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Abstract The flux reconstruction (FR) approach allows various well-known high-order
schemes, such as collocation based nodal discontinuous Galerkin (DG) methods and spec-
tral difference (SD) methods, to be cast within a single unifying framework. Recently, the
authors identified a new class of FR schemes for 1D conservation laws, which are simple
to implement, efficient and guaranteed to be linearly stable for all orders of accuracy. The
new schemes can easily be extended to quadrilateral elements via the construction of tensor
product bases. However, for triangular elements, such a construction is not possible. Since
numerical simulations over complicated geometries often require the computational domain
to be tessellated with simplex elements, the development of stable FR schemes on simplex
elements is highly desirable. In this article, a new class of energy stable FR schemes for
triangular elements is developed. The schemes are parameterized by a single scalar quan-
tity, which can be adjusted to provide an infinite range of linearly stable high-order methods
on triangular elements. Von Neumann stability analysis is conducted on the new class of
schemes, which allows identification of schemes with increased explicit time-step limits
compared to the collocation based nodal DG method. Numerical experiments are performed
to confirm that the new schemes yield the optimal order of accuracy for linear advection on
triangular grids.

Keywords High-order methods · Flux reconstruction · Nodal discontinuous Galerkin
method · Triangular elements · Stability

1 Introduction

Unstructured high-order methods can potentially yield better accuracy and reduced com-
putational costs when compared to low-order methods (order of accuracy ≤ 2), especially
for problems with complex physics and geometry, such as the simulation of vortex domi-
nated flows over flapping wings. However, existing high-order methods are generally less
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robust and more complex to implement than their low-order counterparts. These issues have
prevented their wide-spread use.

The most popular unstructured high-order scheme for aerodynamic simulations is ar-
guably the discontinuous Galerkin (DG) method, which was originally proposed by Reed
and Hill [19] in 1973, and for which the theoretical basis has been provided in a series
of papers by Cockburn and Shu [3–7]. A simple and efficient variant of the DG method
is the collocation based nodal DG approach, which is discussed in the recent textbook by
Hesthaven and Warburton [9]. In a collocation based nodal DG approach, the solution is
represented by Lagrange interpolation at a set of collocation points in each element, and
the quadratures required by the DG method can be pre-integrated. A similar method is the
spectral difference (SD) method, for which the foundation was first put forward by Kopriva
and Kolias [15] under the name of “staggered grid Chebyshev multidomain” methods. In
2006, Liu, Vinokur and Wang [17] presented a more general formulation for both triangu-
lar and quadrilateral elements, which they named the spectral difference method. As in a
collocation based nodal DG approach, SD schemes achieve high-order accuracy by locally
approximating the solution using a high-order polynomial inside each cell. In recent years,
the SD method has been successfully used to solve a wide variety of problems [2, 16, 24].

In 2007, Huynh [10] presented the flux reconstruction (FR) approach, which is simple
to implement and capable of unifying several high-order methods, including the colloca-
tion based nodal DG method and the SD method (at least for linear advection). In 2009,
Huynh [11] extended the flux reconstruction approach to diffusion problems. Utilizing the
FR formulation of Huynh [10], Jameson [12] showed that, for 1D linear advection, a partic-
ular SD method is stable for all orders of accuracy in a norm of Sobolev type. Recently, this
result has been extended by Vincent, Castonguay and Jameson [22] who identified an infinite
range of linearly stable FR schemes in 1D, henceforth referred as 1D Vincent-Castonguay-
Jameson-Huynh (VCJH) schemes. The 1D VCJH schemes are parameterized by a single
scalar quantity, which if chosen judiciously, leads to the recovery of several well known
numerical methods (including the collocation based nodal DG method and a particular SD
method), as well as one other FR scheme that was previously found by Huynh to be sta-
ble [10].

Any 1D FR scheme can easily be extended to quadrilateral and hexahedral elements via
the construction of tensor product bases as described by Huynh [10], and therefore the exten-
sion of 1D VCJH schemes to those elements is straightforward. The VCJH schemes thereby
obtained have many desirable characteristics, namely they are simple to implement, unify-
ing and also guaranteed to be linearly stable. Since numerical simulations over complicated
geometries often require the computational domain to be tessellated with simplex elements,
the development of an approach on simplex elements with similar characteristics as the 1D
VCJH schemes is highly desirable. For simplex elements, the direct construction of a tensor
product basis is not possible and therefore, an alternative formulation is required. In 2009,
Wang and Gao [23] proposed the lifting collocation penalty (LCP) approach as an extension
of the FR scheme to triangular elements, in which a correction field is used to correct the
discontinuous flux divergence. The correction field is determined from a lifting operator and
it is shown that collocation based nodal DG, spectral volume (SV) and SD schemes can be
recovered. However, the LCP approach does not lend itself obviously to the identification of
stable schemes. In this article, a new and simple extension of the FR approach to triangular
elements is proposed and is then used to identify an infinite range of high-order schemes on
triangular elements which are linearly stable for all orders of accuracy.

The article begins with a brief review of the FR approach and a presentation of the VCJH
schemes in one dimension. Following this review, an extension of the FR scheme to tri-
angular elements is proposed and a new class of energy stable FR schemes on triangles is
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identified. A von Neumann stability analysis is then performed on the new class of schemes
in order to identify schemes that provide increased explicit time-step limits compared to
collocation based nodal DG methods. Finally, numerical experiments are conducted in or-
der to investigate the accuracy and stability properties of the new energy stable schemes and
conclusions are presented.

2 The Flux Reconstruction Method in 1D

In this section, a brief review of the FR approach in one dimension is presented. Consider
solving the following 1D scalar conservation law

∂u

∂t
+ ∂f

∂x
= 0 (2.1)

within an arbitrary periodic domain �, where x is a spatial coordinate, t is time, u = u(x, t)

is a conserved scalar quantity and f = f (u) is the flux of u in the x direction. Furthermore,
consider partitioning � into N non-overlapping, conforming elements each denoted �n =
{x|xn < x < xn+1} such that

� =
N⋃

n=1

�n. (2.2)

Finally, having partitioned � into separate elements, consider representing the exact solution
u within each �n by a function denoted by uδ

n = uδ
n(x, t) which is a polynomial of degree

p within �n and zero outside the element. Similarly, consider representing the exact flux f

within each �n by a function denoted f δ
n = f δ

n (x, t) which is a polynomial of degree p + 1
inside �n and identically zero outside the element. Thus, the total approximate solution
uδ = uδ(x, t) and the total approximate flux f δ = f δ(x, t) over the domain � can be written
as

uδ =
N∑

n=1

uδ
n ≈ u, f δ =

N∑

n=1

f δ
n ≈ f.

In order to simplify the implementation, it is advantageous to transform each �n to a stan-
dard element �S = {r| − 1 ≤ r ≤ 1} via the mapping

x = �n(r) =
(

1 − r

2

)
xn +

(
1 + r

2

)
xn+1, (2.3)

which has the inverse

r = �−1
n (x) = 2

(
x − xn

xn+1 − xn

)
− 1. (2.4)

Having performed such a transformation, the evolution of uδ
n within any individual �n (and

thus the evolution of uδ within �) can be determined by solving the following transformed
equation within the standard element �S

∂ûδ

∂t
+ ∂f̂ δ

∂r
= 0, (2.5)
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where

ûδ = ûδ(r, t) = uδ
n(�n(r), t) (2.6)

is a polynomial of degree p,

f̂ δ = f̂ δ(r, t) = f δ
n (�n(r), t)

Jn

, (2.7)

is a polynomial of degree p + 1, and Jn = (xn+1 − xn)/2.
The FR approach to solving (2.5) within the standard element �S consists of five stages.

The first stage is to define a specific form for ûδ . To this end, it is assumed that values of ûδ

are known at a set of p + 1 solution points inside �S , with each point located at a distinct
position ri (i = 0 to p). Lagrange polynomials li = li (r) defined as

li =
p∏

j=0,j �=i

(
r − rj

ri − rj

)
(2.8)

can then be used to construct the following expression for ûδ

ûδ =
p∑

i=0

ûδ
i li , (2.9)

where ûδ
i = ûδ

i (t) are the known values of ûδ at the solution points ri .
The second stage of the FR approach involves constructing a degree p polynomial

f̂ δD = f̂ δD(r, t), defined as the approximate transformed discontinuous flux within �S .
A collocation projection at the p + 1 solution points is employed to obtain f̂ δD , which
can hence be expressed as

f̂ δD =
p∑

i=0

f̂ δD
i li (2.10)

where the coefficients f̂ δD
i = f̂ δD

i (t) are simply values of the transformed flux at each so-
lution point ri evaluated directly from the approximate solution. The flux f̂ δD is termed
discontinuous since it is calculated directly from the approximate solution, which is in gen-
eral piecewise discontinuous between elements.

The third stage of the FR approach involves calculating numerical interface fluxes at
either end of the standard element �S (at r = ±1). In order to calculate these fluxes, one
must first obtain values for the approximate solution at either end of the standard element
via (2.9). Once these values have been obtained they can be used in conjunction with analo-
gous information from adjoining elements to calculate numerical interface fluxes. The exact
methodology for calculating such numerical interface fluxes will depend on the nature of the
equations being solved. For example, when solving the Euler equations one may use a Roe
type approximate Riemann solver [20], or any other two-point flux formula that provides for
an upwind bias. In what follows the common numerical interface fluxes associated with the
left and right hand ends of �n (and transformed appropriately for use in �S ) will be denoted
f̂ δI

L and f̂ δI
R respectively.

The penultimate stage of the FR approach involves adding a degree p + 1 transformed
correction flux f̂ δC = f̂ δC(r, t) to the approximate transformed discontinuous flux f̂ δD ,
such that their sum equals the transformed numerical interface flux at r = ±1, yet follows
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(in some sense) the approximate discontinuous flux within the interior of �S . This step is
critical since it enables inter-element coupling. In order to define f̂ δC such that it satisfies
the above requirements, consider first defining degree p+1 correction functions hL = hL(r)

and hR = hR(r) that approximate zero (in some sense) within �S , as well as satisfying

hL(−1) = 1, hL(1) = 0, (2.11)

hR(−1) = 0, hR(1) = 1, (2.12)

and, based on symmetry considerations

hL(r) = hR(−r). (2.13)

Equation (2.13) ensures that the left correction function is a mirror image of the right cor-
rection function, with respect to the center of the element (r = 0). A suitable expression for
f̂ δC can now be written in terms of hL and hR as

f̂ δC = (f̂ δI
L − f̂ δD

L )hL + (f̂ δI
R − f̂ δD

R )hR, (2.14)

where f̂ δD
L = f̂ δD(−1, t) and f̂ δD

R = f̂ δD(1, t). Using this expression, a degree p + 1 ap-
proximate total transformed flux f̂ δ = f̂ δ(r, t) within �S can be constructed from the dis-
continuous and correction fluxes as follows

f̂ δ = f̂ δD + f̂ δC = f̂ δD + (f̂ δI
L − f̂ δD

L )hL + (f̂ δI
R − f̂ δD

R )hR. (2.15)

The final stage of the FR approach involves calculating the divergence of f̂ δ at each
solution point ri using the expression

∂f̂ δ

∂r
(ri) =

k∑

j=0

f̂ δD
j

dlj

dr
(ri) + (f̂ δI

L − f̂ δD
L )

dhL

dr
(ri) + (f̂ δI

R − f̂ δD
R )

dhR

dr
(ri). (2.16)

Note that the symmetry condition (2.13) ensures that for identical corrections (f δI − f δD)
at the left and right interfaces, the divergence of f δ will also be symmetric with respect
to the center of the element. These values can then be used to advance the approximate
transformed solution ûδ in time via a suitable temporal discretization of the following semi-
discrete expression

dûδ
i

dt
= −∂f̂ δ

∂r
(ri). (2.17)

The nature of a particular FR scheme depends solely on three factors, namely the loca-
tion of the solution collocation points ri , the methodology for calculating the transformed
numerical interface fluxes f̂ δI

L and f̂ δI
R , and finally the form of the flux correction functions

hL (and thus hR). Huynh has shown that a collocation based (under integrated) nodal DG
scheme is recovered in 1D if the corrections functions hL and hR are the right and left Radau
polynomials respectively [10]. Huynh has also shown that SD type methods can be recov-
ered (at least for a linear flux function) if the corrections hL and hR are set to zero at a set
of p points within �S (located symmetrically about the origin) [10]. Huynh also suggested
several additional forms of hL (and thus hR), leading to the development of new schemes,
with various stability and accuracy properties. For further details of these new schemes see
the article by Huynh [10].
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3 Vincent-Castonguay-Jameson-Huynh Schemes in 1D

Recently, Vincent, Castonguay and Jameson [22] identified an infinite range of 1D FR
schemes which are linearly stable for all orders of accuracy, henceforth be referred as 1D
VCJH schemes. The 1D VCJH schemes can be recovered if the left and right corrections
functions hL and hR are defined as

hL = (−1)p

2

[
�p −

(
ηp�p−1 + �p+1

1 + ηp

)]
, (3.1)

and

hR = 1

2

[
�p +

(
ηp�p−1 + �p+1

1 + ηp

)]
, (3.2)

where

ηp = ε(2p + 1)(app!)2

2
, ap = (2p)!

2p(p!)2
, (3.3)

�p is a Legendre polynomial of degree p, and ε is a free scalar parameter that must lie
within the range

−2

(2p + 1)(app!)2
< ε < ∞. (3.4)

Such correction functions satisfy

∫ 1

−1
hL

∂ûδ

∂r
dr − ε

(
∂pûδ

∂rp

)(
dp+1hL

drp+1

)
= 0, (3.5)

and
∫ 1

−1
hR

∂ûδ

∂r
dr − ε

(
∂pûδ

∂rp

)(
dp+1hR

drp+1

)
= 0, (3.6)

within the standard element �S for any transformed solution ûδ , and ensure that the resulting
VCJH scheme will be linearly stable in the norm ‖uδ‖1D

p,2, defined as

‖uδ‖1D
p,2 =

[
N∑

n=1

∫ xn+1

xn

(uδ
n)

2 + ε

2
(Jn)

2p

(
∂puδ

n

∂xp

)2

dx

]1/2

. (3.7)

It can be noted that several existing methods are encompassed by the class of VCJH
schemes. In particular if ε = εdg = 0 then a collocation based nodal DG scheme is recovered.
Alternatively, if

ε = εsd = 2p

(2p + 1)(p + 1)(app!)2
, (3.8)

an SD method is recovered (at least for a linear flux function). It is in fact the only SD type
scheme that can be recovered from the range of VCJH schemes. Furthermore, it is identical
to the SD scheme that Jameson [12] proved to be linearly stable for all orders of accuracy. It
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is also the only SD scheme that Huynh showed to be stable via Fourier analysis [10]. Finally,
if

ε = εhu = 2(p + 1)

(2p + 1)p(app!)2
, (3.9)

then a so called g2 FR method is recovered, which was originally identified by Huynh [10]
to be particularly stable. In fact, the linear combination (3.1) can alternatively be expressed
as a combination of Radau polynomials, as was used by Huynh to construct two particular
schemes which he found to be stable using Fourier analysis [11], and which are in the stable
range defined by (3.4).

4 Extension of the Flux Reconstruction Approach to Triangles

In this section, a new, simple and intuitive extension of the FR approach to triangular el-
ements is proposed, in which the correction functions lie in a Raviart-Thomas space. The
resulting scheme is shown to be conservative.

4.1 Preliminaries

Consider the 2D scalar conservation law

∂u

∂t
+ ∇xy · f = 0 (4.1)

within an arbitrary domain �, where x and y are spatial coordinates, t is time, u = u(x, y, t)

is a conserved scalar and f = (f, g) where f = f (u) and g = g(u) are the fluxes of u in the x

and y directions respectively. Consider partitioning the domain � into N non-overlapping,
conforming linear triangular elements �n such that

� =
N⋃

n=1

�n. (4.2)

Having partitioned � into separate elements, consider representing the exact solution u

within each �n by an approximate solution uδ
n = uδ

n(x, y, t), which is a polynomial of degree
p within �n and identically zero outside the element. Similarly, consider representing the
exact flux f within each �n by a function fδn = (f δ

n , gδ
n) = fδn(x, y, t), which is a polynomial

within �n and identically zero outside the element. The total approximate solution uδ =
uδ(x, y, t) and a total approximate flux fδ = fδ(x, y, t) can therefore be defined within � as

uδ =
N∑

n=1

uδ
n ≈ u, fδ =

N∑

n=1

fδn ≈ f. (4.3)

To facilitate the implementation, each element �n in physical space is mapped to a reference
equilateral triangle �S using a mapping �n, as shown in Fig. 1. For a linear triangular
element, the mapping �n is

x = �n(r) = (−3r + 2 − √
3s)

6
x1,n + (2 + 3r − √

3s)

6
x2,n + (2 + 2

√
3s)

6
x3,n (4.4)
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Fig. 1 Mapping between the physical space (x, y) and the computational space (r, s)

where x1,n,x2,n and x3,n are the coordinates of the vertices of the triangular element �n in
physical space. The governing equation (4.1) in the physical domain can be transformed to
the following equivalent governing equation in the reference domain

∂û

∂t
+ ∇rs · f̂ = 0 (4.5)

where

û = Ju, (4.6)

f̂ = (f̂ , ĝ) =
(

∂y

∂s
f − ∂x

∂s
g,−∂y

∂r
f + ∂x

∂r
g

)
, (4.7)

J = ∂x

∂r

∂y

∂s
− ∂x

∂s

∂y

∂r
. (4.8)

Hence, the evolution of uδ
n within any individual �n (and thus the evolution of uδ within �)

can be determined by solving

∂ûδ

∂t
+ ∇rs · f̂δ = 0 (4.9)

where

ûδ = ûδ(r, t) = Jn uδ
n(�n(r), t), (4.10)

f̂δ = f̂δ(r, t) = (f̂ δ, ĝδ) (4.11)

=
(

∂y

∂s
f δ

n − ∂x

∂s
gδ

n,−
∂y

∂r
f δ

n + ∂x

∂r
gδ

n

)
(4.12)

and the metric terms Jn, ∂x
∂r

, ∂x
∂s

,
∂y

∂r
and ∂y

∂s
(which depend on the shape of element n) can be

evaluated from (4.4). For the transformation defined by (4.5) to (4.8), the following proper-
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Fig. 2 Solution points (circles)
and flux points (squares) in the
reference element for p = 2. Flux
points are located at Gauss points
along each edge

ties hold

∇xy · fδn = 1

Jn

(
∇rs · f̂δ

)
(4.13)

∫

�n

Jnu
δ
n ∇xy · fδn d�n =

∫

�S

ûδ ∇rs · f̂δ d�S (4.14)

∫

�n

Jnu
δ
n fδn · n d�n =

∫

�S

ûδ f̂δ · n̂ d�S (4.15)

where �n and �S refer to the boundary of the physical element �n and the reference element
�S , respectively.

Before the extension of the FR approach to triangular elements is presented, several
definitions must be introduced. First, let Pp(�S) define the space of polynomial of degree
≤ p on �S . The dimension of Pp(�S) is 1

2 (p + 1)(p + 2). Furthermore, let the polynomial
space Rp(�S) on the edges of the reference element be defined as

Rp(�S) = {
φ | φ ∈ L2(�S), φ|�f

∈ Pp(�f ), ∀�f

}
(4.16)

where �f is used to represent edge f of the reference element �S . Functions of Rp(�S)

are polynomials of degree ≤ p on each side of �S , and are not necessarily continuous at the
vertices.

Following the 1D FR approach, the approximate solution ûδ within the reference element
�S is represented by a multi-dimensional polynomial of degree p, defined by its values at a
set of Np = 1

2 (p + 1)(p + 2) solution points (represented by hollow circles in Fig. 2).
The approximate solution in the reference element takes the form

ûδ(r, t) =
Np∑

i=1

ûδ
i li (r) (4.17)

where ûδ
i = Jn · uδ(�−1

n (ri ), t) is the value of ûδ at the solution point i and li (r) is the
multi-dimensional Lagrange polynomial associated with the solution point i in the reference
equilateral triangle �S . The approximate solution ûδ lies in the space Pp(�S). As in the 1D
FR approach, the total transformed approximate flux f̂δ = (f̂ δ, ĝδ) is written as the sum of a
discontinuous component f̂δD and a correction component f̂δC ,
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Fig. 3 Numbering convention
for the faces and flux points on
the reference triangular element.
Example shown corresponds to
p = 2. Flux points are located at
Gauss points along each edge

f̂δ = f̂δD + f̂δC. (4.18)

The transformed discontinuous flux f̂δD = (f̂ δD, ĝδD) is computed by constructing a degree
p polynomial for each of its components as follows

f̂ δD =
Np∑

i=1

f̂ δD
i li , ĝδD =

Np∑

i=1

ĝδD
i li (4.19)

where the coefficients f̂ δD
i and ĝδD

i are the values of the transformed flux at the solution
point i evaluated directly from the approximate solution ûi (f̂ δD

i = f̂ (ûi) and ĝδD
i = ĝ(ûi)).

The divergence of the transformed discontinuous flux is therefore

∇rs · f̂δD =
Np∑

i=1

f̂ δD
i

∂li

∂r
+

Np∑

i=1

ĝδD
i

∂li

∂s
. (4.20)

On each edge of the element, a set of Nfp = (p + 1) flux points (illustrated by squares
in Fig. 2) are defined and used to couple the solution between adjoining elements. The
transformed correction flux f̂δC is constructed as follows

f̂δC(r) =
3∑

f =1

Nfp∑

j=1

[
(f̂ · n̂)δI

f,j − (f̂δD · n̂)f,j

]
hf,j (r) (4.21)

=
3∑

f =1

Nfp∑

j=1

	f,j hf,j (r). (4.22)

Equations (4.21) and (4.22) deserve explanation. First, expressions subscripted by the in-
dices f, j correspond to a quantity at the flux point j of face f , where 1 ≤ f ≤ 3 and
1 ≤ j ≤ Nfp . The convention used to number the faces and flux points is illustrated in
Fig. 3.

For example, (f̂δD · n̂)f,j is the normal component of the transformed discontinuous flux
f̂δD at the flux point f, j . In (4.21), (f̂ · n̂)δI

f,j is a normal transformed numerical flux computed
at flux point f, j . As in the 1D FR method, it is computed by first evaluating the multiply
defined values of uδ at each flux point using (4.17). At each flux point, uδ− is defined as the
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Fig. 4 Example of a vector
correction function hf,j

associated with flux point
f = 2, j = 1 for p = 2. Flux
points are located at Gauss points
along each edge

value of uδ computed using the information local to the current element and uδ+ as the value
of uδ computed using information from the adjoining element that shares the same flux point.
Once both approximate solution values (uδ− and uδ+) are evaluated at each flux point, a solver
specific to the equations being solved is used to compute a common numerical flux (f · n)δI

f,j

based on uδ+, uδ− and the local normal vector nf,j . From this common numerical flux, the

normal transformed numerical flux denoted by (f̂ · n̂)δI
f,j can be obtained. In (4.22), 	f,j is

defined as the difference between the normal transformed numerical flux and the normal
transformed discontinuous flux at the flux point f, j . Finally, hf,j (r) is a vector correction
function associated with flux point f, j . Each vector correction function hf,j (r) is restricted
to lie in the Raviart-Thomas space [18] of order p, denoted by RTp(�S). Because of this
property,

∇rs · hf,j ∈ Pp(�S)

hf,j · n̂|�S
∈ Rp(�S)

(4.23)

i.e. the divergence of each correction function (∇rs · hf,j ) is a polynomial of degree ≤ p

and the normal trace hf,j · n̂ on �S is also a polynomial of degree ≤ p along each edge.
Furthermore, the correction functions hf,j satisfy

hf,j (rf2,j2) · n̂f2,j2 =
{

1 if f = f2 and j = j2

0 if f �= f2 or j �= j2
(4.24)

An example of a vector correction function hf,j is shown in Fig. 4 for the case p = 2.
It should be noted that because f̂δD ∈ Pp(�S) and Pp(�S) ⊂ RTp(�S), then f̂δD ∈

RTp(�S). Furthermore, since each correction function hf,j ∈ RTp(�S), (4.18) and (4.22)
imply that

f̂δ ∈ RTp(�S) (4.25)

and therefore

f̂δ · n̂|�S
∈ Rp(�S). (4.26)

From (4.18), (4.22) and (4.24), it also follows that

f̂δC(rf,j ) · n̂f,j =
[
(f̂ · n̂)δI

f,j − (f̂δD · n̂)f,j

]
= 	f,j (4.27)
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and

f̂δ(rf,j ) · n̂f,j = (f̂ · n̂)δI
f,j (4.28)

at each flux point f, j . If one defines the polynomial function l1D
f,j ∈ Rp(�S) such that

l1D
f,j (rf2,j2) =

{
1 if f = f2 and j = j2

0 if f �= f2 or j �= j2
(4.29)

then, the normal traces f̂δC · n̂ and f̂δ · n̂ on �S can be written as

f̂δC · n̂|�S
=

3∑

f =1

Nfp∑

j=1

	f,j l
1D
f,j (4.30)

and

f̂δ · n̂|�S
=

3∑

f =1

Nfp∑

j=1

(f̂ · n̂)δI
f,j l

1D
f,j (4.31)

respectively. These properties of the approximate transformed flux f̂δ will be useful when
analysing the properties of the new approach in the following sections.

The correction field φf,j (r) is defined as the divergence of the correction function hf,j (r),
i.e.

φf,j (r) = ∇rs · hf,j (r). (4.32)

Finally, combining (4.9), (4.18), (4.20) and (4.22), the approximate solution values at the
solution points can be updated from

dûδ
i

dt
= −

(
∇rs · f̂δ

) ∣∣∣
ri

(4.33)

= −
(
∇rs · f̂δD

) ∣∣∣
ri

−
(
∇rs · f̂δC

) ∣∣∣
ri

(4.34)

= −
Np∑

k=1

f̂ δD
k

∂lk

∂r

∣∣∣
ri

−
Np∑

k=1

ĝδD
k

∂lk

∂s

∣∣∣
ri

−
3∑

f =1

Nfp∑

j=1

	f,jφf,j (ri ). (4.35)

The nature of a particular FR scheme on triangular elements depends on four factors,
namely the location of the solution collocation points ri , the location of the flux points rf,j ,
the methodology for calculating the transformed numerical interface fluxes (f̂ · n̂)δI

f,j and
finally the form of the correction fields φf,j .

4.2 Proof of Conservation

In order to prove that the extension of the FR scheme to triangular elements is locally con-
servative, the integral conservation law must be satisfied for each element of the domain. In
other words, one must show that for all elements �n in the mesh,

d

dt

∫

�n

uδ
nd�n +

∫

�n

fδn · n d�n = 0. (4.36)
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Consider transforming the first term on the left hand side of (4.36) to the reference space,

d

dt

∫

�n

uδ
nd�n = d

dt

∫

�S

ûδ

J
Jd�S = d

dt

∫

�S

ûδd�S. (4.37)

Because ûδ ∈ Pp(�S), it can be exactly integrated using a cubature rule associated with the
Np solution points. Hence,

d

dt

∫

�S

ûδd�S = d

dt

Np∑

i=1

wiû
δ
i (4.38)

where wi is the weight associated with the solution point i. Therefore, using (4.33), one
obtains

d

dt

∫

�S

ûδd�S = d

dt

Np∑

i=1

wiû
δ
i =

Np∑

i=1

wi

dûδ
i

dt
= −

Np∑

i=1

wi

(
∇rs · f̂δ

) ∣∣∣
ri

. (4.39)

Note that (∇rs · f̂δ) is also ∈ Pp(�S) and therefore,

−
Np∑

i=1

wi

(
∇rs · f̂δ

) ∣∣∣
ri

= −
∫

�S

(
∇rs · f̂δ

)
d�S. (4.40)

By transforming (4.40) back to physical space and integrating by parts, one obtains

−
Np∑

i=1

wi

(
∇rs · f̂δ

) ∣∣∣
ri

= −
∫

�n

(∇xy · fδn
)
d�n = −

∫

�n

fδn · n d�n. (4.41)

Finally, combining (4.37), (4.39) and (4.41), one obtains

d

dt

∫

�n

uδ
nd�n +

∫

�n

fδn · n d�n = 0 (4.42)

thus proving local conservation of the scheme.
It follows from (4.26) that the normal trace (fδ · n) of the total approximate flux fδ is a

polynomial of degree p along each edge of �n and is therefore fully defined by its values
of the numerical flux (f · n)δI at the (p + 1) flux points along each edge. Since at each edge
flux point the numerical flux (f · n)δI is uniquely defined, and common to both cells sharing
that edge, global conservation of the scheme follows.

5 Identification of Energy Stable Flux Reconstruction Schemes on Triangles

In this section, a class of energy stable FR schemes on triangles are identified. The section
begins with a derivation of the criteria necessary to obtain energy stability. An infinite range
of correction fields φf,j are then identified such that the aforementioned stability criteria
are satisfied, and a methodology to enforce symmetry of the correction fields is presented.
Finally, it is shown that the new family of energy stable FR schemes on triangles can recover
the collocation based nodal DG method.
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5.1 Preliminaries

First, let the operator D(v,w) be defined as

D(v,w) = ∂w

∂r(w−v+1)∂s(v−1)
(5.1)

where v and w are integers such that 1 ≤ v ≤ w + 1. For example,

D(1,2) = ∂2

∂r2
, D(2,2) = ∂2

∂r∂s
, D(3,2) = ∂2

∂s2
. (5.2)

On multiplying (4.34) by the multidimensional Lagrange polynomial li (r) associated
with solution point i, and summing over i (from 1 to Np), one obtains

Np∑

i=1

dûδ
i

dt
li = −

Np∑

i=1

(
∇rs · f̂δD

) ∣∣∣
ri

li −
Np∑

i=1

(
∇rs · f̂δC

) ∣∣∣
ri

li (5.3)

and thus

∂ûδ

∂t
= −

(
∇rs · f̂δD

)
−

(
∇rs · f̂δC

)
. (5.4)

On multiplying (5.4) by ûδ , and integrating over �S , one obtains

1

2

∂

∂t

∫

�S

(ûδ)2d�S = −
∫

�S

ûδ
(
∇rs · f̂δD

)
d�S −

∫

�S

ûδ
(
∇rs · f̂δC

)
d�S. (5.5)

Integrating the last term by parts, one obtains

1

2

∂

∂t

∫

�S

(ûδ)2d�S = −
∫

�S

ûδ
(
∇rs · f̂δD

)
d�S

−
∫

�S

ûδ
(

f̂δC · n̂
)

d�S

+
∫

�S

∇rs û
δ · f̂δCd�S. (5.6)

Now, consider applying the operator D(m,p) to (5.4) for any integer m satisfying 1 ≤ m ≤
p + 1, thus obtaining

∂

∂t

(
D(m,p)ûδ

) = −D(m,p)
(
∇rs · f̂δD

)
− D(m,p)

(
∇rs · f̂δC

)
. (5.7)

Note that the discontinuous flux f̂δD is a vector whose components are polynomials of or-
der p, hence ∇rs · f̂δD ∈ Pp−1(�S) which implies that

D(m,p)
(
∇rs · f̂δD

)
= 0. (5.8)

Equation (5.7) then becomes

∂

∂t

(
D(m,p)ûδ

) = −D(m,p)
(
∇rs · f̂δC

)
(5.9)
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which is true for every m such that 1 ≤ m ≤ p + 1. On multiplying (5.9) by D(m,p)ûδ and
integrating over the reference element, one obtains

1

2

d

dt

∫

�S

(
D(m,p)ûδ

)2
d�S = −

∫

�S

(
D(m,p)ûδ

)(
D(m,p)

(
∇rs · f̂δC

))
d�S (5.10)

= −
3∑

f =1

Nfp∑

j=1

	f,j

∫

�S

(
D(m,p)ûδ

) (
D(m,p)φf,j

)
d�S. (5.11)

Since, ûδ and φf,j are both ∈ Pp(�S), D(m,p)ûδ and D(m,p)φf,j are constants and (5.11)
simplifies to

1

2

d

dt

∫

�S

(
D(m,p)ûδ

)2
d�S = −AS

3∑

f =1

Nfp∑

j=1

	f,j

(
D(m,p)ûδ

) (
D(m,p)φf,j

)
(5.12)

where AS is the area of the reference equilateral triangle. Because (5.12) is true for every m

such that 1 ≤ m ≤ p + 1, then

1

2

d

dt

∫

�S

p+1∑

m=1

cm

(
D(m,p)ûδ

)2
d�S = −AS

3∑

f =1

Nfp∑

j=1

	f,j

p+1∑

m=1

cm

(
D(m,p)ûδ

) (
D(m,p)φf,j

)

(5.13)
for arbitrary scalar constants cm. If every correction function hf,j , with its associated diver-
gence φf,j , satisfies

p+1∑

m=1

cm

(
D(m,p)ûδ

) (
D(m,p)φf,j

) =
∫

�S

hf,j · ∇rs û
δ d�S (5.14)

then (5.13) becomes

1

2

d

dt

∫

�S

p+1∑

m=1

cm

(
D(m,p)ûδ

)2
d�S = −AS

3∑

f =1

Nfp∑

j=1

	f,j

∫

�S

hf,j · ∇rs û
δ d�S

= −AS

∫

�S

f̂δC · ∇rs û
δ d�S. (5.15)

Combining (5.15) and (5.6), one obtains

d

dt

∫

�S

(
(ûδ)2

2
+ 1

2AS

p+1∑

m=1

cm

(
D(m,p)ûδ

)2

)
d�S

= −
∫

�S

ûδ
(
∇rs · f̂δD

)
d�S −

∫

�S

ûδ
(

f̂δC · n̂
)

d�S. (5.16)

Transforming to physical space, assuming linear elements (and thus a constant Jn), (5.16)
becomes

d

dt

∫

�n

(
(uδ

n)
2

2
+ 1

2AS

p+1∑

m=1

cm

(
D(m,p)uδ

n

)2

)
d�n
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= −
∫

�n

uδ
n

(∇xy · fδDn
)
d�n −

∫

�n

uδ
n

(
fδCn · n

)
d�n. (5.17)

The partial derivatives D(m,p) in transformed space can be transformed to partial derivatives
in physical space using the chain rule and the mapping �(r) defined in (4.4). Summing over
all elements in the mesh, one obtains

d

dt

N∑

n=1

{∫

�n

(
(uδ

n)
2

2
+ 1

2AS

p+1∑

m=1

cm

(
D(m,p)uδ

n

)2

)
d�n

}

=
N∑

n=1

{
−

∫

�n

uδ
n

(∇xy · fδDn
)
d�n −

∫

�n

uδ
n

(
fδCn · n

)
d�n

}
. (5.18)

For constants cm that satisfy

0 ≤ cm < ∞ (5.19)

the expression

[
N∑

n=1

∫

�n

(
(uδ

n)
2

2
+ 1

2AS

p+1∑

m=1

cm

(
D(m,p)uδ

n

)2

)
d�n

]1/2

(5.20)

is a norm of the approximate solution uδ , which will be denoted by ‖uδ‖p,2. Hence, (5.18)
can be rewritten as

d

dt
‖uδ‖2

p,2 =
N∑

n=1

{
−

∫

�n

uδ
n

(∇xy · fδDn
)
d�n −

∫

�n

uδ
n

(
fδCn · n

)
d�n

}
. (5.21)

It will now be shown that the right hand side of (5.21) is guaranteed to be non-positive for
the linear flux f = (au, bu) and for a common numerical flux computed from

(f · n)δI = F(u−, u+,n−) = nx{{au}} + ny{{bu}} + λ

2
|anx + bny |[[u]] (5.22)

where

{{u}} = u− + u+
2

, [[u]] = u− − u+ (5.23)

and 0 ≤ λ ≤ 1 (with λ = 0 recovering a central scheme and λ = 1 recovering a fully upwind
scheme). As mentioned earlier, the interior information of the element currently considered
is represented by a subscript “−”, the exterior information by a subscript “+” and in (5.22),
nx and ny are the components of the outward pointing normal of the element currently
considered (i.e. the components of n−). For the linear flux, f = (au, bu), the first term on
the right hand side of (5.21) can be simplified as follows

∫

�n

uδ
n

(∇xy · fδDn
)
d�n =

∫

�n

uδ
n

(
∂(auδ

n)

∂x
+ ∂(buδ

n)

∂y

)
d�n

= 1

2

∫

�n

(
∂(a(uδ

n)
2)

∂x
+ ∂(b(uδ

n)
2)

∂y

)
d�n
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= 1

2

∫

�n

(
a(uδ

n)
2nx + b(uδ

n)
2ny

)
d�n. (5.24)

Using the definition of the transformed correction flux f̂δC given by (4.21), the second term
on the right hand side of (5.21) becomes

∫

�n

uδ
n

(
fδCn · n

)
d�n =

∫

�S

ûδ

Jn

(
f̂δC · n̂

)
d�S

=
∫

�S

ûδ

Jn

⎛

⎝
3∑

f =1

Nfp∑

j=1

[
(f̂ · n̂)δI

f,j − (f̂δD · n̂)f,j

]
hf,j · n̂

⎞

⎠d�S. (5.25)

From (4.23) and (4.24), the normal trace hf,j · n̂ on �S is a polynomial of degree p that
takes the value of 1 at the flux point f, j and is zero at all other flux points. Hence, since the
normal trace f̂δD · n̂ on �S is also a polynomial of degree p, it is exactly represented by

3∑

f =1

Nfp∑

j=1

[
(f̂δD · n̂)f,j

]
hf,j · n̂ (5.26)

on �S , and therefore,

∫

�S

ûδ

Jn

⎛

⎝
3∑

f =1

Nfp∑

j=1

[
(f̂δD · n̂)f,j

]
hf,j · n̂

⎞

⎠d�S =
∫

�S

ûδ

Jn

(
f̂δD · n̂

)
d�S

=
∫

�n

uδ
n

(
fδDn · n

)
d�n

=
∫

�n

(
a(uδ

n)
2nx + b(uδ

n)
2ny

)
d�n. (5.27)

Similarly, using the numerical flux function defined by (5.22), and because uδ is a poly-
nomial of degree p on �S ,

∫

�S

ûδ

Jn

(
3∑

f =1

Nfp∑

j=1

[
(f̂ · n̂)δI

f,j

]
hf,j · n̂

)
d�S

=
∫

�n

uδ
n

(
nx{{auδ

n}} + ny{{buδ
n}} + λ

2
|anx + bny |[[uδ

n]]
)
d�n. (5.28)

Hence, from (5.27) and (5.28), equation (5.25) becomes
∫

�n

uδ
n

(
fδCn · n

)
d�n = −

∫

�n

(
a(uδ

n)
2nx + b(uδ

n)
2ny

)
d�n

+
∫

�n

uδ
n

(
nx{{auδ

n}} + ny{{buδ
n}} + λ

2
|anx + bny |[[uδ

n]]
)
d�n. (5.29)

Combining (5.21), (5.24) and (5.29) one obtains

d

dt
‖uδ‖2

p,2 =
N∑

n=1

{
−

∫

�n

(anx + bny)

2
(uδ

−)2d�n +
∫

�n

(anx + bny)(u
δ
−)2d�n
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−
∫

�n

[
(anx + bny)

2
((uδ

−)2 + uδ
−uδ

+) + λ

2
|anx + bny |((uδ

−)2 − uδ
−uδ

+)

]
d�n

}

= −
N∑

n=1

∫

�n

[
(anx + bny)

2
uδ

−uδ
+ + λ

2
|anx + bny |((uδ

−)2 − uδ
−uδ

+)

]
d�n (5.30)

where the subscript n on uδ has been dropped for simplicity. Equation (5.30) can be rewritten
as a sum over edges, instead of a sum over elements by collecting along each edge the
contributions from its two adjoining elements. Using the notation uδ

R and uδ
L to define the

approximate solution on each side of an edge, and assuming that the domain is periodic,
(5.30) becomes

d

dt
‖uδ‖2

p,2 = −
Nedges∑

e=1

{∫

�e

λ

2
|anx + bny |

[
(uδ

L)2 − 2uδ
Ruδ

L + (uδ
R)2

]
)d�e

}

= −
Nedges∑

e=1

{∫

�e

λ

2
|anx + bny |(uδ

L − uδ
R)2d�e

}
(5.31)

where Nedges is the total number of edges in the mesh and �e is used to represent edge e.
Since 0 ≤ λ ≤ 1, it can be concluded that

d

dt
‖uδ‖2

p,2 ≤ 0. (5.32)

The previous result guarantees stability of the approximate solution for all polynomial orders
p, independently of the location of the solution and flux points. To summarize, stability for
the linear advection equation on linear triangular elements is guaranteed provided that the
following requirements are satisfied:

1. The correction functions hf,j must satisfy (5.14) in order for (5.32) to be true.
2. The constants cm must satisfy 0 ≤ cm < ∞, for all m. This ensures that ‖uδ‖p,2 is a norm

of the approximate solution uδ , from which stability in any norm is guaranteed (due to
equivalence of norms in a finite dimensional space).

5.2 Identification of the Correction Fields φf,j

In the previous section, it was shown that if every correction function hf,j (for f = 1 to 3
and j = 1 to Nfp) satisfies (5.14), energy stability of the scheme is guaranteed (for linear
advection). In this section, the methodology used to enforce (5.14) is presented. The proce-
dure allows to obtain the form of the correction fields φf,j , which can then be used in (4.35)
to update the approximate solution values ûδ

i . To begin, consider expanding the approximate
solution ûδ in terms of a basis set Li that is orthonormal on the reference equilateral triangle
�S , as follows

ûδ =
Np∑

i=1

ζiLi(r), (5.33)

where ζi are the expansion coefficients. Such an orthonormal basis can be obtained through a
Gram-Schmidt process on the monomial basis and is often referred to as a Dubiner basis [8].
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The basis polynomials Li (for i = 1 to Np) have the form

Li(r) = 2

31/4
Qv(a)Q(2v+1,0)

w (b)(1 − b)v (5.34)

i = w + (p + 1)v + 1 − v

2
(v − 1), (v,w) ≥ 0; v + w ≤ p

where

a = 3r

2 − √
3s

, b = 1

3
(2

√
3s − 1) (5.35)

and Q(α,β)
n is the normalized nth order Jacobi polynomial. As a convention, the basis poly-

nomial L1 is associated with (v,w) = (0,0).
Substituting (5.33) into (5.14), one obtains

Np∑

i=1

ζi

p+1∑

m=1

cm

(
D(m,p)Li

) (
D(m,p)φf,j

) =
Np∑

i=1

ζi

∫

�S

hf,j · ∇rsLi d�S (5.36)

which can be satisfied independently of the transformed approximate solution (defined by
the coefficients ζi ) provided that

p+1∑

m=1

cm

(
D(m,p)Li

) (
D(m,p)φf,j

) =
∫

�S

hf,j · ∇rsLid�S, ∀i. (5.37)

Because L1 is a constant, D(m,p)L1 = 0 and ∇rsL1 = 0, thus (5.37) is automatically
satisfied for i = 1. Hence, for a particular correction function hf,j , (5.37) provides (Np − 1)
conditions on hf,j . Furthermore, the requirement that each correction function hf,j satisfies
(4.24) yields another set of 3(p+1) conditions. This results in a total of 1

2 (p+1)(p+8)−1
conditions on hf,j that must be satisfied to guarantee stability. Because each correction
function hf,j lies in the space RTp(�S) of dimension (p + 1)(p + 3), (4.24) and (5.37) are
not sufficient to fully determine the form of hf,j , except for the case p = 1 (since 1

2 (p +
1)(p + 8) − 1 ≤ (p + 1)(p + 3) for p ≥ 1). However, one should note that the FR scheme
defined in (4.35) does not depend directly on the form of hf,j but rather, on the form of its
divergence φf,j . With that in mind, integrating the right hand side of (5.37) by parts, one
obtains

p+1∑

m=1

cm

(
D(m,p)Li

) (
D(m,p)φf,j

) = −
∫

�S

φf,jLid�S +
∫

�S

(
hf,j · n̂

)
Lid�S, (5.38)

for 1 ≤ i ≤ Np . Because φf,j ∈ Pp(�S), it can be expanded as

φf,j =
Np∑

k=1

σkLk(r) (5.39)

where σk are the expansion coefficients. Substituting (5.39) into (5.38), and using the or-
thonormal property of the basis polynomials Li , one obtains

Np∑

k=1

σk

p+1∑

m=1

cm

(
D(m,p)Li

) (
D(m,p)Lk

) = −σi +
∫

�S

(
hf,j · n̂

)
Lid�S (5.40)
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Fig. 5 Two rotated coordinate
systems (n, t) and (ξ, η)

associated with faces 2 and 3 of
the reference equilateral triangle.
Example shown corresponds to
p = 2. Flux points are located at
Gauss points along each edge

for 1 ≤ i ≤ Np . Since hf,j lies in RTp(�S), hf,j · n̂|�S
is a polynomial of degree p along

each edge. Because its values are defined at p + 1 points along each edge (from (4.24)),
the last term on the right hand side of (5.40) can be evaluated exactly. Therefore, (5.40)
results in a system of Np equations for Np unknowns (the coefficients σk) which can be
solved to obtain the form of each correction field φf,j , and thereby guarantee that (5.14)
is satisfied. Thus, by solving (5.40) for arbitrary values of the parameters cm (within the
range 0 ≤ cm < ∞), one obtains an infinite range of energy stable FR schemes on triangular
elements, defined by their correction fields φf,j .

5.3 Enforcing Symmetry of the Correction Fields φf,j

In the previous section, the methodology used to solve for the energy stable correction fields
φf,j was presented. In addition to requiring stability of the scheme, it is also reasonable to
demand that the correction fields φf,j satisfy the mirror and rotational symmetry conditions
implied by the equilateral reference triangle �S . Enforcing such conditions will ensure that
for an initially symmetric solution ûδ and symmetric numerical fluxes (f̂ · n̂)δI

f,j , the diver-
gence of the correction flux ∇rs · fδC will also be symmetric. The two rotated coordinate
systems (t, n) and (ξ, η) shown in Fig. 5 will be used to illustrate the symmetry require-
ments that the correction fields φf,j must satisfy.

For a pair of correction fields φf,j and φf,j2 such that j2 = p + 2 − j and for a single
correction field associated with a flux point at the middle of an edge, mirror symmetry with
respect to a line perpendicular to the edge, passing through its middle, is expected. For the
case p = 2 illustrated in Fig. 5, this mirror symmetry requirement translates to

φ1,2(r, s) = φ1,2(−r, s), φ1,1(r, s) = φ1,3(−r, s), (5.41)

φ2,2(t, n) = φ2,2(−t, n), φ2,1(t, n) = φ2,3(−t, n), (5.42)

φ3,2(ξ, η) = φ3,2(−ξ, η), φ3,1(ξ, η) = φ3,3(−ξ, η). (5.43)

Furthermore, rotational symmetry of the correction fields is expected. For p = 2, this trans-
lates to requiring that

φ1,1(r, s) = φ2,1(t, n) = φ3,1(ξ, η), (5.44)

φ1,2(r, s) = φ2,2(t, n) = φ3,2(ξ, η), (5.45)
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φ1,3(r, s) = φ2,3(t, n) = φ3,3(ξ, η). (5.46)

Similar symmetry requirements for arbitrary solution polynomial orders p can easily be ob-
tained. It has been verified numerically that for arbitrary choices of the constants cm, the
correction fields φf,j obtained from the solution of the system given by (5.40) do not au-
tomatically satisfy the aforementioned symmetry requirements. However, for orders p = 1
to 6, it has been shown using the mathematical software Maple that solving (5.40) with the
choice

cm =
(

p

m − 1

)
c = p!

(m − 1)!(p − m + 1)!c (5.47)

for an arbitrary constant c, results in a set of correction fields φf,j that satisfy both the
mirror symmetry and rotational symmetry requirements previously stated. The coefficients
cm are the binomial coefficients, scaled by a single scalar c. For that particular choice of the
coefficients cm, (5.37) becomes

c

p+1∑

m=1

(
p

m − 1

)(
D(m,p)Li

) (
D(m,p)φf,j

) =
∫

�S

hf,j∇rsLid�S, for 1 ≤ i ≤ Np (5.48)

and (5.40) becomes

c

Np∑

k=1

σk

p+1∑

m=1

(
p

m − 1

)(
D(m,p)Li

) (
D(m,p)Lk

) = −σi +
∫

�S

(
hf,j · n̂

)
Lid� (5.49)

for 1 ≤ i ≤ Np . The last equation can be used to solve for the coefficients σk (for k = 1
to Np) of each correction field φf,j . The correction fields thereby obtained result in energy
stable FR schemes on triangles parameterized by a single scalar parameter c. Stability is
guaranteed (for linear advection) in the norm,

[
N∑

n=1

∫

�n

(
(uδ

n)
2

2
+ c

2AS

p+1∑

m=1

(
p

m − 1

)(
D(m,p)uδ

n

)2

)
d�n

]1/2

(5.50)

provided 0 ≤ c < ∞. Furthermore, the correction fields φf,j obtained from the solution of
the system of equations given by (5.49) are guaranteed to satisfy the mirror and rotational
symmetry requirements on the reference equilateral triangle �S . Because of the similarity
between the 1D VCJH schemes and the energy stable FR schemes on triangles described in
the previous sections, the latter will henceforth be referred as VCJH schemes on triangles.

5.4 Recovery of a Collocation Based Discontinuous Galerkin Scheme

In this section, it is shown that the VCJH scheme on triangles corresponding to a value
of c = 0 recovers a collocation based nodal DG scheme such as the ones described in the
textbook by Hesthaven and Warburton [9].

In a nodal DG method, the approximate solution ûδ within the reference element �S is
represented as in (4.17) and is required to satisfy

∫

�S

∂ûδ

∂t
lk d�S = −

∫

�S

(
∇rs · f̂δ

)
lk d�S −

∫

�S

lk

[
(f̂δ · n̂) − (f̂ · n̂)δI

]
d�S, (5.51)
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for all multi-dimensional Lagrange polynomials lk associated with a set of Np collocation
points. In order to evaluate the volume and surface integrals in (5.51), an approximation
must be made. In a collocation based nodal DG method, the approximate flux f̂δ is obtained

from

f̂δ = f̂δD =
Np∑

i=1

f̂δDi li (5.52)

where the values of f̂δDi are the values of the approximate flux evaluated directly at the
collocation points. Furthermore, along each edge of the element, the difference between the
normal transformed numerical flux (f̂ · n̂)δI and the normal approximate flux (f̂δD · n̂) on �S

is approximated by a polynomial in Rp(�S) whose form is determined by its values at a
set of p + 1 flux points along each edge. In other words, in a collocation based nodal DG
approach

[
(f̂δD · n̂) − (f̂ · n̂)δI

]∣∣∣
�S

(5.53)

is approximated by

3∑

f =1

p+1∑

j=1

[
(f̂δD · n̂) − (f̂ · n̂)δI

]

f,j
l1D
f,j (5.54)

where l1D
f,j ∈ Rp(�S) satisfies (4.29). Hence the approximate solution ûδ in a collocation

based nodal DG scheme satisfies
∫

�S

∂ûδ

∂t
lk d�S = −

∫

�S

(
∇rs · f̂δD

)
lk d�S

−
∫

�S

lk

3∑

f =1

p+1∑

j=1

[
(f̂δD · n̂) − (f̂ · n̂)δI

]

f,j
l1D
f,j d�S, (5.55)

for k = 1 to Np .
For the VCJH schemes on triangles, (5.4) is used to update the approximate solution in

time. On multiplying (5.4) by an arbitrary test function ϕ ∈ Pp(�S), and integrating over
the reference element �S , one obtains

∫

�S

∂ûδ

∂t
ϕ d�S = −

∫

�S

(
∇rs · f̂δD

)
ϕ d�S −

∫

�S

(
∇rs · f̂δC

)
ϕ d�S. (5.56)

On integrating the last term on the right hand side of (5.56) by parts, one obtains

∫

�S

∂ûδ

∂t
ϕ d�S = −

∫

�S

(
∇rs · f̂δD

)
ϕ d�S −

∫

�S

ϕ
(

f̂δC · n̂
)

d�S +
∫

�S

f̂δC · ∇rsϕ d�S.

(5.57)
The VCJH schemes on triangles are parameterized by a single parameter c and are obtained
by enforcing (5.48). If c = 0, (5.48) simplifies to

∫

�S

hf,j ∇rsLi d�S = 0, ∀i and ∀f, j. (5.58)
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Because f̂δC is a linear combination of the correction functions hf,j and any test function
ϕ ∈ Pp(�S) can be written as a linear combination of the orthonormal basis polynomials
Li ∈ Pp(�S), it follows that if c = 0,

∫

�S

f̂δC ∇rsϕ d�S = 0. (5.59)

Therefore, (5.57) becomes

∫

�S

∂ûδ

∂t
ϕ d�S = −

∫

�S

(
∇rs · f̂δD

)
ϕ d�S −

∫

�S

ϕ
(

f̂δC · n̂
)

d�S. (5.60)

Using (4.30), the integral over �S can be written as

∫

�S

ϕ
(

f̂δC · n̂
)

d�S =
∫

�S

ϕ

3∑

f =1

Nfp∑

j=1

	f,j l
1D
f,j d�S. (5.61)

Hence, the approximate solution for the VCJH scheme on triangles corresponding to c = 0
satisfies

∫

�S

∂ûδ

∂t
ϕ d�S = −

∫

�S

(
∇rs · f̂δD

)
ϕ d�S −

∫

�S

ϕ

3∑

f =1

Nfp∑

j=1

	f,j l
1D
f,j d�f . (5.62)

Because (5.62) is true for any ϕ ∈ Pp(�S), it follows that

∫

�S

∂ûδ

∂t
lk d�S = −

∫

�S

(
∇rs · f̂δD

)
lk d�S −

∫

�S

lk

3∑

f =1

Nfp∑

j=1

	f,j l
1D
f,j d�f (5.63)

for all multi-dimensional Lagrange polynomial lk of order p associated with the solution
points. Equation (5.63) is the same as (5.55) provided that the solution and flux points in
the VCJH scheme are located at the same location as the collocation and flux points in
the collocation based nodal DG scheme. Therefore, it can be deduced that the approximate
solution for a collocation based DG scheme is identical to the approximate solution for the
VCJH scheme on triangles with c = 0.

6 Von Neumann Stability Analysis of the Vincent-Castonguay-Jameson-Huynh
Schemes on Triangles

In this section, a von Neumann stability analysis of VCJH schemes on triangles is performed.
The analysis is similar to the ones conducted by Van den Abeele to investigate the stability
of the SD method [21], by Zhang and Shu [25] to study the dissipative properties of the DG
method and by Kannan and Wang [13, 14] to investigate the linear stability of SV methods.
The results of this section indicate how explicit time-step limits vary across the range of
schemes and are used to identify values of c leading to schemes with increasing time-step
limits (compared to the collocation based nodal DG schemes).
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Fig. 6 Mesh generating pattern defined by the vectors B1 and B2

6.1 Theory

Consider the 2D linear advection equation

∂u

∂t
+ ∇xy · (au) = 0 (6.1)

where a = ‖a‖(cosψ, sinψ) and u = u(x, y, t) is the conserved quantity. Let the computa-
tional domain � be partitioned by repeating a grid generation pattern, as shown in Fig. 6.

The generating pattern is defined by the two vectors B1 = (B1x,B1y) and B2 =
(B2x,B2y). The vector B1 is chosen to be horizontal with length 	B , hence B1 = (	B,0).
The vector B2 also has length 	B and is oriented at an angle τ with respect the x-coordinate
direction, hence B2 = 	B(cos τ, sin τ). Upon discretization of (6.1) using a VCJH scheme
on triangles, and using the numerical flux defined by (5.22), one obtains the semi-discrete
equation

d

dt
Ui,j = ‖a‖

	B

[
AUi,j + BUi−1,j + CUi+1,j + DUi,j−1 + EUi,j+1

]
(6.2)

where Ui,j is a vector of size 2Np containing the unknown solution values for both triangular
elements in the generating pattern (i, j) (refer to Fig. 6). The matrices A,B,C,D and E
are a function of the wave propagation direction ψ , the angle τ that defines the generating
pattern, the parameter λ in the numerical flux definition and the scalar coefficient c by which
the VCJH schemes on triangles are defined. Their formulation has been omitted for brevity.
Following the methodology of the classic von Neumann stability analysis, a solution of the
form

Ui,j = Ũ exp
[κ

(
(iB1x + jB2x) cos θ + (iB1y + jB2y) sin θ

)]
(6.3)

is sought for, where κ is the wave number of the harmonic plane wave, θ is the orientation
angle of the harmonic plane wave, Ũ is a complex vector of dimension 2Np independent of



J Sci Comput

i and j and  is the complex number
√−1. Substituting (6.3) into the semi-discrete (6.2)

and assuming periodic boundary conditions, one obtains

d

dt
Ũ = LŨ (6.4)

where the matrix L, which is the spatial operator of the VCJH schemes on triangles, is
defined as

L = ‖a‖
	B

{
A + B exp[−κ(B1x cos θ + B1y sin θ)]

+ C exp[κ(B1x cos θ + B1y sin θ)]
+ D exp[−κ(B2x cos θ + B2y sin θ)]

+ E exp[κ(B2x cos θ + B2y sin θ)]
}
. (6.5)

Defining the non-dimensional quantities B′
1, B′

2 and K as B′
1 = B1/	B , B′

2 = B2/	B and
K = κ	B , the matrix L can be rewritten as

L = ‖a‖
	B

{
A + B exp[−K(B ′

1x cos θ + B ′
1y sin θ)]

+ C exp[K(B ′
1x cos θ + B ′

1y sin θ)]
+ D exp[−K(B ′

2x cos θ + B ′
2y sin θ)]

+ E exp[K(B ′
2x cos θ + B ′

2y sin θ)]
}
. (6.6)

Furthermore, defining the non-dimensional time t ′ = t 	B
‖a‖ , (6.4) becomes

d

dt ′
Ũ = L′Ũ (6.7)

where

L′ = L
	B

‖a‖ . (6.8)

The matrix L′ depends on the following parameters: the non-dimensional wave number K ,
the wave propagation direction ψ , the harmonic plane orientation θ , the angle τ that defines
the generating pattern, the parameter λ in the numerical flux definition and the scalar coeffi-
cient c by which VCJH schemes are defined. For a given explicit time discretization method
(such as forward Euler or an explicit Runge-Kutta scheme), the semi-discrete equation (6.7)
can be written in the form

Ũm+1 = MŨm (6.9)

where Ũm is the solution at time level m and the matrix M depends on the spatial operator L′
and the non-dimensional time step 	t ′. The exact form of M for various time discretization
methods will be given in the following subsection. To have a bounded numerical solution,
the matrix M must have eigenvalues whose moduli are less than 1. Hence, for a particular
spatial discretization operator L′ and a time advancement scheme, one can identify the max-
imum value of the non-dimensional time step 	t ′ that allows this condition to be satisfied.
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6.2 Results

In the previous section, a semi-discrete form of the governing equation (6.7) was derived in
which the spatial discrete operator L′ is a function of the parameters K,ψ, τ, θ , λ and c. In
this section, the time-step limits for the fully discretized system given by (6.9) are computed
for three different time advancement schemes, two different mesh generating pattern and for
the range of values of c that satisfy 0 ≤ c < ∞ (which is the range that guarantees linear
stability in the norm given by (5.50)). The analysis is performed for solution polynomials
of order p = 2 to 4 and the upwind parameter λ is set to 1, thus recovering a fully upwind
numerical flux. The two mesh generating patterns correspond to values τ of 60◦ and 90◦.
The time advancement schemes considered are the classic 3-stage, 3rd order Runge-Kutta
scheme (denoted by RK33), the classic 4-stage, 4th order Runge-Kutta scheme (denoted by
RK44) and the low-storage 5-stage, 4th order Runge-Kutta scheme [1] (denoted RK54). For
the classic 3-stage, 3rd order Runge-Kutta scheme (RK33), the matrix M takes the form

M = I + 	t ′L′ + (	t ′)2

2
(L′)2 + (	t ′)3

6
(L′)3, (6.10)

for the classic 4-stage, 4th order Runge-Kutta scheme (RK44)

M = I + 	t ′L′ + (	t ′)2

2
(L′)2 + (	t ′)3

6
(L′)3 + (	t ′)4

24
(L′)4, (6.11)

and finally, for the low-storage 5-stage, 4th-order Runge-Kutta scheme (RK54),

M = I + 	t ′L′ + (	t ′)2

2
(L′)2 + (	t ′)3

6
(L′)3 + (	t ′)4

24
(L′)4 + (	t ′)5

200
(L′)5.

(6.12)
For each combination of a time advancement scheme, mesh generating pattern and value
of c, the eigenvalues of the matrix M are computed numerically at a discrete number of
points for K,ψ, θ ∈ [0,2π ] for a given 	t ′, which is increased incrementally until the sta-
bility condition is violated. From this analysis, plots of the maximum non-dimensional time
step 	t ′ versus the parameter c are obtained for the different time-advancement schemes.
Results for p = 2 to 4 are shown in Figs. 7(a) to 7(f) for the mesh generating pattern with
τ = 60◦ and in Figs. 8(a) to 8(f) for the mesh generating pattern with τ = 90◦. The c-axis
is shown on both a logarithmic scale to show the behaviour over a wide range of values of
c and a linear scale to provide more details in the regions of high gradients. For all orders
p and for both mesh generating patterns, the maximum allowable time step 	t ′ is positive
for values of c in the range 0 ≤ c < ∞, confirming that the VCJH schemes on triangles
are linearly stable. Furthermore, it is clear from those figures that there exists a value of c

resulting in a maximal time-step limit. These values of c, henceforth referred as c+, depend
on the polynomial order, the mesh generating pattern and the time-advancement scheme.
They are presented in Table 1. The VCJH schemes on triangles corresponding to c+ allow a
significant increase in the explicit time-step limits compared to the collocation based nodal
DG method (recovered when c = 0). For example, for p = 2, the use of c = c+ results in
time-step limits at least two times bigger than those associated with c = 0.
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Fig. 7 Plots of maximum non-dimensional time step versus parameter c for linear advection equation on
triangular grid with p = 2 (a–b), p = 3 (c–d) and p = 4 (e–f). For all cases, a fully upwind flux was used
and the angle τ used to prescribe the mesh generating pattern was set to 60◦

7 Numerical Experiments

In this section, numerical experiments are performed on the two-dimensional linear advec-
tion equation

∂u

∂t
= ∂u

∂x
+ ∂u

∂y
, (7.1)
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Table 1 Values of c+ for
various polynomial orders p and
time integration schemes

Polynomial degree τ = 60◦ τ = 90◦
p RK33 RK44 RK54 RK33 RK44 RK54

2 3.8e-2 4.0e-2 4.3e-2 3.7e-2 4.1e-2 4.3e-2

3 5.4e-4 5.9e-4 6.4e-4 6.0e-4 6.0e-4 6.0e-4

4 5.6e-6 6.4e-6 5.3e-6 6.4e-6 6.4e-6 5.6e-6

Fig. 8 Plots of maximum non-dimensional time step versus parameter c for linear advection equation on
triangular grid with p = 2 (a–b), p = 3 (c–d) and p = 4 (e–f). For all cases, a fully upwind flux was used
and the angle τ used to prescribe the mesh generating pattern was set to 90◦
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Fig. 9 Regular (a) and irregular (b) 5 × 5 × 2 triangular grids used in numerical experiments

where u = u(x, y, t) is the conserved scalar quantity. The numerical experiments are used
to assess the order of accuracy of the new VCJH schemes on triangles and to verify the
time-step limits obtained in the previous section. The computational domain is taken to be
−1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and periodic boundary conditions are used in both the x and y

directions. The initial conditions is

u(x, y,0) = sin(π(x + y)). (7.2)

Two types of grids are used: one regular, shown in Fig. 9(a), generated by repeating a gen-
erating pattern and one irregular, shown in Fig. 9(b).

To perform an order of accuracy study, each grid is repeatedly refined four times, by
splitting each of its elements into four. Hence, the two sets of grids contain Nx × Nx × 2
cells with Nx taking the values of 5, 10, 20, 40 and 80 for the different refinement levels.
For the test cases presented in this section, the low-storage 5-stage 4th order Runge-Kutta
scheme is used and the simulation is carried out until t = 1. In order to verify the accuracy
of the schemes, the discrete L2 error norm defined by

L2 error =
√√√√

∑N

n=1

∑Np

i=1(ui,n − ue
i,n)

2

N · Np

(7.3)

is used, where Np is the number of solution points per cell, N is the total number of cells and
ui,n and ue

i,n are the approximate and exact solutions at solution point i of cell n, respectively.
When conducting the order of accuracy study, the time step is chosen sufficiently small
so that the error from the time discretization scheme is negligible compared to the spatial
discretization error. Two different VCJH schemes on triangles corresponding to two different
values of c are tested. In the first scheme, the parameter c is set to 0, thereby recovering a
collocation based nodal DG scheme. For the second scheme, the values of c+ from Table 1
for the low-storage 4th order RK scheme and the mesh generating pattern τ = 90◦ are used.
The corresponding values of c+ are 4.3e−2, 6.0e−4 and 5.6e−6 for orders p = 2,3 and 4
respectively. Furthermore, for each simulation, the maximum allowable non-dimensional
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Table 2 Numerical results obtained on the regular grids for the advection equation, for various polynomial
orders p and for two values of c

p Grid Size c = 0 c = c+
L2 error Order 	t ′max L2 error Order 	t ′max

2 5 × 5 × 2 1.415e-02 – 0.210 4.940e-02 – 0.442

10 × 10 × 2 1.881e-03 2.91 0.210 7.170e-03 2.78 0.442

20 × 20 × 2 2.379e-04 2.98 0.210 9.530e-04 2.91 0.442

40 × 40 × 2 2.982e-05 3.00 0.210 1.216e-04 2.97 0.442

80 × 80 × 2 3.730e-06 3.00 0.210 1.524e-05 3.00 0.440

3 5 × 5 × 2 1.167e-03 – 0.142 3.890e-03 – 0.272

10 × 10 × 2 7.549e-05 3.95 0.142 2.464e-04 3.98 0.270

20 × 20 × 2 4.939e-06 3.93 0.142 1.544e-05 4.00 0.270

40 × 40 × 2 3.084e-07 4.00 0.142 9.652e-07 4.00 0.270

80 × 80 × 2 1.928e-08 4.00 0.142 6.032e-08 4.00 0.270

4 5 × 5 × 2 8.324e-05 – 0.100 2.486e-04 – 0.182

10 × 10 × 2 2.763e-06 4.91 0.100 8.375e-06 4.89 0.180

20 × 20 × 2 8.697e-08 4.99 0.100 2.644e-07 4.99 0.180

40 × 40 × 2 2.716e-09 5.00 0.100 8.347e-09 4.99 0.180

time step, 	t ′, is determined numerically. The non-dimensional time step is defined as

	t ′ = ‖a‖
	x

	t (7.4)

where ‖a‖ is the wave speed (‖a‖ = √
2 for the current problem) and 	x = 2

Nx
. For each

combination of p and grid size, the non-dimensional time step was increased by 2.0e-3 un-
til the solution went unstable before reaching a time t of 100. Tables 2 and 3 present the
computed errors and the maximum values of 	t ′ on both grids for the two different VCJH
schemes on triangles. For both values of c (c = 0 and c = c+), the optimal order of accu-
racy is achieved ((p + 1)th order of accuracy for degree p polynomial) for all polynomial
orders p, although the nodal DG approach gives smaller errors. Furthermore, as expected
from the von Neumann stability analysis, the VCJH schemes corresponding to values of
c+ allow a significantly larger explicit time-step compared to that of the collocation based
nodal DG scheme. The maximum non-dimensional time steps computed in the numerical
experiments on the regular grid fall within 2% of the value predicted from the von Neumann
stability analysis.

8 Conclusions

In this article, a new extension of the FR approach to triangular elements has been proposed,
and used to identify a new class of high-order linearly stable FR schemes on triangular el-
ements. The schemes, referred to as VCJH schemes on triangles, are parameterized by a
single scalar quantity c. The new approach provides a simple methodology to implement an
infinite range of linearly stable FR schemes on triangular elements. Stability analysis of the
schemes allows identification of values of c that lead to schemes with increased time-step
limits (compared to the collocation based nodal DG method). Furthermore, the schemes with
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Table 3 Numerical results obtained on the irregular grids for the advection equation, for various polynomial
orders p and for two values of c

p Grid Size c = 0 c = c+
L2 error Order 	t ′max L2 error Order 	t ′max

2 5 × 5 × 2 3.922e-02 – 0.288 1.362e-01 – 0.568

10 × 10 × 2 5.336e-03 2.82 0.272 2.131e-02 2.68 0.558

20 × 20 × 2 7.350e-04 2.91 0.262 2.947e-03 2.85 0.554

40 × 40 × 2 8.997e-05 3.03 0.254 3.720e-04 2.99 0.522

80 × 80 × 2 1.107e-05 3.02 0.250 4.660e-05 3.00 0.504

3 5 × 5 × 2 5.690e-03 – 0.190 1.605e-02 – 0.346

10 × 10 × 2 3.094e-04 3.87 0.178 1.211e-03 3.73 0.336

20 × 20 × 2 2.456e-05 3.99 0.168 7.809e-05 3.95 0.324

40 × 40 × 2 1.523e-06 4.01 0.160 4.910e-06 3.99 0.316

80 × 80 × 2 9.519e-08 4.00 0.150 3.069e-07 4.00 0.308

4 5 × 5 × 2 6.801e-04 – 0.136 1.842e-03 – 0.232

10 × 10 × 2 2.066e-05 5.04 0.130 5.424e-05 5.09 0.224

20 × 20 × 2 6.982e-07 4.89 0.124 1.803e-06 4.91 0.216

40 × 40 × 2 2.128e-08 5.04 0.120 5.449e-08 5.05 0.212

increased time-step limits have been shown, in numerical experiments, to yield the optimal
order of accuracy for the linear advection problem. The new VCJH schemes on triangles
represent an important extension of the 1D VCJH schemes because triangular elements are
essential for the simulation of two dimensional flows over complex geometries. Future stud-
ies will investigate how stability and accuracy depend on c for non-linear problems and
extend the methodology to simplex elements in 3D.
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Appendix: Raviart-Thomas Space

In this section, a brief introduction to the Raviart-Thomas space is presented. The Raviart-
Thomas space was originally introduced in 1977 [18] to approximate the space H(div).

For the reference triangle �S , the Raviart-Thomas space is defined as

RTp(�S) = (Pp(�S))
2 + rPp(�S) (9.1)

where r = (r, s), Pp(�S) is the space of polynomials of degree at most p and Pp(�S)
2 =

(Pp(�S),Pp(�S)) (the 2-dimensional vector space for which each component is a polyno-
mial of degree at most p). The dimension of Pp(�S) is 1

2 (p+1)(p+2) while the dimension
of RTp(�S) is (p + 1)(p + 3). The space RTp(�S) has two important properties.

Property 1

Because RTp(�S) ⊂ (Pp(�S))
2, for q ∈ RTp(�S), the following property holds

∇ · q ∈ Pp(�S).
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Property 2

Let the polynomial space Rp(�S) be defined on the edges of the reference element as

Rp(�S) = {
φ | φ ∈ L2(�S), φ|�f

∈ Pp(�f ), ∀�f

}
(9.2)

where �f is used to represent edge f of the reference element �S . Functions of Rp(�S)

are polynomials of degree ≤ p on each side of �S , and are not necessarily continuous at the
vertices. For q ∈ RTP (�S), the following property holds

q · n̂
∣∣
�S

∈ Rp(�S). (9.3)

This can be proved as follows. Let q ∈ RTp(�S) which can be written as q = q0 +rqp where
q0 ∈ (Pp(�S))

2 and qp ∈ Pp(�S). Also, let the n̂ = (nr , ns) be the normal to a side of the
reference triangle �S . Then we have

q · n̂ = q0 · n̂ + qp(rnr + sns). (9.4)

On a side of �S , (rnr + sns) is a constant, and therefore q · n̂ is a polynomial of degree p.

Examples of Elements of RTp(�S)

Let q = (qr , qs) be an element of RTp(�S). Then q takes the following form for p = 2,3
and 4.

p = 2

qr(r, s) = a1 + c1r

qs(r, s) = b1 + c1s

p = 3

qr(r, s) = a1 + a2r + a3s + c1r
2 + c2rs

qs(r, s) = b1 + b2r + b3s + c1rs + c2s
2

p = 4

qr(r, s) = a1 + a2r + a3s + a4r
2 + a5rs + a6s

2 + c1r
3 + c2r

2s + c3rs
2

qs(r, s) = b1 + b2r + b3s + b4r
2 + b5rs + b6s

2 + c1r
2s + c2rs

2 + c3s
3
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