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Abstract. We present a novel mesh-free scheme for solving partial differential equations. We
first derive a conservative and stable formulation of mesh-free first derivatives. We then show that
this formulation is a special case of a general conservative mesh-free framework that allows flexible
choices of flux schemes. Necessary conditions and algorithms for calculating the coefficients for our
mesh-free schemes that satisfy these conditions are also discussed. We include numerical examples
of solving the one- and two-dimensional inviscid advection equations, demonstrating the stability
and convergence of our scheme and the potential of using the general mesh-free framework to extend
finite volume discretization to a mesh-free context.
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1. Introduction. Despite significant improvement in technology and software
tools, efficient generation of high quality meshes has remained the frequent bottle-
neck in scientific computing, especially when domain boundaries are characterized by
nontrivial geometry.

To circumvent mesh generation, many have developed various classes of mesh-
less algorithms. One class of these algorithms originated from the strong form of the
governing equations. Monaghan and Gingold [18] developed the smooth particle hy-
drodynamics method, which uses integral approximations of functions. Onate et al.
[21] proposed the finite point method (FPM), whose derivation actually somewhat
parallels those of finite element methods, although FPM uses point collocation in
its final discretization to avoid the computation of integrals involving test functions.
Lohner et al. [15] and many others have used FPM on fluid and structural mechanics
problems. Batina [2] had also previously used local least squares with polynomial
basis to obtain a similar formulation. Also employing least squares techniques, Desh-
pande et al. [6] invented the least squares upwind kinetic method (LSKUM), which
Ghosh and Despande [8], Ramesh and Despande [23], and many others later modified
or used. Starting from Taylor series, Sridar and Balakrishan [25] and Katz and Jame-
son [14] also developed meshless methods that resemble traditional finite difference
methods. Using radial basis functions, Kansa [12, 13], and later Shu et al. [24] and
Tota and Wang [26], also developed various collocation meshless schemes.

Another class of meshless algorithms resulted from the discretization of the weak
form of the governing equations. Nayroles, Touzot, and Villom [19] developed the dif-
fuse element (DE) method, which Belytschko, Lu, and Gu [3] extended to obtain the
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element-free Galerkin (EFG) method. Because of the underlying weak form in their
formulations, DE and EFG both require background grids for computing integrals.
Later, Atluri and Zhu [1] introduced the meshless local Petrov—Galerkin (MLPG)
method based on a local variational formulation. MLPG reduces the need for the
background mesh to a local one, improving on that of DE and EFG. Duarte and
Oden [7] and Melenk and Babuska [16] also developed meshless methods in the more
general partition-of-unity framework.

Through the excellent work, including and beyond those mentioned above, by
many researchers, mesh-free methods have shown great potential and demonstrated
ample practical success in scientific computing. However, they still have not become
enormously popular among scientists and engineers. Challenges such as point genera-
tion and costs of adapting meshless algorithms partly explain the situation. However,
one fundamental property of mesh-free methods has led to serious doubts from the
scientific community: the lack of formal conservation. To the best of our knowledge,
because of their local nature, existing mesh-free schemes do not preserve conserva-
tion at the discrete level, except in very limited situations (such as with uniform point
distributions, with which one could obtain meshes trivially). Two important disadvan-
tages result. First, compared to some mesh-based approaches, the lack of conservation
hinders computational efficiency by precluding the computation of reciprocal fluxes,
e.g., as in edge-based approaches. Then, more importantly, nonconservation leads to
unpredictable errors when sharp discontinuities exist in the solution. The difficulty
in formally quantifying the effects of nonconservation on the accuracy and stability
of algorithms deters scientists and engineers from using mesh-free algorithms on a
regular basis.

In this paper, we aim at addressing this fundamental issue by presenting a novel
mesh-free scheme that possesses various formal conservation and mimetic properties
at the discrete level. Designed for numerical solution of conservation laws, the new
scheme also allows for a generalization to a framework that accommodates existing
schemes for computing numerical fluxes. To present the scheme in detail, we orga-
nize the rest of this paper as follows: Section 2 contains the definition of the discrete
derivative operator for our meshless scheme, along with the reciprocity and consis-
tency conditions the operator satisfies. Using those conditions, we prove the scheme’s
global and local conservation properties in sections 3 and 4. These properties lead
to the important generalized framework in section 5 that enables one to incorporate
many existing flux schemes into meshless discretizations. In section 6, we outline the
scheme’s extra discrete geometric properties, which drive the design of the procedures
in section 7 for generating the necessary meshless coefficients. Section 8 contains the
numerical results that demonstrate the success and flexibility of the current meshless
framework. There, one can see generated coefficients on sample domains, numeri-
cal solutions to the advection equation computed using these coefficients in both the
original scheme and the generalized framework with an upwinding flux scheme, and
evidence of success of the current framework in handling nonlinear conservation laws.
Finally, we briefly conclude our work in section 9.

2. Differentiation operator. We discretize a complex domain 2, with bound-
ary 0f), using a cloud of N points, each with vector coordinates z;, ¢ = 1,..., N.
The point cloud contains points both on the boundary (sp = {i | x; € 902}) and in
the interior of the domain (i ¢ sg). At each boundary point (i € sg), we define an
outward-facing vector normal n; with magnitude of the portion of area on 9f2 associ-
ated with the point i. Each point i has a set of neighboring points s;, which does not
include point 14 itself.
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The discrete first derivative is defined by

(2.1) miak¢i ~ midk(bi = afi¢i + Z afj@,

JES;

where k = I,II,IIT is the spatial dimension, and 0* and §* are the analytic and
discrete first derivative operators in the kth spatial coordinate. Here, m; can represent
some volume associated with each point, while the coefficients afj for the point pairs
(i, 7) then have corresponding dimensions of area (we shall justify this characterization
in section 4). To preserve the most generality, we perform our analysis in three
dimensions. However, the results identically apply to lower dimensions.
We enforce the following two conditions on a;; and m;:
C-1. Reciprocity of coefficients:

aj; = —aj;, i#j (j€sieics;),
k .
a;; =0, i¢sg,
1
k koo
aj; = 3ni, 1€ sp,

where n¥ is the kth component of the outward-facing, area-weighted boundary
normal n;.
C-2. Consistency of order L:

afip(a:) + > afp(z;) =m0 p(a;)
JESsi

for all multivariate polynomials p of total order L, where x; is the coordinate
of the ith point.
We shall now investigate the properties of discretizations satisfying conditions
C-1 and C-2.

3. Global conservation and mimetic properties. This section proves that
if the discrete operator satisfies the conditions in section 2, it has discrete properties
corresponding to classical properties of the analytic first derivative operator 9% that
constantly appear in conservation laws and their manipulations, namely the following:

e Conservation:

/ OFpde = [ ¢nPds.
Q oQ
e Integration by parts:

JREETE /a vontds = [ v

e Enegy conservation:

/ngak(bdx = /m %d)ands.

The statements in the following three theorems each contain a discrete repre-
sentation of the corresponding property above. For example, in Theorem 3.1, the
summations on both sides of the equations are discrete approximations of the integral
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in the continuous conservation condition. Keeping in mind that the coefficient m;
represents a volume associated with point i, one can view the quantity m;6*¢; as the
discrete approximation of the volume integral fwi Ok pdz.t Similarly, n¥¢; is the coun-
terpart of the kth component of the vector integral [ negds over dw;, the area of the
boundary with normal n associated with point . As a result, (3.1) is the discrete ver-
sion of the mathematical statement for conservation in which the continuous integrals
become the corresponding discrete sums of approximate local integrals over relevant
parts of the domain. The same analogy applies to the quantities in the following two
theorems.
THEOREM 3.1 (discrete conservation). If m; and afj satisfy C-1 and C-2, then

N
(3.1) > midtei =Y gink,
=1

1€ESB

where sp is the collection of all boundary points.
Proof. We can write the discrete first derivative as

N
(3.2) mi0* g ~ midke; = alie;,
j=1
where @, = af, dfj = afj if j € s;, and dfj = 0 otherwise. Let p =1 in C-2. Using

afj + afi =0 from C-1, we get

(3.3) ako=—ak  onlyifi # j,

1] J

N

j=1
i

(3.5) >k = 2af,.

N
j=1

Incorporating (3.2) into the left-hand side of (3.1) and using (3.3), we have

N N N N /N N
60 Smote =33 abo =3 (Soah ) o= Y20 = Xt
i=1 i=1 j=1 j=1 \i=1 j=1 i€sp
where we changed the dummy index from j to ¢ in the last step. d

THEOREM 3.2 (summation by parts). If m; and afj satisfy C-1 and C-2, then

N N
(3.7) > mihidk g+ migidt =Y digint.

i=1 i=1 i€SB

INote that though 6% ¢; approximates 8% ¢ to Lth order, m;5*¢; may not approximate fw’_ O* pdx
to the same order of accuracy.
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Proof. Substituting (3.2) into the left-hand side of (3.7), we have

me@+2mwm

i=1 =

Z@Z%%

I
MZS
Mz ?Dgz -

=1
N N

:Z +Z¢l Z —af; — alf; + 2451,
=1 j=1 #Z
N N N N

= Z Z afjw Z Z aljwz(bﬂ +2 Z ai;YiPi
=1 j=1 i=1 j=1 i=1

(38) =Y o,

.
g
w
oy

where we exchanged the dummy indices ¢ and j in the second term on the second-to-
last line. d

COROLLARY 3.3 (discrete energy conservation). If m; and afj satisfy C-1 and
C-2, then

(3.9) me%—z¢

1€sp
Proof. Equation (3.9) is obtained by setting 1 = ¢ in (3.7). d

4. Local conservation. In addition to global conservation, it is also desirable
for a scheme to, at the discrete level, preserve local conservation, i.e.,

(4.1) oF pdx = éntds.

wi Ow;

In traditional meshes, one achieves discrete local conservation (with the use of a
conservative numerical scheme) by requiring each cell C; of volume V; to be completely
enclosed by its faces, which should not overlap. Mathematically, this means that all
cells should satisfy

> =V,

feC;

(4.2) > nf =0,

fec;

where k = I, II, Il again denotes each spatial dimension.

We shall prove that the current scheme satisfies a discrete version of (4.1). As
a result, one will see that the meshless coefficients naturally lead to a version of the
cell-closure condition in the mesh-free setting.

THEOREM 4.1 (local discrete conservation). If m; and afj satisfy C-1 and C-2,
then, defining f;; to be a virtual face associated with the point pair ij, with face area

n’; = 2afj, the following conditions hold:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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1. At each point 1,

mziskd)l = Z (bfijn’}ij + (bﬂlf, i € Sp,
JES;

(4.3) mid¥ g = dp,mk . i¢sp,
JES;

where ¢y, is the function value associated with f;;.

2. In addition, m; represents a virtual volume at point 7 that is fully enclosed
by the virtual faces f;; between point ¢ and point j (plus boundary faces if
i € sp), which has vector areas 7y, .

We use the word “virtual” to describe the meshless analogues of faces and volumes
to highlight their fundamental differences from their physical counterparts in meshes.
Specifically, we can treat any computed coefficients satisfying C-1 and C-2 as mesh-
free equivalents of faces and volumes. They neither have nor need physical shapes, as
mesh faces and volumes computed from cell vertex locations do.

To facilitate the proof, we introduce the following corollary.

COROLLARY 4.2 (local discrete geometric conservation law). If m; and afj satisfy
C-1 and C-2, and the vector valued multivariate function P satisfies the divergence-free
condition

k=1
then the following condition holds:
ﬁ(xi).m+zﬁfij.ﬁfij :07 1€ SR,
JESi
(4'4) Zﬁfij ’ ﬁfij =0, { ¢ SB;
JESi

where Py, is the value of the polynomial associated with the virtual face f;;.

We shall prove the above theorem and corollary together. As one will see, (4.3)
directly leads to (4.4), which in turn leads to condition (4.1) above that is required
to complete the proof of Theorem 4.1.

Proof. Applying C-2 to p = 1 leads to af, + > jes: afj = 0. Multiplying this by ¢;
and adding the result to the definition of the first derivative operator (2.1), we have

midt e = aligi + Y akid; + ko + Y alio;
JEsi JESsi
=2afids + Y _ afi(di + ¢))
JEs;
(i + &5)
(4.5) = 2ak.¢; + Z n’}] —a 2.

JES:

SIES

For interior points, a; = 0. For boundary points, a; = %-. If we let ¢y, = WQF—%,
then we obtain (4.3).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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To prove Corollary 4.2, let ¢ = p be a polynomial of total order L. Consistency
of order L gives

miakpi = Z pfijn];'ij +pin7{’€7 7 S SB,
JESi

(4.6) miakpi - Z pfijnljccz‘j’ i ¢ sp.
JESi

If p'is divergence-free, summing over (4.6) applied to each component of p results in
(4.4).

To complete the proof of Theorem 4.1, it remains to show that volumes m; and
coefficients @;; are consistent and do not lead to numerical sources. This can be seen
through the following two properties:

1. Let ¢ = a* (recall k denotes spatial dimension). Equation (4.3) becomes
k k k k
D ies i % ;mj = m; for an interior point ¢, and 3, ny, 4 J;Tj +nkak =
m; for a boundary point.
2. Corollary 4.2 applied to 7 = ¥ (é* is the vector that has 1 as the kth com-
ponent and all zeros otherwise) yields > n’}] = 0 for an interior point ¢

JES:
and Zjesi n’}u +n¥ =0 for a boundary point.

These conditions exactly resemble (4.2). They guarantee that, around each so-
lution point, a volume of size m; is fully enclosed by its virtual faces, which include
boundary elements if appropriate. Thus, no numerical sources arise from inconsistent
definition of virtual normals and volumes. The scheme is locally conservative. |

Theorem 4.1 justifies the geometric interpretation of the coefficients afj and m;
as analogues of face areas and volumes. In close proximity to complex geometry,
traditional meshes can contain warped cells and faces that sometimes lead to difficulty
in satisfying the closure criteria (4.2). In this sense, Theorem 4.1 suggests that the
current mesh-free scheme could actually enforce numerical conservation better than
meshes. This brings further promise for using the current scheme in practice. In the
next section, we further generalize the current scheme by using the above geometric
interpretation to construct a generalized mesh-free framework.

5. A generalized framework. The reciprocity condition afj = —a?l- in C-1
guarantees that the virtual face areas and normals are consistent, as seen by volumes
i and j. With this reciprocity, the local conservation property resulting from the geo-
metric interpretation of the coefficients afj and m; mentioned in section 4 ensures that
global conservation (3.1) holds regardless of the choice of interface flux formulation.

Therefore, the current formulation actually represents a more general conservative
meshless framework. One can generate a set of m;, nf, and afj (using the algorithm in
section 7, for example) that represent boundary faces, virtual cell volumes, and virtual
interface areas. However, instead of the central average flux ¢y = qb';—qu, one can Now
apply more sophisticated interface fluxes while preserving numerical conservation.

More precisely, we can generalize (4.5) as

(5.1) midfe; = 2af6; + 208,

JES:

where the interface flux Fj; can be a function of ¢;, ¢;, the derivative of ¢ at the ith
and jth points, and so on.
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This freedom plays a vital role in allowing the current framework to handle
nonlinearity, where one often needs to introduce extra stability through the choice
of an appropriate flux scheme.

An example of the generalized derivative operator is the upwind scheme. In this
scheme, the interface flux Fj; is defined as

k_ ok

xrh — ph
¢ + %5’1“(;51-, afjuk >0,

(5'2) Fij = ok ok
bj + L7 b5, afjuk <0,

2

where 0% is a first order accurate reconstruction of the derivative in the kth spatial
dimension, and # is the interface convection velocity. In the numerical examples
detailed in this paper, 0f is constructed as

S =Y afi; (65 — i),
JES;

k

where ay;; are chosen by solving

min Z(alfij)z such that Z alfij(x?/ — ) = dp

JEs; JES

for each i and k, where k' = I, II, III, and d represents the Kronecker delta.

The second order accuracy of the upwinding flux Fj; leads to a first order accurate
approximation of the derivative (5.1). In section 8, we compare this generalized
scheme and the original scheme in numerical experiments, showing the high-quality
results this generalization produces and the flexibility it allows.

6. Global divergence theorem and geometric conservation law. Before
we discuss how to generate the coefficients afj and m;, we first present some extra
global properties of our scheme. Resembling (4.6) and Corollary 4.2, these properties
provide important insight into further requirements for obtaining coefficients that
satisfy C-1 and C-2.

THEOREM 6.1 (discrete divergence theorem). If afj and m; satisfy C-1 and
C-2, then the following condition holds for all multivariate polynomials p of total
order 2L:

N
(6.1) Z plxi)nk = Zmiakp(xi).

1€SB

Proof. 1t is sufficient to prove (6.1) for all multivariate monomials p of order less
than or equal to 2L. Let p = p1p2, where both p; and ps are monomials or order less
than or equal to L, and thus satisfy condition C-2:

(6.2) agp (i) + Z afjpl(ﬂfj) = m;0"py (2;),
JESsi

(6.3) agpa(wi) + Z ag;pa(w;) = mid*pa(xs).
JESsi
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Multiplying (6.2) by pa(x;) and (6.3) by pi(x;), we add the results. Summing the
added results over i« = 1,..., N, and using the fact, derived from a;; + a;; = 0 in
condition C-1, that

Z af; (p1(zi)p2(2;) + p1(x;)pa(2:)) =0,

(i,5)EE

where F is the set of all neighborhood pairs in the domain, we have

22%]91 (2i)pa(xi) Zmz (p1(2i)pa(x:)).

i=1

Inserting the definition of af from condition C-1, we get (6.1) for
D = pip2. a

In this proof, we took linear combinations of the constraints in C-2 and canceled
out all a;;’s to obtain (6.1). Therefore, this theorem shows that C-1 and C-2, as linear
constraints for d;;, are linearly dependent. In other words, these conditions cannot be
satisfied simultaneously unless m; satisfies (6.1).

In addition, the following corollary shows that (6.1) as linear constraints for m;
are also dependent.

COROLLARY 6.2 (geometric conservation law). If afj and m; satisfy C-1 and C-2,
and the vector valued multivariate polynomials p of order 2L satisfy the divergence-free
condition

then the following condition holds:

(6.4) > plw) -t =0.

i1€sp
Proof. Equation (6.4) is obtained by summing (6.1) over k = I, I, IIT and using
the divergence-free condition. d

Thus, to obtain a consistent set of a . and m;, one must at least choose the bound-
ary normals n¥ appropriately according to (6.4). In section 7, we explore two different
ways to construct the meshless coefficients satisfying C-1 and C-2 by enforcing these
constraints.

7. Operator construction. In section 6, we listed necessary compatibility con-
ditions resulting from the linear dependence of C-1 and C-2. In this section, we present
two algorithms for generating coefficients that satisfy C-1, C-2, and these implied con-
straints.

While we have not shown the sufficiency of the implied compatibility conditions
for the existence of coeflicients afj and m; that satisfy C-1 and C-2, solutions satisfying
C-1 and C-2 do exist empirically. Numerical experiments in section 8 revealed that,
by enforcing the compatibility conditions, the algorithms presented here produced
compatible linear constraints (ones to which infinitely many solutions exist).

Many numerical simulations involve the solution of conservation laws in a domain
enclosed by some discrete representation of the boundary geometry. Thus, both al-
gorithms begin with a set of corrected boundary normals n¥ that satisfy Corollary
6.2 (or (6.4)), which is one of the necessary conditions for the existence of compatible
coefficients.
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7.1. Segregated approach. In this approach, we first generate m; that satisfy
(6.1) and then solve for afj that satisfy C-1 and C-2. The algorithm is as follows:
1. Calculate estimates of 7; for all boundary points based on the geometry of
the domain boundary. One can use various geometry-processing algorithms
to obtain initial estimates of the boundary faces, (e.g., see Wang [27]).
2. Project the estimates of 7; into the linear subspace that satisfies (6.4).

Specifically, letting n be a column vector that contains 7; for all boundary
points ¢, the geometric conservation law (6.4) can be written as

(7.1) GTn=0.

The number of columns of matrix G is equal to the number of linearly inde-
pendent vector valued, divergence-free multivariate polynomials of maximum
order 2L. Each column of G contains the values of one of these polynomials
at all boundary points. When L is small, G is a thin matrix.

To ensure that the total volume enclosed by the boundary normals does not
change during the projection process, we also enforce the constraint

1
7.2 — i T =
(7.2) o E i - Ty = Mo

i€sp

for each closed boundary of the domain, where ng is the number of spatial
dimensions and mg = 7L 37, @i - 110;.

Letting ng be the initial estimate of n based on the geometry of the domain
boundary, we calculate the change in n by solving

R"y =g~ G"'ny,

An = Qy,
(7.3) n =ng + An,

where g = (0,...,0,m)T and QR = G is the (thin) QR decomposition of G.
The projected n satisfies the linear equation (7.1), which is equivalent to the
geometric conservation law (6.4).

3. With initial estimates of m; = 0, project m; onto the linear manifold that
satisfies (6.1).

We denote m as a column vector that contains m; for all points, and we
write (6.1) as

(7.4) DTm = ETn.

The matrices D and F have the same number of columns, which is equal to the
number of linearly independent multivariate polynomials of maximum order
2L. Each column of D contains the divergence of one of these polynomials at
all points; the corresponding column of E contains the value of the polynomial
at all boundary points. When L is small, both D and E are thin matrices.
In order to compute m that satisfies (7.4), we perform the thin SVD D =
USVT. Equation (7.4) becomes

SUTm = VTETn.
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Due to the geometric conservation law (6.4), the matrix D is singular. The
number of zero singular values of D is equal to the number of columns of
matrix G. If n satisfies (7.1), the rows of VT ETn corresponding to the zero
singular values are 0. Letting b; be the rows of VT ETn corresponding to the
nonzero singular values, U; be the columns of U corresponding to the nonzero
singular values, and S7 be the square submatrix of S corresponding to the
nonzero singular values, (7.4) becomes

SlUFm = bl,
which can be satisfied by
m = UlSl_lbl.

In addition, just like in finite volume schemes, we require m; > 0, which is not
guaranteed by SVD. In the event that some of the m;s are nonpositive, we
invoke an optimization procedure that minimizes |m||2 subject to (7.4) and
the positivity of m;. To enforce the positivity constraint, we set m; > Mumin,
where my,in is a user-selected parameter, typically on the order of \/€mnach
(€mach is the machine zero) to avoid the virtual volume at any location to be
arbitrarily close to zero. The resulting system is a quadratic program, so this
part of the algorithm can be carried out using any solvers capable of handling
quadratic programming problems or general convex optimization, such as CVX
[11, 10] and CVXOPT [5].

Solve a constrained least squares problem for d@;; to enforce C-1 and C-2,
while minimizing 37, - [|d@;]|3, where E is the set of all neighborhood

pairs {(i,7) | j € si}.

We denote a as a column vector that contains afj for all neighborhood pairs.

For each neighborhood pair (4, j), either afj or aé’?i are stored, such that C-1
(af; = —a};) is automatically satisfied. We write C-2 in the linear form

CTak = d*,

where CTa* contains the terms Zjesi afjp(xj), and d* contains both the
akp(z;) and the m;0%p(z;) terms.

This system of constraints for the least squares problem can be quite large,
especially if L > 2. In addition, the constraints must be satisfied to high
accuracy to ensure numerical stability of the scheme. A number of tools are
available for solving this problem for L < 2 (solving the system for large
meshes and L > 2 is a challenging problem). In our case, we solve this
system using the Krylov iterative method LSQR [22], which handles matrices
of arbitrary ranks and dimensions. Note that although the system is singular
due to the discrete divergence theorem (6.1), it has a compatible right-hand
side constructed by choosing m; and 7i; that satisfy (7.4).

Coupled approach. In this approach, we simultaneously compute m; and
satisfy C-1 and C-2 (and hence (6.1)). The coupled algorithm is as follows:

1. Calculate estimates of 7i; for all boundary points based on the geometry of

the domain boundary (same as in the segregated approach).

. Project the estimates of 7; onto the linear subspace that satisfies (6.4) (also

same as in the segregated approach).
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3. Solve a quadratic program? for d;; and m; to enforce C-1 and C-2, while
minimizing »Z; e p |l@:;l|3, where E is the set of all neighborhood pairs

{(5,4) |7 € s}

Again we denote a as a column vector that contains @;; for all neighbor-
hood pairs, and we write m as the vector containing m; for all points. We
write condition C-2 in the linear form

CTa+ PPm = d*,
where, as before, CTa”* contains the term Zjesi afjp(xj), but now P*m

contains the terms m;0%p(z;), and d* contains boundary terms of the type

ag;p(xs).
After introducing of m as unknowns, we obtain the system of constraints
(7.5) [CT P,Ju=d,
al -
ct 0 o0 P! T ) d’
c'=|0 ¢t o] P=|PI| u—{a}— asl, d=lar|
0 0 OT PIII m a a]]]
m

This system, along with the constraint that m; > m,;,, again can be solved
using QP or convex optimization tools. Right preconditioning was applied
by scaling the columns of CT by HA_'a:ZJ |l2 when enforcing the constraints and
scaling the objective function accordingly.

Note that although the constraint is singular due to the discrete divergence
theorem (6.1), we experienced no problem of infeasibility during the solution
procedure after we had constructed the right-hand side by choosing 7; that
satisfies (7.1).

Current experiments suggest the coupled algorithm gives better results, i.e., pro-
duces coefficients that lead to more accurate solutions. One can refer to section 8 for
further details. There, one will also see results and analysis that justify the use of
minimum norms as criteria for desirable solutions.

8. Numerical results. In this section, we present numerical results from ap-
plying the current framework to solving the advection equation in one and two
dimensions.

8.1. Model problem—the advection equation. Consider the equation

¢
8.1 — 4+ U4-Vp=0
(8.1) 5 T4 VO
with boundary condition ¢(x,t) = ¢p(x,t) at the inlet part of the boundary {z €

OQ |7t - i < 0}. The advection velocity @ = (u',u?, u?) is constant. This equation is

discretized as®

0 i¢s
d(bl & ok 9 B

8.2 — 0" = — Qi )

(8.2) o Tutdte %%d)[u?]—v i€ sp,

2For simple small problems, alternative algorithms such as SVD can be used. For instance, see

section 8.2.
3Superscript k follows Einstein notation.
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where u? = nfu¥ and [u?]_ = —min(0,u?) denotes the negative part. The penalty
term in the discretization (8.2) is consistent with the continuous boundary condition.

The stability of this discretization can be proven using Corollary 3.3. We multiply
(8.2) by m;¢; and sum over all i. Using (3.9), we have

2
oo (L 6 smlur- )

1€ESRB
where the energy is defined by

N

e= Z %miqﬁf.

i=1
By splitting «!* into positive and negative parts, u? = [u?]; — [ul’]_, we then obtain

1
D Dl T T R A T )
1€SB
The first two terms, which represent the energy convected out of the domain and the
penalty term on the boundary, respectively, cannot increase the total energy. The
third term corresponds to the energy convected into the domain and depends only on
the boundary condition. Therefore, the energy cannot increase exponentially, and the
semidiscrete scheme (8.2) is stable.

It is well known that the forward Euler scheme in time is unstable with a central-
type scheme in space. To maintain stability of the discretization, we use the Crank—
Nicolson scheme in time to obtain our results. We shall briefly show that Crank—
Nicolson is unconditionally stable when applied to the linear advection equation with
the current spatial discretization. The fully discrete scheme can be written as

) 0, i ¢ sg,
At

A T

my;

3

(8.3)

[ul—, i€ sg,

where

30 = 2 (6 + ).

In a way similar to that in the semidiscrete case, we multiply (8.3) by migizz(-t) and
sum over ¢ to obtain
e(t+1) — e(t) (&Eﬂ)? n 0 0 iy n
N Z Ty W (¢Et))2 - ¢Et)¢g))[ui]*
i€sB
and
D) _ o0 1 _ U )
€ € n n n
e LS ()Pl — G0 - 9Pl + 0[] )
€SB

where the energy is now defined at each time step as

o) — i %mi (¢§t))2.

=1
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The arguments carry over from the semidiscrete case, showing that the fully discrete
scheme is stable.

To show the ability of the generalized framework to accommodate more general
numerical flux functions, we also discretize (8.1) with the upwinding derivative 5’}
discussed in section 5:

i¢83,

0

doi k sk ;
05 = — i
ot u'dfe ¢BT¢[U?]_’ i€ sp.

(8.4)

Although this scheme does not conserve kinetic energy as the central flux scheme
(8.2), it does maintain global and local conservation properties In section 8.3, one can
also see the stability and convergence of this scheme.

8.2. one-dimensional results. In the one-dimensional (1D) examples, we ap-
ply our scheme to solve conservation laws in the domain [0, 1] with uniformly dis-
tributed points indexed from left to right. We highlight the connection between the
algorithms used to generate connecitivity and the quality of the numerical results.

8.2.1. Connectivity and coefficient generation. Each point i is connected
to its four nearest neighbors plus point ¢ — 1 or ¢ + 1 if either of these is not already
present in the set of nearest neighbors.

In this 1D example, we use both the segregated algorithm and the coupled algo-
rithm to generate the meshless coefficients m; and afj that satisfy linear consistency
(L = 1), with the boundary normals set to F1 at the respective ends of the domain.
For the segregated algorithm, the volumes were assigned to be uniform (%) across all
points, satisfying the discrete divergence theorem. Because of the small sizes of the
constraint matrices, we used SVD to solve the systems in both approaches, obtaining

the minimum norm solution of the respective unknowns.

8.2.2. 1D advection equation. We take the advection velocity to be unity.
Initially, ¢ = 0 in the entire domain. The solution changes through the boundary
condition ¢(0,t) = sin 27t enforced using the penalty term in (8.2). Figure 8.1 shows
the solutions at t = 2, obtained using Crank—Nicolson time stepping, which preserves
the unconditional stability of the spatial scheme, with 400 points in the domain.

Both sets of coeflicients satisfy the requirements of conservation and linear consis-
tency. Both solutions also converge to the exact solution as the point density increases.

2.0 2.0
1.5 15
1.0

0.5

< 00
0.5
1.0
15 15
2% 0.2 0.4 0.6 0.8 1.0 200 0.2 04 06 0.8 1.0
X

Fic. 8.1. Solution to the 1D advection equation at t = 2. Left: using coefficients with uniform
volumes. Right: using coefficients from the coupled approach. Red (thin): ezact solution. Black
(thick): numerical solution.
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However, one can see that the quality of the solution, even in this simple 1D case,
depends on the meshless coefficients (and hence the method chosen to generate them).

To explain the reason behind such a phenomenon, we consider the Taylor ex-
pansion of the meshless operator (without loss of generality, we ignore the boundary
terms, which will be cancelled in (8.6)). For L =1,

m;6* ¢; = Z aijdj

JES:
1 1
=Y ay (¢i + Az 0%¢; + §Ax12jaww¢i + gAﬁfgjamw@ + - )
JES;
1 1
(8.5) =m;0%¢; + Z aij (EAa:?jam(bi + EAa:;?’j(?III@ 4. ) )

JES:

The global Ly error in the derivative approximation can then be expressed by

[ @76 —5opaas Y mioro— 5oy
2

1 1 2 azrx 1 3 qrxx
:;E ;% (gmija ¢i+ 5 A0 ¢i+--->

=a'RIM'R.a

(8.6) = [M™2Ral3,
where
© Ax:J
RLz‘,{j: Z ol by,
r=L+1

is the N x N, matrix containing the Taylor remainder terms.

Since Ry depends on the solution and is not known a priori, the simplest way
to reduce the size of the error expression is to reduce the norm of a. When using
SVD instead of convex optimization in the coupled algorithm, we actually minimize
llal|3 + [/m||% (as opposed to ||al|3). Recall that m can be related to a through the
constraints for linear consistency such that m = Cia. Therefore, the SVD step
actually replaces RIR [, by (I + C{ (1) and minimizes aT (I + CTC1)a, which can be
viewed as an alternative estimate of the global error.

To verify the above statements, we plot the leading error terms resulting from
both sets of coefficients, normalized by the respective local volumes m;, in Figure 8.2.
One can see that the coupled algorithm produced a set of coefficients that led to much
smaller leading error terms, consistent with the difference in accuracy of the numerical
solutions in Figure 8.1.

The above results suggest that fixing m; in the segregated algorithm essentially
limits the attainable minimum norm of the vector a that satisfies the consistency con-
straints. In other words, when using the coupled algorithm instead of the segregated
one, the introduction of m; as unknowns reduces the norm of the coefficient vector.

As another numerical example, we solve the advection equation (8.1) with the
same set of parameters, but now with the initial solution ¢ = sin(27z) and periodic
boundary conditions. Figure 8.3 plots the numerical solutions at ¢ = 2. Once again,
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F1G. 8.2. Representative error term \mi Zj aiij?j\ for each set of coefficients. Left: from
£
coefficients with uniform volumes. Right: from coefficients from the coupled approach.
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F1c. 8.3. Solution to the 1D periodic advection equation att = 2. Left: using coefficients with
uniform volumes. Right: using coefficients from the coupled approach. Red (thin): exract solution.
Black (thick): numerical solution.

using uniform weights m; and the segregated approach resulted in larger final numer-
ical errors (dispersive in nature, as expected) than generating coefficients using the
coupled approach, even though both solutions converged to the exact solution with
point refinement.

8.3. Two-dimensional results. Here, we solve (8.1) in the two-dimensional
(2D) domain = {z | 1 < ||z|2 < 5}. To demonstrate the flexibility of our formula-
tion, we shall use both the original scheme (8.2) and the generalized framework with
the upwind scheme (8.4).

8.3.1. Point cloud and neighborhood sets. We formed four sets of point
clouds with 165, 563, 2060, and 7896 points, respectively. Each point cloud is the
union of a Cartesian grid in the interior and evenly spaced points on the boundary.
To generate the neighborhood set s; for point ¢, we first set s; to be the eight nearest
points to ¢ and enforce the reciprocal condition by setting s; = s; U{j |7 € s;}. We
perform a Cartesian subdivision of the domain and search the neighbors of each point
only in its neighboring subdivisions. This results in a very efficient (with computa-
tional complexity of O(N)) algorithm for generating point clouds and neighborhood
sets. Although the point clouds look relatively simple at first glance, we must point
out that it is actually difficult to generate a traditional finite volume mesh using the
current connectivity involving at least eight neighbors per point. Figure 8.4 shows
the point cloud and neighborhood sets for N = 165.

8.3.2. Construction of nf, m;, and afj. In this example, we use the coupled
algorithm to generate coefficients for polynomial order L = 1. At each boundary point
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F1G. 8.4. The point cloud and the neighborhood pairs with 165 points (the coarsest point cloud).
Open circles: interior points. Filled circles: boundary points. A line connecting two points indicates
that they are mutual neighbors.
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Fic. 8.5. Virtual volumes and virtual face area magnitudes computed using the coupled algo-
rithm. Left: virtual volumes. Right: virtual face areas. N = 165.

i, we computed an initial estimate of n¥ using the average of the normals of the two
adjacent boundary faces. We corrected this estimate and used convex optimization
to generate the remaining coefficients according to the algorithm in section 7. The
objective function is ||a||2, which is equivalent to replacing the 2D version of the error
matrix REM IR, in (8.6) by the identity matrix.

In the present study, the optimization steps were carried out in MATLAB using
CVX [11, 10]. For the largest point cloud, the coefficients were obtained in about 1
minute on a workstation with Intel Xeon 5160 processors in a quad-core configuration.
All the pointwise consistency constraints were also satisfied to order 1 x 1076 or
better. For larger-scale problems, one can utilize other optimization software libraries
[20, 9, 17]. Since the optimization problem is a quadratic programming problem, a QP-
specific solver for better efficiency is currently being investigated. The employment
of domain decomposition strategies to improve the efficiency of this optimization
problem is also a topic of ongoing research.

Figure 8.5 shows scatter plots of the virtual volumes m; and virtual face area
magnitudes ||@;;||2 for N = 165. The semitoroidal shape formed by the coefficient
magnitudes in Figure 8.5 shows that the constraints we enforce were enough to make
the magnitudes of @;; vary with local point spacing and connectivity. The virtual
volumes m; simply adjust accordingly to satisfy the consistency constraints. This was
true for all current test cases and also in other unreported test problems. It is very
encouraging that the unique solution generated by our algorithm appears to be very
physically sensible.
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8.3.3. Solution of the 2D advection equation. The advection equation (8.1)
is solved with advection velocity (u', u?) = (—=v/2/2,+/2/2). The initial and boundary
conditions are

2
o) = Lty 1. t=0,
oz, t) = \2/—05(35 +9y) 4 cost — 5 —uFak], x€aQ, nfuf <o.

The exact solution for this initial-boundary-value problem is

o(z,t) = \2/—3(30 +y) + cos[t — 5 — uFz],.

As mentioned, we computed the numerical solution using schemes (8.2) and (8.4).
To assess the convergence of the scheme, we also computed the Lo, and Ly norms of
the numerical error in the numerical solution against the analytic solution.

Figure 8.6 shows numerical solutions computed by the central flux scheme (8.2)
at t = 100, again obtained using Crank—Nicolson time stepping. One can see that the
resolution of the solution improves with increasing point cloud density, as expected.
From Figure 8.7, one can also see that the scheme is roughly second order accu-
rate, as one would expect from similar finite volume schemes with penalty boundary
conditions.

Figures 8.8 and 8.9 show numerical solutions at ¢ = 100, computed using the
upwinding flux scheme (8.4), and the corresponding numerical errors. Aside from the

1.5

-2

5 o 5 5 0 5

F1c. 8.6. Solution of the advection equation at t = 100 using the central flux scheme (8.2). The
upper left, upper right, lower left, and lower right plots correspond to point clouds of sizes N = 165,
563, 2060, and 7896, respectively.
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F1G. 8.7. The numerical error of the central scheme (8.2) as a function of the point cloud size N.
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Fi1c. 8.8. Solution of the advection equation at t = 100 using the upwinding scheme (8.4). The
upper left, upper right, lower left, and lower right plots correspond to point clouds of sizes N = 165,
563, 2060, and 7896, respectively.

additional smoothness in the solution profile due to upwinding, the solutions computed
using both schemes are very similar, especially as the point density increases. The
upwind scheme was also roughly second order accurate.

These results confirm the potential and flexibility of the current framework to
harness well-proven schemes developed for conservation laws, greatly reducing the
overhead for integrating it into existing solution procedures and hence making it a very
attractive option. More importantly, other results show that the current framework
can indeed handle nonlinear conservation laws trouble-free. Chiu, Wang, and Jameson
[4] have applied it to numerically capture shockwaves in transonic flows by solving
the Euler equations of gas dynamics.
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Fi1G. 8.9. The numerical error of the upwinding scheme (8.4) as a function of the point cloud
size N.

9. Conclusion. We formulated a mesh-free derivative operator by enforcing reci-
procity and polynomial consistency conditions C-1 and C-2, which guarantee that our
operator is discretely conservative and has certain mimetic properties, such as sum-
mation by parts and kinetic energy conservation. Based on the local conservation
properties of our meshless scheme, we showed that our scheme is a special case in
a more general mesh-free framework that allows the use of existing numerical flux
formulations. We presented a segregated algorithm and a coupled algorithm for con-
structing the mesh-free operator satisfying C-1, C-2, and necessary conditions derived
therefrom. 1D results on the advection equation suggested that the coupled approach
led to mesh-free operators that produce more accurate numerical solutions. 2D nu-
merical results demonstrated numerical stability and convergence for both the original
mesh-free scheme and the generalized framework with an upwind flux scheme, show-
ing the potential of our current framework to serve as a natural extension of finite
volume in the mesh-free context.
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