

It follows from (3.16’) that the coefficients b, of B can be expressed in terms of the 
coefficients g, of G as 

and 

b,(k) = 1 + go(k) - g-,(k - 1) 

b,(k)=g,(k)-gi-,(k-l), j#O. 



A. Jameson, P.D. Lax / Total variation diminishing schemes 343 

Adding up these relations we deduce that 

b,(k) = 1 - c $(k +j); 
jt0 

but then (3.18) can hold if and only if for all k and for j + 0 

bj( k) < 0. 

Using (3.19), these conditions can be restated as 

go(k)agI(k+l)>, ..a >gg,_,(k+J-l)>O 

and 

(3.20) 

-g_,(k-l)> -g_,(k-2)> ..a > -g_,(k-J)aO. 

Thus we have proved the following theorem. 

(3.20’) 

Theorem I. The implicit scheme (3.13) is TVD if conditions (3.20), (3.20’) are satisfied, where gj 
are the coefficients of the operator G related by formula (3.14), (3.14’) to the operator F appearing in 

(3.13). 

We remark that we can combine, as Harten does, Theorems I and E to study implicit-explicit 
schemes of the form 

F(u”+l ) = D( 24”). (3.21) 

Such a scheme is TVD if F satisfies the conditions of Theorem I, and D the conditions of 
Theorem E. 

Finally we turn to semi-discrete schemes: 

du/dt = Hu, (3.22) 

with H some 2J + 1 point difference operator. We assume that u = const. is a solution of (3.22); 
this is the case if H annihilates all constant vectors. In this case H can be written in the form 

H(u),c = C mi(k)(u,-j- U,-j-1)’ (3.23) 
-J<j<J 

or in operator form 

H=M(I-7’). (3.23’) 

We want to find conditions on H which guarantee that TV(u) is a decreasing function of t for 
all solutions u of (3.22). By formula (3.1), this is the same as 

I(I- TM) II 

being a decreasing function of t. So we multiply (3.22) by (I - T); using (3.23’) we get 

$(I-T)u=(I-T)M(I-T)u=C(I-T)u (3.24) 

where 

c=(P-T)M. (3.25) 

Denoting 

(I- T)u = u* 
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(3.24) becomes 

dl.P/dt = cu*. 

According to Theorem C, 1 u* 1 1 is a decreasing function of t if condition (2.19) of Section 2 is 
satisfied, 

c,(k) + c I c,(k +A I G 0. 

J+o 

Using (3.25) we can express the coefficients cJ in terms of those of M as follows: 

C!(k) = mJk) - m,_,(k - 1). 

Thus 

&(k +j) = 0. 
i 

It follows from this that (3.26) can hold if and only if 

c,(k+j)>O, jzo. 

Using (3.27) we can restate this as 

m_,(k-l)>,m_,(k-2)>, ... >m_,(k-J)>O 

and 

-m,(k) > -m,(k + 1) >, . . . > m,_,(k + J- 1) >, 0. 

Thus we have proved the next theorem. 

(3.26) 

(3.27) 

(3.28) 

(3.28’) 

Theorem S. The semi-discrete scheme (3.22) is TVD if conditions (3.28) and (3.28’) are satisfied, 
where the mi are the coefficients of the operator M related by formula (3.23’) to the operator H. 

4. Conclusion 

The conservation law (1) describes a right running wave when a(u) is positive. Conditions 
(3.12) and (3.28) of Theorems E and S state that the explicit and semi-discrete schemes (E) and 
(S) are TVD if only if the coefficients of the differences uk_/ - u~_~_, have the same sign as 
a(u) for j 2 0, (points on the upwind side), and the opposite sign for j < 0 (points on the 
downwind side). If the differences are moved over to the right of equation (3.13), then condition 
(3.20) of Theorem I states that the implicit scheme (I) will be TVD if it satisfies a similar 
condition on the sign of its coefficients. In all three cases only the differences on the upwind side 
have the correct sign for consistency with (l), and can contribute to wave propagation in the 
correct direction. In this sense upwind biasing is a necessary feature of explicit TVD schemes, 
and it is also useful in the construction of implicit TVD schemes. 

It is thus not surprising to find that most of the attempts to design schemes with the capability 
of capturing shockwaves and contact discontinuities, dating back to the early work of Courant, 
Isaacson and Rees [8], and Godunov [9], have introduced upwinding either directly or indirectly. 
Second order accurate upwind schemes have been devised by Van Leer [lo], Harten [4,5], Roe 
[ll], Osher and Chakravarthy [12], and Sweby [13]. These all use flux limiters to attain the TVD 
property. 
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Another approach to the construction of TVD schemes stems from the observation that 
central difference formulas for odd and even derivatives have odd and even distributions of 
signs, and they can be superposed and combined with flux limiters to satisfy conditions (3.12) or 
(3.28). Upwind biasing is then produced indirectly by cancellation of terms of opposite sign. One 
possible starting point for such a construction is a central difference scheme in which the 
numerical flux i( d.+i + A.) is augmented by a third order dissipative flux. This scheme is the 
basis of a method which has been widely used to solve the Euler equations of compressible flow 
[14]. It can be converted into an attractively simple TVD scheme by the introduction of flux 
limiters in the dissipative terms [15]. The modified numerical flux retains a symmetric distribu- 
tion of terms about the cell boundary j + 4. The resulting symmetric scheme is one of the 
variants of a class of symmetric TVD schemes recently proposed by Yee [16]. Her derivation 
follows an entirely different line of reasoning, building on the work of Davis [17], and Roe [18]. 
In comparison with upwind TVD schemes, symmetric TVD schemes offer a significant reduction 
of computational complexity, while exhibiting comparable shock capturing capabilities. 
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