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Abstract
We consider multigrid methods for finite volume discretizations of the Reynolds averaged
Navier–Stokes equations for both steady and unsteady flows. We analyze the effect of dif-
ferent smoothers based on pseudo time iterations, such as explicit and additive Runge–Kutta
(AERK) methods. Furthermore, by deriving them from Rosenbrock smoothers, we identify
some existing schemes as a class of additiveW (AW)methods. This gives rise to two classes of
preconditioned smoothers, preconditioned AERK and AW, which are implemented the exact
same way, but have different parameters and properties. This derivation allows to choose
some of these based on results for time integration methods. As preconditioners, we consider
SGS preconditioners based on flux vector splitting discretizations with a cutoff function for
small eigenvalues. We compare these methods based on a discrete Fourier analysis. Numer-
ical results on pitching and plunging airfoils identify AW3 as the best smoother regarding
overall efficiency. Specifically, for the NACA 64A010 airfoil steady-state convergence rates
of as low as 0.85 were achieved, or a reduction of 6 orders of magnitude in approximately
25 pseudo-time iterations. Unsteady convergence rates of as low as 0.77 were achieved, or a
reduction of 11 orders of magnitude in approximately 70 pseudo-time iterations.

Keywords Unsteady flows · Multigrid · Discrete Fourier analysis · Runge–Kutta smoothers

1 Introduction

We are interested in numerical methods for compressible wall bounded turbulent flows as
they appear in many problems in industry. Therefore, both steady and unsteady flows will
be considered. Numerically, these are characterized by strong nonlinearities and a large
number of unknowns, due to the requirement of resolving the boundary layer. High fidelity
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approaches such as Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)
are slowly getting within reach through improvements in high order discretization methods.
Nevertheless, these approaches are, and will remain in the foreseeable future, far too costly
to be standard tools in industry.

However, low fidelity turbulence modeling based on the Reynolds Averaged Navier–
Stokes (RANS) equations discretized using second order finite volume discretizations is a
good choice for many industrial problems where turbulence matters. For steady flows, this
comes down to solving one nonlinear system. In the unsteady case, the time discretization has
to be at least partially implicit, due to the extremely fine grids in the boundary layer, requiring
solving one or more nonlinear systems per time step. The choice for numerical methods
for these comes down to Jacobian-free Newton–Krylov (JFNK) methods with appropriate
preconditioners or nonlinear multigrid methods (Full Approximation scheme—FAS) with
appropriate smoothers, see [3] for an overview.

In this article, we focus on improving the convergence rate of agglomeration multigrid
methods [23], which are the standard in the aeronautical industry. For the type of problems
considered here, two aspects have been identified that affect solver efficiency. Firstly, the
flow is convection dominated. Secondly the grid has high aspect ratio cells. It is important
to note that the viscous terms in the RANS equations do not pose problems in themselves.
Instead, the problem is that they cause the boundary layer to appear, thus making high aspect
ratio grids necessary. These aspects are shared by the Euler equations, meaning that solvers
developed for one equation may also be effective for the other.

With regards to convection dominated flows, smoothers such as Jacobi or Gauß–Seidel do
not perform well, in particular when the flow is aligned with the grid [24]. One idea has been
to adjust multigrid restriction and prolongation by using directional or semi coarsening that
respects the flow direction [25]. This approach has the problem of being significantly more
complicated to implement than standard agglomeration. Thus, the alternative is to adjust
the smoother. As it turned out, symmetric Gauß–Seidel (SGS) is an excellent smoother for
the Euler equations even for grid aligned flow [7], simply because it takes into account
propagation of information in the flow direction and backwards.

However, when discretizing the Euler equations on high aspect ratio grids suitable for wall
bounded viscous flows, this smoother does not performwell. During the last ten years, the idea
of preconditioned pseudo time iterations has garnered interest [5,6,14,17–21,27–29,31,32].
This goes back to the additive Runge–Kutta (ARK) smoothers originally introduced in [8]
and independently in a multigrid setting in [11]. These exhibit slow convergence, but if they
are combined with a preconditioner, methods result that work well for high Reynolds number
high aspect ratio RANS simulations.

The preconditioned RK smoother suggested in [28,32] was rederived in [18] by starting
with a Rosenbrock method and then approximating the system matrix in the arising lin-
ear systems. This is called a W method in the literature on ordinary differential equations.
Consequently, we now identify the two classes of preconditioned additive W methods and
preconditioned additive explicit Runge–Kutta methods and derive them from time integra-
tion methods. This allows us to identify the roles the preconditioners have to play and aids
in choosing good parameters. As for preconditioners itself, it turns out that again, SGS is a
very good choice, as reported in [18,32].

The specific convergence rate attainable depends on the discretization, in particular the
flux function. Here, we consider the Jameson–Schmidt–Turkel (JST) scheme for structured
grids, in its latest version [15]. We perform a discrete Fourier analysis of the smoother for
the linearized Euler equations on cartesian grids with variable aspect ratios. This is justified,
since the core issues of convection and high aspect ratio grids are present in this problem.
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A convenient truth is that if we have a fast steady-state solver then it can be used to build
a fast unsteady solver via dual timestepping. However, there are subtle differences that affect
convergence and stability. In particular, the eigenvalues of the amplification matrix are scaled
and shifted in the unsteady case relative to the steady case. For a fuller discussion of these
issues we refer to our earlier work [5,6] and to [2]. We compare the analytical behavior and
numerical performance of iterative smoothers for steady and unsteady problems.

The article is structured as follows. We first present the governing equations and the
discretization, then we describe multigrid methods and at length the smoothers considered.
Then we present a Fourier analysis based on the Euler equations and finally numerical results
for airfoil test cases.

2 Discretization

We consider the two dimensional compressible (U)RANS equations, where the vector of
conservative variables is (ρ, ρv1, ρv2, ρE)T and the convective and viscous fluxes are given
by

Fc
i =

⎛
⎜⎜⎝

ρvi
ρviv1 + pδi1
ρviv1 + pδi1

ρvi H

⎞
⎟⎟⎠ , Fv

i =

⎛
⎜⎜⎝

0
τi1
τi2

v jτi j + μ+μt
Pr (Cp∂i T )

⎞
⎟⎟⎠ , i = 1, 2,

τi j = (μ + μt )(∂x j vi + ∂xi v j − 2

3
δi j∂xkvk),

q j =
(

μ

Pr
+ μt

Prt

)
∂x j

(
H − 1

2
vkvk

)

where we used the Einstein notation.
Here, ρ is the density, vi the velocity components and E the total energy per unit mass.

The enthalpy is given by H = E + p/ρ with p = (γ −1)ρ(E −1/2vkvk) being the pressure
and γ = 1.4 the adiabatic index for an ideal gas. Furthermore, τi j is the sum of the viscous
and Reynolds stress tensors, q j the sum of the diffusive and turbulent heat fluxes, μ the
dynamic viscosity, μt the turbulent viscosity and Pr , Prt the dynamic Prandtl and turbulent
Prandtl numbers.

As a turbulence model, we use the 0-equation Baldwin–Lomax model [1] for two reasons.
Firstly, it performs well for flows around airfoils we use as primary motivation. Secondly,
with 1- or 2-equation models more difficulties in implementation, analysis and convergence
behavior arise. We believe that these have to be systematically looked at, but separately from
this investigation.

The equations are discretized using a finite volume method on a structured mesh and the
JST scheme as flux function. There are many variants of this method, see e.g. [15]. Here, we
use the following, for simplicity written as if for a one dimensional problem:

f J STj+1/2(u) = 1

2
(f R(ū j ) + f R(ū j+1)) + d j+1/2(u).

Here, f R(ū) is the difference of the convective and the viscous fluxes, u ∈ Rm is the vector
of all discrete unknowns and ū = (ρ, ρv, ρE) is the vector of conservative variables. The
artificial viscosity terms are given by

d j+1/2(u) = ε
(2)
j+1/2�w j − ε

(4)
j+1/2(�w j+1 − 2�w j + �w j−1)
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with � j being the forward difference operator and the vector w being ū where in the last
component, the energy density has been replaced by the enthalpy density.

The scalar coefficient functions ε
(2)
j+1/2 and ε

(4)
j+1/2 are given by

ε
(2)
j+1/2 = s j+1/2r j+1/2 (1)

and

ε
(4)
j+1/2 = max(0, r j+1/2/32 − 2ε(2)

j+1/2). (2)

Here, the entropy sensor s j+1/2 = min(0.25,max(s j , s j+1)) given via

s j =
∣∣∣∣

S j+1 − 2S j + S j−1

S j+1 + 2S j + S j−1 + 0.001

∣∣∣∣

with S = p/ργ . For the Euler equations, it is suggested to instead use a corresponding
pressure sensor.

Furthermore, ri+1/2 is the scalar diffusion coefficient, given by

r j+1/2 = max(r j , r j+1).

It approximates the spectral radius and is chosen instead of a matrix valued diffusion as in
other versions of this scheme. The specific choice of r j is important with respect to stability
and the convergence speedof themultigridmethod.Here,weuse the locally largest eigenvalue
r j = |vn j | + a j as a basis, where a is the speed of sound. In the multidimensional case, this
is further modified to be [22]:

r̃i = ri (1 + (r j/ri )
2/3),

r̃ j = r j (1 + (ri/r j )
2/3), (3)

where ri corresponds to the x direction and r j to the y direction.
Additionally, to obtain velocity and temperature gradients needed for the viscous fluxes,

we exploit that we have a cell centered method on a structured grid and use dual grids around
vertices to avoid checker board effects [13, p. 364].

For boundary conditions, we use the no slip condition at fixed wall and far field conditions
at outer boundaries. These are implemented using Riemann invariants [13, p. 362].

In time, we use BDF-2 with a fixed time step �t , resulting at time tn+1 in an equation
system of the form

F(u) := 3u − 4un + un−1

2�t
+ ¨−1f(u) = 0. (4)

Here, f(u) describes the spatial discretization,whereas ¨ is a diagonalmatrixwith the volumes
of the mesh cells as entries. We thus obtain

∂F
∂u

= 3

2�t
I + ¨−1 ∂f

∂u
.

For a steady state problem, we just have

F(u) := ¨−1f(u) = 0. (5)
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3 The Full Approximation Scheme

As mentioned in the introduction, we use an agglomeration FAS to solve Eqs. (4) and (5). To
employ a multigrid method, we need a hierarchical sequence of grids with the coarsest grid
being denoted by level l = 0. This is obtained by agglomerating 4 neighboring cells to one,
which is straightforward for structured grids. On the coarse grids, the problem is discretized
using a first order version of the JST scheme that does not use fourth differences or an entropy
sensor.

The iteration is performed as a W-cycle, where on the coarsest grid, one smoothing step
is performed. This gives the following pseudo code:

Function FAS-W-cycle(ul , sl , l)

– ul = Sν1
l (ul , sl) (Presmoothing)

– if (l > 0)

– rl = sl − Fl(ul)
– ũl−1 = Rl−1,lul (Restriction of solution)
– sl−1 = Fl−1(ũl−1) + Rl−1,lrl (Restriction of residual)
– For j = 1, 2: call FAS-W-cycle(ul−1, sl−1, l − 1) (Computation of the coarse grid

correction)
– ul = ul + Pl,l−1(ul−1 − ũl−1) (Correction via Prolongation)

– end if

The restrictionRl−1,l is an agglomeration thatweighs components by the volume of their cells
and divides by the total volume. As for the prolongation Pl,l−1, it uses a bilinear weighting
[12].

On the finest level, the smoother is applied to the Eq. (4) resp. (5). On sublevels, it is
instead used to solve

F := sl − Fl(ul) = 0 (6)

with

sl = Fl(Rl,l+1ul+1) + Rl,l+1rl+1.

4 Preconditioned Smoothers

All smoothers we use have a pseudo time iteration as a basis. These are iterative methods for
the nonlinear equation F(u) = 0 that are obtained by applying a time integration method to
the initial value problem

ut∗ = −F(u), u(0) = u0.

For convenience, we have dropped the subscript l that denotes the multigrid level.

4.1 Preconditioned Additive Runge–Kutta Methods

We start with splitting F(u) in a convective and diffusive part

F(u) = fc(u) + fv(u). (7)
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Hereby, fc contains the physical convective fluxes, as well as the discretized time derivative
and the multigrid source terms, whereas fv contains both the artificial dissipation and the
discretized second order terms of the Navier–Stokes equations.

An additive explicit Runge–Kutta (AERK) method is then implemented in the following
form:

u(0) = u (8)

u(i) = u − αi�t∗(fc,(i−1) + fv,(i−1)), i = 1, . . . , s (9)

un+1 = u(s), (10)

where

fc,(i) = fc(u(i)), i = 0, . . . , s − 1 (11)

fv,(0) = fv(u(0)), (12)

fv,(i) = βi+1fv(u(i)) + (1 − βi+1)fv,(i−1), i = 1, . . . , s − 1. (13)

The second to last line implies that β1 = 1. Here, �t∗ is a local pseudo time step, meaning
that it depends on the specific cell and the multigrid level. It is obtained by choosing c∗, a
CFL number in pseudo time, and then computing �t∗ based on the local mesh width �xkl .
On an equidistant mesh, this comes down to:

�t∗ = c∗�xkl /

(
|vk | + ak + 16

�xkl

√
γ

ρk

Ma

Re

[
γ (

μk

Pr
+ μt

Prtk
) + μk + μtk√

6

])
.

This implies larger time steps on coarser cells, in particular on coarser grids.
As for the coefficients, several schemes have been designed to have good smoothing

properties in a multigrid method for convection dominated model equations. The 3-stage
scheme AERK3 has its origins in [35], with the β coefficients being derived in [30]. AERK5J
was designed by Jameson using linear advection with a fourth order diffusion term, see [11].
The 5-stage schemes AERK51 and AERK52 are from [35]. AERK52 is employed in [32].
Coefficients for the 3- and 5-stage schemes can be found in Table 1. All of these schemes are
first order, except for the last one,which has order two and is therefore denoted asAERK52. In
the original publication AERK51 and AERK52 are not additive. When using these within an
additivemethod,we use theβ coefficients fromAERK5J. For current research into improving
these coefficients we refer to [2,4].

Setting βi = 1 for all i gives an unsplit low storage explicit Runge–Kutta method that does
not treat convection and diffusion differently. We refer to these schemes as ERK methods,
e.g. ERK3J or ERK51.

Table 1 Coefficients of explicit
and additive explicit
Runge–Kutta smoothers, 3- and
5-stage method

i 1 2 3 4 5

AERK3 αi 0.1481 2/5 1 – –

βi 1 1/2 1/2 – –

AERK5J αi 1/4 1/6 3/8 1/2 1

βi 1 0 0.56 0 0.44

AERK51 αi 0.0533 0.1263 0.2375 0.4414 1.

AERK52 αi 0.0695 0.1602 0.2898 0.5060 1.
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To precondition this scheme, a preconditioner P−1 ∈ Rm×m is applied to the equation
system (4) or (5) by multiplying them with it, resulting in an equation

P−1F(u) = 0.

In a pseudo-time iteration for the new equation, all function evaluations have to be adjusted.
In the above algorithm, this is realized by replacing the term αi�t∗(fc,(i−1) + fv,(i−1)) with
αi�t∗P−1(fc,(i−1) + fv,(i−1)). We discuss the role of the preconditioner in more detail in
Sect. 4.3.

4.2 AdditiveW-Methods

In [28,32] so called RK/implicit methods were suggested with great success. These use in
effect the method from above with an approximation of the matrix I+ α ∂F

∂u instead, where α

is a parameter. To bring these things together, an alternative way of deriving these methods
has been presented by Langer in [17]. He uses the term preconditioned implicit smoothers
and derives them from specific singly diagonally implicit RK (SDIRK) methods. SDIRK
methods consist of a nonlinear system at each step, which he solves with one Newton step
each and then simplifies by always using the Jacobian from the first stage. This is known as
a special choice of a Rosenbrock method in the literature on differential equations [10, p.
102]. To arrive at a preconditioned method, Langer then replaces the system matrix with an
approximation, for example originating from a preconditioner as known from linear algebra.
In fact, this type of method is called a W-method in the ODE community [10, p. 114].

We now extend the framework from [17] to additive Runge–Kutta methods. For clarity
we repeat the derivation, but start from the split equation

ut∗ + fc(u) + fv(u) = 0 (14)

as described in (7). To this equation, we apply an additive SDIRK method with coefficients
given in Tables 2 and 3:

ki = −F(un + �t∗
⎛
⎝

i−1∑
j=1

(aci jk
c
j + av

i jk
v
j ) + ηki )

⎞
⎠ , i = 1, . . . , s, (15)

un+1 = un + �t∗(αskcs + αs(1 − βs−1)kv
s−1 + αsβskv

s ). (16)

Hereby, the vectors k are called stage derivatives and we have k = kc + kv according
to the splitting (7). Thus, we have to solve s nonlinear equation systems for the stage
derivatives ki .

Table 2 Butcher arrays for
additive SDIRK method:
convective terms

η 0 0 0
α1 η 0 0

0
. . .

. . . 0
0 0 αs−1 η

0 . . . 0 αs
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Table 3 Butcher arrays for additive SDIRK method: diffusive terms

...η 0
α1 η 0

α2(1− β1) α2β2
. . . 0

0
. . .

. . . η 0
0 . . . αs−1(1− βs−1) αs−1βs η

0 . . . 0 αs(1− βs−1) αsβs

To obtain an additive Rosenbrock method, these are solved approximately using one
Newton step each with initial guess zero, changing the stage values to

ki = −(I + η�t∗Ji )−1F(un + �t∗
⎛
⎝

i−1∑
j=1

(aci jk
c
j + av

i jk
v
j ))

⎞
⎠ , i = 1, . . . , s, (17)

where Ji = ∂Fi (0)
∂k , with Fi (k) := F(un + �t∗

(∑i−1
j=1(a

c
i jk

c
j + av

i jk
v
j ) + ηk)

)
. Thus, we

now have to solve a linear system at each stage. This type of scheme is employed in Swanson
et. al. [32]. They refer to the factor η as ε and provide a discrete Fourier analysis of this factor.

As a final step, we approximate the systemmatrices I+η�t∗Ji by a matrixW. This gives
us a new class of schemes, which we call additive W (AW) methods, with stage derivatives
given by:

ki = −W−1F(un + �t∗
⎛
⎝

i−1∑
j=1

(aci jk
c
j + av

i jk
v
j ))

⎞
⎠ , i = 1, . . . , s, (18)

In both additive Rosenbrock and additive W methods, Eq. (16) remains unchanged.
Finally, after some algebraic manipulations, this method can be rewritten in the same form

as the low storage preconditioned AERK methods presented earlier:

u(0) = un

u(i) = un − αi�t∗W−1(fc,(i−1) + fv,(i−1)), i = 1, . . . , s

un+1 = u(s),

where

fc,(i) = fc(u(i)), i = 0, . . . , s − 1

fv,(0) = fv(u(0)),

fv,(i) = βi+1fv(u(i)) + (1 − βi+1)fv,(i−1), i = 1, . . . , s − 1.

As for the explicit methods, one recovers an unsplit scheme for βi = 1 for all i and we
refer to these methods as SDIRK, Rosenbrock and W methods.

4.3 Comparison

To get a better understanding for the different methods, it is illustrative to consider the linear
case.Then, thesemethods are iterative schemes to solve a linear equation system (A+B)x = b
and can be written as
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xk+1 = Mxk + Nb.

The matrixM is the iteration matrix and for pseudo time iterations, it is given as the stability
function S of the time integrationmethod.These are a polynomial Ps of degree s in�t∗(A+B)

for an s stage ERK method and a bivariate polynomial Ps of degree s in �t∗A and �t∗B for
an s stage AERKmethod.When preconditioning is added, this results in Ps(�t∗P−1(A+B))

and Ps(�t∗P−1A,�t∗P−1B), respectively.
For the implicit schemes, we obtain a rational function of the form Qs(I + η�t∗(A +

B))−1Ps(�t∗(A + B)) for an s stage SDIRK or Rosenbrock method. Here, Qs is a second
polynomial of degree s. Finally, for an s-stage additive W method, we obtain a function of
the form Qs(W)−1Ps(�t∗A,�t∗B). Due to the specific contruction, the inverse can simply
be moved from the left into the argument which gives Ps(�t∗W−1A,�t∗W−1B). Note that
this is the same as for the preconditioned AERK method, except for the preconditioner.

The additiveWmethod and the preconditionedAERKmethodhave threemain differences.
First of all, there is the role of P in the AERK method versus the matrixW. In the Wmethod
W ≈ (I + η�t∗Ji ), whereas in the AERK scheme, P ≈ Ji . Second, the timestep in the one
case is that of an explicit ARK method, whereas in the other, that of an implicit method. The
latter in its SDIRK or Rosenbrock form is A-stable. However, approximating the Jacobian
can cause the stability region to become finite. Finally, the latter method has an additional
parameter η that needs to be chosen. However, the large stability region makes the choice of
�t∗ easy for the additive W method (very large), whereas it has to be a small value for the
preconditioned AERK scheme.

4.4 SGS Preconditioner

The basis of ourmethod is the preconditioner suggested bySwanson et al. in [32] andmodified
by Jameson in [16]. In effect, this is a choice of aW matrix in the framework just presented.
We now repeat the derivation of this preconditioner in our notation.

The first step is to approximate the Jacobian by using a different first order linearized
discretization. It is based on a splitting A = A+ +A− of the flux Jacobian. This is evaluated
in the average of the values on both sides of the interface, thereby deviating from [32]. The
split Jacobians correspond to positive and negative eigenvalues:

A+ = 1

2
(A + |A|), A− = 1

2
(A − |A|).

Alternatively, these can be written in terms of the matrix of right eigenvectors R as

A+ = R|+|R−1, A− = R|−|R−1,

where ± are diagonal matrices containing the positive and negative eigenvalues, respec-
tively.

As noted in [16,33], it is nowcrucial to use a cutoff function for the eigenvalues beforehand,
to bound them away from zero.We use a parabolic function which kicks in when the modulus
of the eigenvalue λ is smaller or equal to a fraction ad of the speed of sound a with free
parameter d ∈ [0, 1]:

|λ| = 1

2

(
ad + |λ|2

ad

)
, |λ| ≤ ad. (19)
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With this, an upwind discretization is given in cell i by

uit = 1

�i

∑
ei j∈N (i)

|ei j |(A+
ni jui + A−

ni ju j ). (20)

Here, ei j is the edge between cells i and j , N (i) is the set of cells neighboring i and ni j the
unit normal vector from i to j .

For the unsteady equation (4), we obtain instead

uit = 3

2�t∗
I + 1

�i

∑
ei j∈N (i)

|ei j |(A+ui + A−u j ). (21)

The corresponding approximation of the Jacobian is then used to construct a precondi-
tioner. Specifically, we consider the block SGS preconditioner

P−1 = (D + L)−1D(D + U)−1, (22)

where L, D and U are block matrices with 4 × 4 blocks. This preconditioner would look
different when several SGS steps would be performed. However, a second step increases the
cost of the whole method by 50%without giving an appropriate increase in convergence rate.
Therefore, it should only be used if one step does not give convergence.

We now have two cases. In the AERK framework, L + D + U = J and we arrive at

Li j = − 1

�i
(�yA+

i−1, j + �xB+
i, j−1), (23)

Ui j = 1

�i
(�yA−

i−1, j + �xB−
i, j−1), (24)

Di i = 1

�i
[�y(A+

i i − A−
i i ) + �x(B+

i i − B−
i i )], (25)

respectively

Di i = 3

2�t
I + 1

�i
[�y(A+

i i − A−
i i ) + �x(B+

i i − B−
i i )], (26)

in the unsteady case and we assumed a cartesian grid to simplify notation.
In the additive W framework, L + D + U = I + η�t∗J and we obtain

Li j = −η�t∗i
�i

(�yA+
i−1, j + �xB+

i, j−1), (27)

Ui j = η�t∗i
�i

(�yA−
i−1, j + �xB−

i, j−1), (28)

Di i = I + η�t∗i
�i

[
�y(A+

i i − A−
i i ) + �x(B+

i i − B−
i i )

]
. (29)

or in the unsteady case

Di i = I + 3η�t∗

2�t
I + η�t∗i

�i
[�y(A+

i i − A−
i i ) + �x(B+

i i − B−
i i )]. (30)

Applying this preconditioner requires solving small 4×4 systems coming from the diago-
nal. We use Gaussian elimination for this. A fast implementation is obtained by transforming
first to a certain set of symmetrizing variables, see [16].
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5 Discrete Fourier Analysis

We now perform a discrete Fourier analysis of the preconditioned AERK method for the
two dimensional Euler equations using the JST scheme. For a description of this technique,
also called local Fourier analysis (LFA) in the multigrid community, we refer to [9,34]. The
rationale for this is that the core convergence problems for multigrid methods for viscous
flow problems on high aspect ratio grids are the convective terms and the high aspect ratio
grids. The viscous terms are of comparatively minor importance. Here, we do not take into
account the coarse grid correction. Thus, our aim is to obtain amplification- and smoothing
factors for the smoother. The latter is given by

max
λHF

|S(λ)|, (31)

where λHF denote the high frequency eigenvalues. Since eigenfunctions of first order hyper-
bolic differential operators involve eiφx , these are in [−π,−π/2] and [π/2, π].

We now consider a linearized version of the underlying equation with periodic boundary
conditions on the domain � = [0, 1]2:

d

dt
u + (Au)x + (Bu)y = 0 (32)

with A = ∂f1
∂u and B = ∂f2

∂u being the Jacobians of the Euler fluxes in a fixed point û, to be
set later.

5.1 JST Scheme

We discretize (32) on a cartesian mesh with mesh width �x in x-direction and �y = AR�x
in y-direction (AR = aspect ratio), resulting in an nx×ny mesh. A cell centered finite volume
method with the JST flux is employed. We denote the shift operators in x and y direction by
Ex and Ey . Cells are indexed the canonical doubly lexicographical way for a cartesian mesh.
In cell i j we write the discretization as

(Hu)i j = ((Hc + Hv)u)i j

with

Hc = 1

2�x�y
(A(E+1

x − E−1
x )�y + B(E+1

y − E−1
y )�x),

respectively in the unsteady case,

Hc = 3

2�t
I + 1

2�x�y
(A(E+1

x − E−1
x )�y + B(E+1

y − E−1
y )�x).

For Hv , the starting point is that the pressure in conservative variables is

p = (γ − 1)

(
ρE − ρ

(ρv1)
2 + (ρv2)

2

2ρ2

)
.

In the fraction, all potential shift operators cancel out. Thus, for the second differences in
both directions,

p j+1 − 2p j + p j−1 = (γ − 1)[(E+ − 2 + E−)ρE j − |v|2/2(E+ − 2 + E−)ρ j ].

123



1006 Journal of Scientific Computing (2019) 78:995–1022

For the fourth difference, there’s a corresponding identity. Furthermore, applying the second
or fourth difference to ρHj = ρE j + p j results in

ρHj+1 − 2ρHj + ρHj−1 = γ (E+ − 2 + E−)ρE j − (γ − 1)|v|2/2(E+ − 2 + E−)ρ j .

This gives

Hv = 1

�x�y
M[ε(2)((−E+1

x + 2 − E−1
x )�y + (−E+1

y + 2 − E−1
y )�x)

+ ε(4)(E+2
x − 4E+1

x + 6 − 4E−1
x + E−2

x )�y

+ ε(4)(E+2
y − 4E+1

y + 6 − 4E−1
y + E−2

y )�x]
with

M =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

−(γ − 1)|v|2/2 0 0 γ

⎞
⎟⎟⎠ .

For the coefficient functions ε(2) and ε(4) [see (1) and (2)], we first look at the shock sensor
s j+1/2. Here, we use the version for the Euler equations based on pressure. Straightforward
calculations give

p j+1 + 2p j + p j−1 = (γ − 1)[(E+1 + 2 + E−1)ρE j − 1/2|v|2(E+ + 2 + E−)ρ j ].
Thus

s j = (γ − 1)[(E+1 − 2 + E−1)ρE j − 1/2|v|2(E+ − 2 + E−)ρ j ]
(γ − 1)[(E+1 + 2 + E−1)ρE j − 1/2|v|2(E+ + 2 + E−)ρ j ] + 0.001

.

For simplicity, we now assume that max(s j , s j+1) = s j . Thus,

s j+1/2 = min(0.25, s j ).

For the spectral radius we note that in the speed of sound a j = √
γ p j/ρ j , possible shift

operators cancel out as well, implying that is constant over the mesh. This gives

ri = |v1| + a,

r j = |v2| + a.

Regarding the maxima, we have r j = r j+1 =: r and correspondingly for the y direction with
ri . Thus,

ε(2) = rs j+1/2

and

ε(4) = max(0, r/32 − 2ε(2)).

5.2 Preconditioner

With regards to the SGS preconditioner P−1 = (D + L)−1D(D + U)−1, the different dis-
cretization based on the flux splitting (20) with cutoff function (19) gives [see (23)–(26)]

L = − 1

�
[�yA+E−1

x + �xB+E−1
y ],
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U = 1

�
[�yA−E+1

x + �xB−E+1
y ].

We now get two different operators for the diagonal part for the steady and for the unsteady
case. We have

Ds = I + 1

�
[�y(A+ − A−) + (�x(B+ − B−)],

for the steady case, whereas for the unsteady case there is

Du = 3

2�t
I + Ds .

With these, the preconditioner (22) is formed. For the W methods, these matrices need to be
adjusted slightly, compare (27)–(30).

We now make one simplification in the analysis and that is that we assume the matrices to
be evaluated with the value of the respective cell and not the average as in the actual method.

As an example, the application of the 3-stage AERK scheme results in the following
operator, where we write H̄c := P−1Hc, H̄v := P−1Hv and ᾱi = �t∗αi :

G = I − ᾱ3((H̄c + β3H̄v)(I − ᾱ2((H̄c + β2H̄v)(I − ᾱ1(H̄c + H̄v)) + (1 − β2)H̄v))

+ (1 − β3)(β2H̄v(I − ᾱ1(H̄c + H̄v)) + (1 − β2)H̄v)).

For other smoothers, we have to use other appropriate stability functions, as discussed in
Sect. 4.3. As a relation between �t∗ and c∗, we use the relation

�t∗ = c∗ min(�x,�y)/(|v| + a).

5.3 Amplification and Smoothing Factors

We are now interested in the amplification factor of the corresponding method for different
values of �x and �y. Working with G directly would require assembling a large matrix in
R4nx×4ny . Instead, we perform a discrete Fourier transform. In Fourier space, the transformed
operator block diagonalizes, allowing toworkwith themuch smallermatrix Ĝ ∈ R4×4. Thus,
we replace ui j by its discrete Fourier series

ui j =
nx/2∑

kx=−nx/2+1

ny/2∑
ky=−ny/2+1

ûkx ,ky e
2π i(kx xi+ky y j )

and analyze

ûk+1
kx ,ky

= Ĝkx ,ky û
k
kx ,ky .

When applying a shift operator to one of the exponentials, we obtain

Exe
2π i(kx xi+ky y j ) = e2π i(kx (xi+1/nx )+ky y j ) = e2π ikx/nx e2π i(kx xi+ky y j )

and similar for Ey . Defining the phase angles

�x = 2πkx/nx , �y = 2πky/ny,

the Fourier transformed shift operators are

Êx = ei�x , Êy = ei�y

and can replace the dependence on the wave numbers with a dependence on phase angles.
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To compute the spectral radius of G, we now just need to look at the maximum of the
spectral radius of Ĝ�x ,�y = Ĝkx ,ky over all phase angles �x and �y between −π and π .
Furthermore, this allows to compute the smoothing factor (31) as well, by instead taking the
maximum over all wave numbers between −π and −π/2, as well as π/2 and π .

5.4 Results

We evaluate the matrices in the points

û1 = (1,
√
2/2,

√
2/2, 3.290)T (Mach 0.8, α = 45◦)

and

û3 = (1, 1, 0, 3.290)T (Mach 0.8, α = 0◦).

We use a 8 × (8 · AR) grid with different aspect ratios (AR), namely AR = 1, AR = 100
and AR = 10,000. To determine the physical time step, a CFL number c of 200 is chosen.
All results were obtained using a python script, which can be accessed at http://www.maths.
lu.se/philipp-birken/rksgs_fourier.zip.

5.4.1 The Explicit Schemes

Results for explicit schemes for different test cases are shown in Table 4. As can be seen, these
methods have terrible convergence rates, but are good smoothers for equidistant meshes. For
non-equidistant meshes, this is not the case, which demonstrates the poor performance of
these methods for viscous flow problems.

5.4.2 Preconditioned AERK

We now consider preconditioned AERK3J with SGS and exact preconditioning. The Mach
number is set to 0.8 and the angle of attack to zero degrees, which is themost difficult test case
of the ones considered. Even so, it is possible to achieve convergence at all aspect ratios with
a large physical CFL c = 200. With regards to stability, we show the maximal possible c∗
in Table 5. We can see that this is dramatically improved compared to the unpreconditioned
method, but it remains finite, as predicted by the theory. We furthermore notice that the
choice of d in the cutoff function (19) is important. In particular, the smaller we choose d ,
meaning the smaller we allow eigenvalues to be, the less stable the method will be. Maximal
c∗ is approximately proportional to the aspect ratio and to d . The eigenvalues and contours
of smoothing factor for d = 0.5 are also illustrated in Fig. 1 for aspect ratios 1 and 100,
respectively. Clustering of the eigenvalues along the real axis is observed indicating good
convergence.

Table 4 Amplification and
smoothing factors of ERK3 and
AERK3J, 8 × (8AR) grid,
c∗ = 0.9, d = 0.1, M = 0.8,
α = 0◦

ERK3 AERK3J

AR 1 100 10,000 1 100 10,000

ρ(M) 0.9933 0.9937 0.9937 0.9933 0.9937 0.9937

Sm. fct. 0.5158 0.9937 0.9937 0.4634 0.9937 0.9937
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Table 5 Maximal c∗ for
AERK3J, c = 200, M = 0.8,
α = 0◦ for aspect ratios of 1, 100
and 10000 and various values of
the cutoff fraction d from (19)

SGS precond. Exact precond.

d AR 1 100 10,000 1 100 10,000

0.0 1 80 10,500 1 80 8500

0.1 6 900 95,000 8 850 80,000

0.25 15 2200 220,000 16 2000 200,000

0.5 30 4400 440,000 27 4000 400,000

1.0 50 6500 800,000 59 6800 790,000

Fig. 1 Spectrum and amplification factors for different wavenumbers, Mach 0.8, α = 0◦, AERK3J with SGS
preconditioner, c = 200, d = 0.5. Top: AR = 1, c∗ = 14; bottom: AR = 100, c∗ = 4300

For each value of d considered, c∗ was optimised (c∗ opt) to minimise the smoothing
factor (SM fct. opt). The results are shown in Table 6. Optimal smoothing factors improve as
d is increased. Preconditioning with the exact inverse affords better smoothing factors than
SGS preconditioning. In general, optimal c∗ is close to maximal c∗.

5.4.3 Additive WMethods

Results for AW3with SGS and exact preconditioning are shown in Tables 7 and 8. Again, the
Mach number is set to 0.8, the physical CFL c = 200 and the angle of attack to zero degrees.
We set η = 0.8. An A means that no bound on c∗ was observed. As we can see, as long as d
is chosen sufficiently large, the methods are practically A-stable, as suggested by the theory.
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Table 6 Amplification and smoothing factors of AERK3J, c = 200, M = 0.8, α = 0◦

SGS precond. Exact precond.

d AR 1 100 10,000 1 100 10,000

0.0 c∗ opt 1 80 10,500 1 80 10,500

ρ(M) opt 0.9974 0.9708 0.9465 0.9489 0.9591 0.9465

Sm. fct. opt 0.9439 0.9708 0.9465 0.9446 0.9591 0.9465

0.1 c∗ opt 5 900 95,000 8 850 85,000

ρ(M) opt 0.9878 0.7730 0.7739 0.6424 0.6300 0.6300

Sm. fct. opt 0.7370 0.7730 0.7739 0.6304 0.6300 0.6300

0.25 c∗ opt 10 2100 220,000 9 1900 190,000

ρ(M) opt 0.9774 0.6932 0.6663 0.6051 0.5273 0.4723

Sm. fct. opt 0.5480 0.6932 0.6663 0.5738 0.5273 0.4723

0.5 c∗ opt 13 4300 440,000 13 2200 380,000

ρ(M) opt 0.9742 0.6440 0.7411 0.4728 0.3601 0.4454

Sm. fct. opt 0.4119 0.6440 0.7411 0.4421 0.3601 0.4454

1.0 c∗ opt 18 6100 700,000 30 6300 680,000

ρ(M) opt 0.9694 0.7140 0.6729 0.2653 0.5088 0.4548

Sm. fct. opt 0.2762 0.7140 0.6729 0.2653 0.5088 0.4548

Table 7 Maximal c∗ for AW3,
η = 0.8, c = 200, M = 0.8,
α = 0◦. A implies that no bound
was observed

SGS precond. Exact precond.

d AR 1 100 10,000 1 100 10,000

0.0 8 8 8 8 8 8

0.1 11 13 13 13 13 13

0.25 30 2100 A 47 98 98

0.5 A A A A A A

1.0 A A A A A A

Surprisingly, for d small, stability is worse than for the preconditioned AERKmethods. This
is also illustrated in Fig. 2 for for Mach 0.5 and aspect ratios 1 and 100, respectively. As with
AERK3J, the eigenvalues are clustered along the real axis.

A slightlymore complex picture emergeswhen the optimal smoothing factor is considered.
At AR = 1, the AW3 scheme attains very low optimal smoothing factors of around 0.3 at
all values of d while the AERK3J scheme smoothing factors improved with increasing d .
Comparing SGS preconditioning in both schemes, the optimal smoothing factors obtained
by AW3 are slightly higher than AERK3J. Using exact preconditioning in both schemes at
AR = 100 and 10,000, AW3 and AERK3J obtain comparable smoothing factors. Regarding
the optimal c∗, it is generally lower than with AERK3J except for d ≥ 0.5 and AR> 1.

5.4.4 Comparison of AW Schemes and Choice of �

One important question is the optimal choice of the additional parameter η in theWmethods.
Based on the AW3 results in Table 7 it was decided to focus on two values of d: d = 0.1
where limited stability was observed, and d = 0.5 where A-stability was observed. Only
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Table 8 Amplification and smoothing factors of AW3, η = 0.8, c = 200, M = 0.8, α = 0◦

SGS precond. Exact precond.

d AR 1 100 10,000 1 100 10,000

0.0 c∗ opt 3 8 8 3 8 8

ρ(M) opt 0.9836 0.9452 0.9441 0.9781 0.9440 0.9440

Sm. fct. opt 0.3046 0.9452 0.9441 0.3046 0.9440 0.9440

0.1 c∗ opt 3 12 13 3 12 12

ρ(M) opt 0.9837 0.9217 0.9140 0.9781 0.9188 0.9188

Sm. fct. opt 0.2969 0.9217 0.9140 0.2933 0.9188 0.9188

0.25 c∗ opt 3 240 500 3 70 70

ρ(M) opt 0.9838 0.7157 0.6825 0.9781 0.6843 0.6843

Sm. fct. opt 0.2818 0.7157 0.6825 0.2787 0.6843 0.6843

0.5 c∗ opt 3 > 1e6 > 1e6 4 > 1e6 > 1e6

ρ(M) opt 0.9841 0.7977 0.7916 0.9710 0.3511 0.3511

Sm. fct. opt 0.2686 0.7977 0.7916 0.2669 0.3511 0.3511

1.0 c∗ opt 7 > 1e6 > 1e6 7 > 1e6 > 1e6

ρ(M) opt 0.9765 0.8853 0.8832 0.9506 0.4897 0.4897

Sm. fct. opt 0.2564 0.8853 0.8832 0.2627 0.4897 0.4897

Fig. 2 Spectrum and amplification factors for different wavenumbers, Mach 0.8, α = 0◦, AW3 with SGS
preconditioner, c = 200, d = 0.5, η = 0.8. Top: AR = 1, c∗ = 3; bottom: AR = 100, c∗ = 1e6
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Table 9 Optimal η, c∗, amplification and smoothing factors of all AW schemes, c = 200, M = 0.8, α = 0◦,
SGS preconditioning

Scheme AW3 AW51

d AR 1 100 10,000 1 100 10,000

0.1 c∗ opt 3 12 13 3 8 11

η opt 0.6 0.8 0.8 0.6 0.8 0.9

ρ(M) opt 0.9823 0.9217 0.9140 0.9823 0.9454 0.9824

Sm. fct. opt 0.2604 0.9217 0.9140 0.2624 0.9454 0.9824

0.5 c∗ opt 3 > 1e6 > 1e6 4 30 > 1e6

η opt 0.4 0.5 0.5 0.5 0.5 0.7

ρ(M) opt 0.9809 0.6934 0.6848 0.9776 0.8598 0.7671

Sm. fct. opt 0.2630 0.6934 0.6848 0.2610 0.8598 0.7671

Scheme AW52 AW5J

d AR 1 100 10,000 1 100 10,000

0.1 c∗ opt 3 8 10 3 9 10

η opt 0.6 0.8 0.8 0.5 0.7 0.8

ρ(M) opt 0.9823 0.9456 0.9323 0.9815 0.9389 0.9323

Sm. fct. opt 0.2256 0.9456 0.9323 0.2064 0.9389 0.9323

0.5 c∗ opt 3 > 1e6 > 1e6 3 > 1e6 > 1e6

η opt 0.5 0.5 0.5 0.4 0.5 0.5

ρ(M) opt 0.9818 0.7031 0.6951 0.9809 0.7007 0.6924

Sm. fct. opt 0.1762 0.7031 0.6951 0.1721 0.7007 0.6924

SGS preconditioning was used. For each W scheme and value of d , optimal values of c∗, η
and amplification and smoothing factors were determined. These are presented in Table 9
for initial conditions Mach=0.8, α = 0◦ and in Table 10 for initial conditions Mach = 0.8,
α = 45◦.

Looking just at Table 9, the optimal value of η is low, either 0.4 or 0.5 (with one case of 0.7),
when d = 0.5. When d = 0.1, the optimal η depends on AR: for AR = 1, optimal values of
η are 0.5 or 0.6 and for AR = 100 and 10,000 the values are higher, mostly 0.8. Looking at
Table 10, the optimal value of η is independent of d and the choice of scheme but not of AR.
The optimal value of η appears to be somewhat dependent on the initial conditions and other
free parameters but independent of the specific W scheme. Furthermore, the optimisation
process demonstrated (not all results are shown for brevity) that the W schemes are all stable
within a range of about η ∈ [0.5, 0.9], but the maximal c∗ varies with η within the range. As
shown in Table 8, fixing η = 0.8 across all tests results in a stable but sub-optimal scheme.
Looking at the relative performance of different W schemes in Tables 9 and 10, it is apparent
that they all obtain similar optimal smoothing factors at similar c∗ values. Therefore, AW3
is the best scheme as it uses only three stages.

The discrete Fourier analysis suggests that the preconditioned AERK3J and additive W
schemes should theoretically achieve very good smoothing factors under challenging flow
conditions and on high aspect ratio grids.Moreover, in theW schemes the eigenvalue limiting
parameter d plays an important role: for d ≥ 0.5 and AR > 1 the allowable c∗ is unlimited,
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Table 10 Optimal η, c∗, amplification and smoothing factors of all AW schemes, c = 200,M = 0.8, α = 45◦,
SGS preconditioning

Scheme AW3 AW51

d AR 1 100 10,000 1 100 10,000

0.1 c∗ opt 3 900 400 3 1200 300

η opt 0.6 0.8 0.9 0.6 0.8 0.8

ρ(M) opt 0.9804 0.4481 0.4367 0.9804 0.4545 0.4390

Sm. fct. opt 0.2642 0.4481 0.4367 0.2654 0.4545 0.4390

0.5 c∗ opt 3 > 1e6 > 1e6 3 > 1e6 > 1e6

η opt 0.6 0.8 0.9 0.6 0.8 0.9

ρ(M) opt 0.9809 0.4441 0.4363 0.9804 0.4484 0.4351

Sm. fct. opt 0.2642 0.4441 0.4363 0.2654 0.4484 0.4351

Scheme AW52 AW5J

d AR 1 100 10,000 1 100 10,000

0.1 c∗ opt 3 > 1e6 500 3 300 200

η opt 0.5 0.8 0.8 0.5 0.8 0.9

ρ(M) opt 0.9798 0.4378 0.4107 0.9798 0.5460 0.5220

Sm. fct. opt 0.1750 0.4378 0.4107 0.1526 0.5460 0.5220

0.5 c∗ opt 3 > 1e6 > 1e6 3 1100 800

η opt 0.5 0.8 0.9 0.5 0.8 0.9

ρ(M) opt 0.9799 0.4710 0.3957 0.9799 0.5427 0.4205

Sm. fct. opt 0.1750 0.4710 0.3957 0.1527 0.5427 0.4205

while for smaller d or AR = 1 the optimal c∗ is finite and smaller than that found for
preconditioned AERK3J.

6 Numerical Results

We now proceed to tests on the RANS equations and use a FAS scheme as the iterative
solver. We employ the Fortran code uflo103 to compute flows around pitching airfoils. All
computations are run on Ubuntu 16.04 on a single core of an 8-core Intel i7-3770 CPU at
3.40GHz with 8 GB of memory.

C-type grids are employed, where the half of the cells that are closer to the boundary in
y-direction get a special boundary layer scaling. To obtain initial conditions for the unsteady
simulation, far field values are used fromwhich a steady state is computed. The first unsteady
time step does not use BDF-2, but implicit Euler as a startup for the multistep method. From
then on, BDF-2 is employed. We look at the startup phase to evaluate the performance of
steady state computations and at the second overall timestep, meaning the first BDF-2 step,
to evaluate performance for the unsteady case.

As a first test case, we consider the flow around the NACA 64A010 pitching and plunging
airfoil at a Mach number 0.796. The grid is illustrated in Fig. 3. For the pitching, we use a
frequency of 0.202 and an amplitude of 1.01◦. 36 timesteps per cycle (pstep) are chosen. The
Reynolds number is 106 and the Prandtl number is 0.75. The grid is a C-mesh with 512× 64
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Fig. 3 Zoom of grids around NACA 64A010 and RAE 2822 airfoils

Table 11 Maximal c∗ and
convergence rates of UFLO103
for NACA 64A010 test case,
d = 0.5

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.4 10 0.8774 10 0.8770

0.5 10,000 0.8616 10,000 0.8071

0.6 10,000 0.8629 10,000 0.8183

1.0 10,000 0.8759 10,000 0.8546

Table 12 Maximal c∗ and
convergence rates of UFLO103
for NACA 64A010 test case,
d = 0.1

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.5 10,000 0.8561 100 0.7517 (90)

0.6 10,000 0.8583 100 0.7732

cells andmaximum aspect ratio of 6.31e6. As a second test case, we look at the pitching RAE
2822 airfoil at a Mach number of 0.75. The grid is illustrated in Fig. 3. For the pitching, we
use a frequency of 0.202 and an amplitude of 1.01◦ and pstep = 36. The grid has 320 × 64
cells and maximum aspect ratio of 8.22e6.

The results of the Fourier analysis suggest that the most interesting schemes are SGS
preconditioned AERK3J and the various AW schemes. A first thing to note is that due to
nonlinear effects, the schemes need to be tweaked from the linear to the nonlinear case. In
particular, it is necessary to start with a reduced pseudo CFL number c∗. We restrict it to 20
for the first two iterations.

6.1 Choice of Parameters

In the AWmethods, there are now three interdependent parameters to choose: η, d and c∗, the
CFL number in pseudo time. We start by fixing d . Choosing d = 0 does not cause instability
per se, but it leads to a stall in the iteration away from the solution. The convergence rates
for d = 0.05, d = 0.1 and d = 0.5 for the NACA and the RAE test case can be seen in
Tables 11, 12, 13, 14, 15, 16. The largest c∗ tried is 10,000 in all cases. If the number reported
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Table 13 Maximal c∗ and
convergence rates of UFLO103
for NACA 64A010 test case,
d = 0.05

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.4 10 0.8787 10 0.8828

0.5 10,000 0.8506 100 0.7503 (90)

0.6 10,000 0.8533 100 0.7721

Table 14 Maximal c∗ and
convergence rates of UFLO103
for RAE 2822 test case, d = 0.5

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.4 10,000 0.8567 10,000 0.8228

0.5 10,000 0.8581 10,000 0.8424

0.6 10,000 0.8631 10,000 0.8574

0.7 10,000 0.8691 10,000 0.8688

0.8 10,000 0.8740 10,000 0.8766

0.9 10,000 0.8744 10,000 0.8817

1.0 10,000 0.8804 10,000 0.8866

Table 15 Maximal c∗ and
convergence rates of UFLO103
for RAE 2822 test case, d = 0.1

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.4 400 0.8429 60 0.7996

0.5 10,000 0.8359 70 0.8000

0.8 10,000 0.8471 60 0.8304

Table 16 Maximal c∗ and
convergence rates of UFLO103
for RAE 2822 test case, d = 0.05

Steady Unsteady

η c∗ Conv. rate c∗ Conv. rate

0.4 100 0.8470 60 0.7895

0.5 10,000 0.8224 60 0.7972

0.6 10,000 0.8281 60 0.8045

0.7 10,000 0.8326 70 0.8029

is smaller, it implies that it is the largest for which the methods are convergent. A number
in parentheses e.g. (90) after the convergence rate means that the rate was calculated for the
first 90 iterations, after which convergence stalled. Only stable values of η are reported for
brevity. The schemes are stable within a certain range, 0.5 ≤ η ≤ 0.9, which tallies with the
Fourier analysis results.

Qualitatively, we observe the following behavior:

– Increasing d makes the schemes slower to converge and more stable
– This effect is stronger for the unsteady system
– If η is too small, we get instability
– Decreasing η within the stable region will improve the convergence rate

We thus suggest two different modes of operation:

123



1016 Journal of Scientific Computing (2019) 78:995–1022

Fig. 4 Convergence behavior for steady flow around NACA64A010 (left) and RAE 2822 (right) airfoil for
different AW schemes, 0◦ angle of attack, d = 0.05, c∗ = 100

Fig. 5 Convergence behavior for steady flow around NACA64A010 (left) and RAE 2822 (right) airfoil for
different AW schemes, 0◦ angle of attack, d = 0.5, c∗ = 10,000

1. The robust mode: Choose d = 0.5, η = 0.5 and c∗ very large
2. The fast mode: Choose d = 0.05, η = 0.5 and c∗ = 100

The robust mode trades some convergence rate for more robustness.
The numerical experiments find somewhat different optimal values of η to those found

in the discrete Fourier analysis. Possible reasons for the discrepancies include the lineari-
sations used in the discrete Fourier analysis and the non-cartesian meshes in the numerical
experiments.

6.2 Comparison of Schemes

The linear analysis suggests that preconditioned AERK3 is competitive with the precondi-
tionedWmethods in terms of smoothing power.However, its application requires choosing c∗
within a stability limit whereas theWmethods are A-stable for a certain range of d . To test the
stability limit of the AERK schemes, we apply preconditioned AERK3 and AERK51 to the
pitching NACA airfoil test case. The AERK3 method becomes unstable for c∗ > 1, whereas
AERK51 can be run with c∗ = 3. However, both methods are completely uncompetitive with
convergence rates of 0.999. Hereafter we compare only the AW schemes.

We compare AW3, AW51, AW52 and AW5J for the two airfoils and the two modes of
operation: d = 0.05 and c∗ = 100 versus d = 0.5 and c∗ = 10,000. The relative residuals
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Fig. 6 Convergence behavior for unsteady flow around NACA64A010 (left) and RAE 2822 (right) airfoil for
different AW schemes, d = 0.05, c∗ = 100

Fig. 7 Convergence behavior for unsteady flow around NACA64A010 (left) and RAE 2822 (right) airfoil for
different AW schemes, d = 0.5, c∗ = 10,000

for the initial steady state computation are plotted in Fig. 4 for d = 0.05 and c∗ = 100 and
in Fig. 5 for d = 0.5 and c∗ = 10,000. The residual histories for the same tests, but for the
second unsteady timestep can be seen in Figs. 6 and 7.

The convergence rates and CPU times are summarized in Table 17 for the NACA64A010
airfoil and in Table 18 for the RAE 2822 airfoil. The numbers after the scheme names are
the values of c∗ used in the steady iterations. Faster convergence is obtained with d = 0.05
for all schemes except AW5J.

As an immediate conclusion, it can be seen that the different schemes have similar con-
vergence rates. Thus, AW3 performs best in terms of CPU times, since it is a three stage
smoother, opposed to the five stage smoothers. With the fast mode, we get a convergence rate
for the unsteady case of 0.77 for the NACA profile and 0.8 for the RAE profile. However,
for the RAE profile, we have to reduce c∗ from 100 for 3 of the 4 schemes to prevent insta-
bility. With the convergence rate obtained, 20–30 iterations are sufficient to get a reduction
of the residual by five order of magnitude. This is a matter of seconds and is sufficient for
most applications. Note however, that for example when assessing the quality of different
turbulence models, much lower residuals are desirable. In the robust mode, the convergence
rate goes down to 0.8 for the NACA profile and 0.84 for the RAE profile.

In the steady state cases, there is a decline in convergence rate after 20 to 30 iterations.
This explains why the convergence rates are significantly slower here than the unsteady ones.
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Table 17 Performance of AW3, AW51 and AW52 for the pitching NACA64A010 airfoil, 0◦ angle of attack,
100 steady/unsteady iterations

d = 0.05, c∗ = 100 d = 0.5, c∗ = 10,000

CPU[s] Av. conv. rate CPU[s] Av. conv. rate

Steady AW3 13.6 0.8586 14.5 0.8616

AW5J 21.3 0.8775 21.4 0.8671

AW51 21.0 0.8603 21.3 0.8632

AW52 20.8 0.8618 21.5 0.8645

Unsteady AW3 19.0 0.7724 18.9 0.8071

BDF-2 AW5J 28.6 0.8844 29.0 0.8074

AW51 28.7 0.7725 29.6 0.8071

AW52 28.5 0.7724 29.2 0.8074

Table 18 Performance of AW3, AW51 and AW52 for the RAE 2822 airfoil, 0◦ angle of attack, 100
steady/unsteady iterations

d = 0.05, c∗ = 60/100 d = 0.5, c∗ = 10,000

CPU[s] Av. conv. rate CPU[s] Av. conv. rate

Steady AW3/60 8.6 0.8530 8.9 0.8581

AW5J/20 12.7 0.8670 13.1 0.8609

AW51/100 12.6 0.8492 13.1 0.8590

AW52/80 12.7 0.8530 13.1 0.8601

Unsteady AW3 11.7 0.7972 12.0 0.8424

BDF-2 AW5J 17.5 0.8687 18.0 0.8786

AW51 17.5 0.7732 18.1 0.8424

AW52 17.9 0.7808 18.0 0.8429

In the first phase, a convergence rate of about 0.7 is obtained and the norm of the residual is
decreased by about 106.

The cause of this decline in convergence must be in nonlinear effects or in boundary
conditions. One point of future investigation is if weak boundary conditions would be a
better choice [26].

6.3 Different Meshes

To assess the solvers’ mesh-dependence, we run the pitching NACA 64010 airfoil with AW3
and d = 0.5 on coarse (256×32), medium (512×64) and fine (1024×128) meshes in robust
mode. With d set to 0.05 the simulations on the coarse mesh diverged, which is an example
where the robust mode is indeed more robust. We use seven multigrid levels for the finest
mesh. Table 19 shows the results. As can be seen, the convergence of the preconditioned AW
schemes goes down on the finest mesh, caused by a stall in the residual after 50 iterations
and a reduction of the residual by five orders of magnitude. To fix this, the solver has to be
adjusted. The last line shows a computation with η = 0.8 and two SGS steps instead of one,
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Table 19 Convergence rates for
the pitching NACA 64010 airfoil
with AW3 and d = 0.5 on
different meshes. The last row
corresponds to η = 0.8 and two
SGS steps

Mesh Steady Unsteady

256 × 32 0.8698 0.8110

512 × 64 0.8616 0.8071

1024 × 128 0.8667 0.8917

1024 × 128 0.8689 0.8103

Table 20 Convergence rate with
AW3 smoothing for the pitching
NACA 64A010 airfoil at different
angles of attack, c∗ = 10,000,
d = 0.5, pstep=36

Angle NACA RAE

Steady 0 0.8623 0.8625

1 0.8500 0.8639

2 0.8597 0.8590

4 0.8530 0.8564

Unsteady 0 0.8249 0.8846

1 0.8239 0.9097 (65)

�t = 0.486822 2 0.8254 0.8307

4 0.9055 (30) 0.8290

increasing computational effort, but recovering the convergence rate. On even finer meshes,
we observe again the stall after 5 orders of magnitude residual reduction.

6.4 Effect of Flow Angle

In the Fourier analysis it was found that grid-aligned flow could be problematic. We therefore
choose angles of attack α of 0, 1, 2 and 4 degrees for the steady state computation or the
second time step in an unsteady computation. Table 20 shows the convergence rates in fast
mode (d = 0.05). Essentially, it is unaffected by the angle of attack. However, for two
cases, the iteration stalls after 30, resp. 65 iterations at relative residuals of 10−4 and 10−5,
respectively.

7 Conclusions

We considered preconditioned pseudo time iterations for agglomeration multigrid schemes
for the steady and unsteady RANS equations. As a discretization, the JST schemewas used as
a flux function in a finite volumemethod. Based on previouswork of other authors, we derived
AWmethods, as well as preconditioned AERKmethods from time integration schemes. Both
are implemented in exactly the same way with the difference being in how the preconditioner
is chosen, as well as the pseudo time step size. For the latter, the preconditioner has to
approximate the JacobianJ,wheras for theAWmethod, the preconditioner has to approximate
I + η�t∗J. The time integration based derivation allows to conclude that preconditioned
AERK has a finite stability region, whereas AW allows for possibly unbounded pseudo
time steps. However, we obtain an additional parameter η which currently must be chosen
empirically. As a preconditioner, we choose a flux vector splitting with a cutoff of small
eigenvalues controlled by the free variable d .
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To compare the different methods, we used a discrete Fourier analysis of the linearized
Euler equations. Numerical results show that AW3, AW51 and AW52 have similar conver-
gence rates,meaning that AW3performs best, since it uses two stages less. The free parameter
η can be chosen with relative freedom within a stable range (about [0.5, 0.9]) although the
optimal value is dependent in some cases on the initial conditions, d and the aspect ratio. Fix-
ing η = 0.8 is an acceptable simplification in the cases tested. Themost significant parameter
affecting stability and convergence is the eigenvalue cutoff coefficient d in the numerical flux
function. It was found that the W schemes were A-stable for d ≥ 0.5 and had stability limits
lower than preconditioned AERK schemes for d < 0.5. Thirdly, the pseudo CFL number
c∗ was tuned for optimal performance. Different optimal values were obtained for different
aspect ratios but as long as c∗ was within the stability limit, good convergence was achieved.
This is useful since the aspect ratios in practical meshes vary considerably.

Simulations of pitching and plunging NACA 64A010 and RAE2822 airfoils in high
Reynolds number flow at Mach 0.796 were performed using the 2D URANS code uflo103.
The preconditioned AERK schemes were completely uncompetitive with convergence rates
of around 0.999. The additive W schemes, on the other hand, achieved convergence rates of
as low as 0.85 for the initial steady-state iteration and 0.77 for the unsteady iterations. Slightly
different optimal values of η and c∗ were found although the behaviour of the schemes was
qualitatively similar to that predicted by the linear analysis. We emphasise two modes of
operation for the AW schemes: a fast mode, d = 0.05, η = 0.5 and c∗ = 100 and a robust
mode, d = 0.5, η = 0.5 and c∗ = 10,000. Unsteady convergence rates in the robust mode
were higher than the fast mode but still competitive. Steady-state convergence rates for all
tests stalled to varying degrees after around 20 iterations but the residuals had already fallen
by 6 orders of magnitude.

In summary, the new additive W schemes achieve excellent performance as smoothers in
the agglomeration multigrid method applied to 2D URANS simulations of high Reynolds
number transonic flows. The stiffness associated with very high aspect ratio grids is coun-
teracted by highly tuned preconditioning. The underlying aim of this paper was to present a
complete analysis of the reasons why such preconditioned iterative smoothers are effective,
in order that their high performance can be replicated. We encountered two parameters that
resisted analysis and had to be tuned empirically: η and d . Nevertheless, this is considered
a great improvement. Future work will look at these parameters in more detail. In addition,
boundary conditions should have an influence on convergence speed.
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