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Comparison of Approximation Models with
Merit Functions for Design Optimization

Hyoung-Seog Chung∗ and Juan J. Alonso†
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In this work, the use of both a second-order response surface method (RSM) and
the Kriging method as approximation models for design optimization are investigated
and compared. After validating the accuracy of each method with simple one- and two-
dimensional analytic functions, they are applied to two Supersonic Business Jet (SBJ)
drag minimization design cases in order to obtain a clear comparison of the accuracy
and efficiency of these modeling techniques. A three-dimensional Euler flow solver and
an automatic mesh generation capability are used in the design of a SBJ using a variety
of geometric shape design parameters. The comparison results show that there is little
difference in modeling accuracy and efficiency between the two methods. In addition,
we find that both methods are practically applicable to realistic design optimization
problems. Second-order response surface models have a severe limitation in the fact
that the model of the function of interest is not a good representation for functions
with multiple local minima. Although the Kriging method has the flexibility to capture
multiple extrema, it exhibits limited accuracy in the estimation of global extrema. These
inaccuracies depend largely on the selection of the sampling sites and the number of
sample points. In the second half of this paper, merit functions are incorporated to each
modeling method during the optimization process for the selection of new sample points
that lead to an improvement of the current approximation model. The ability of this new
procedure to identify global extrema is demonstrated using simple test functions.

Nomenclature
β constant underlying global portion of Kriging

model

� vector of the unknown coefficients in response
surface models

b vector of least squares estimators of β

CD drag coefficient

f constant vector used in Kriging model

L sum of the squares of the errors

mc merit function

k number of design variables

ns number of sample points(sites)

nt number of test sample points to evaluate mod-
eling error

r vector of correlation values for Kriging model

R(.) correlation function for Kriging model

R correlation matrix for Kriging model

RMSub unbiased root mean square error

RS response surface

x scalar component of x

x vector denoting all locations (sites) in the de-
sign space

xp vector denoting the pth location in the design
space

X matrix of sample sites for RS model

y(.) unknown function

∗Doctoral Candidate, AIAA Member
†Assistant Professor, Department of Aeronautics and Astro-

nautics , AIAA Member
Copyright c© 2000 by the authors. Published by the American

Institute of Aeronautics and Astronautics, Inc. with permission.

ŷ(.) estimated model of y(.)
� vector of correlation parameters for Kriging

model
σ̂2 estimated sample variance
ρc constant controlling merit function

Introduction

THE optimization of aerospace systems is an iter-
ative process that requires computational mod-

els embodied in complex and expensive analysis soft-
ware. This paradigm is well exemplified by the field of
Multidisciplinary Design Optimization (MDO) which
attempts to exploit the synergism of mutually inter-
acting disciplines in order to improve the performance
of a given design, while increasing the level of con-
fidence that the designer places on the outcome of
the design itself. MDO methods greatly increase the
computational burden and complexity of the design
process.1,2 For this reason, high-fidelity analysis soft-
ware typically used in single discipline designs may
not be suitable for direct use in MDO.3 Faced with
these problems, the alternative of using approximation
models of the actual analysis software has received in-
creased attention in recent years. A second advantage
of using approximation models during the optimiza-
tion process is that they can be used with optimization
algorithm which do not rely on the computation of sen-
sitivity derivatives.

One of the most common methods for building an
approximate model is the response surface method
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(RSM) in which a polynomial function of varying order
(usually a quadratic function) is fitted to a number of
sample data points using least squares regression. This
method has achieved popularity since it provides an
explicit functional representation of the sampled data,
and is both computationally inexpensive to run and
easy to use. However, response surface models have
several key limitations: their accuracy is only guaran-
teed within a small trust region, and, by design, they
are unable to predict multiple extrema. In addition,
these methods were originally developed to model data
resulting from physical experiments which had a ran-
dom error distribution. Since the nature of computer
experiments is such that random errors are not present
(a bias is much more common), the use of these meth-
ods for modeling deterministic data has resulted in
serious debate within the statistical community.4 In
order to overcome these problems, Sacks, et al.5 pro-
posed an interpolation modeling technique, known as
the Kriging method, developed in the fields of spatial
statistics and geostatistics, in order to approximate
the results of deterministic computer analyses. The
Kriging method is different from the RSM since the
interpolation of the sampled data is carried out using
a maximum likelihood estimation procedure,6 which
allows for the capturing of multiple local extrema.
However, the Kriging method has higher computa-
tional cost and is harder to implement. In addition,
it does not provide an explicit model function. The
Kriging method also suffers from accuracy limitations
which are a function of the method used for the se-
lection of the sample points and the total number of
these points.

Therefore it is important and necessary to compare
these two modeling techniques and to analyze their
pros and cons before using them in actual design ap-
plications. Recent studies by researchers including
Simpson, et al.6 and Giunta, et al.4 have performed
such comparisons in specific applications, in which
they found little or no advantage in the use of Kriging
methods over RSM as far as accuracy and efficiency
were concerned. However, the authors strongly sug-
gested that their conclusions were limited to the scope
of their contrived applications.

In this paper, a comparison study of these two ap-
proximation methods is presented to investigate fur-
ther their applicability to two design optimization test
cases. A three-dimensional Euler flow solver and an
automatic mesh generation capability are used in the
aerodynamic design of a supersonic business jet using
a variety of geometric design parameters.

The second part of this work is focused on improv-
ing the ability of the models to predict the location of
global extrema. Torczon, et al.7 introduced the use
of so-called merit functions for the selection of new
sample points and for the improvement of the exist-
ing approximation model. They provided a specific

functional form that can be used within the Kriging
method. The authors suggested a new merit function
that is more suitable for use with RSM. Merit func-
tions are incorporated to both approximation models
during the optimization process, and their improved
ability to identify a global extremum is demonstrated.

Overview of Approximation Models
Response Surface Method (RSM)

The response surface method (RSM) develops poly-
nomial approximation models by fitting the sample
data using a least squares regression technique. The
true response can be written in the following form:

y(x) = f (x) + ε, (1)

where f(x) is an unknown response function and ε
is the random error. The response surface model of
equation (1) can be written in terms of a series of ob-
servations

yi = β0 +
k∑

j=1

βjxij + εi, i = 1, 2...ns, (2)

where ns is the number of samples.
Equation (3) may be written in matrix form as

y = Xβ + ε. (3)

where

y =
{

y1 y2 . . . yn

}T
, and

X =




1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

. . . .

. . . .

. . . .
1 xn1 xn2 . . . xnk




.

β is a (k × 1) vector of the regression coefficients,
and ε is an (n × 1) vector of random errors.

The vector of least squares estimators, b, is deter-
mined in a way that it minimizes

L =
n∑

i=1

ε2i = (y − Xβ)T (y − Xβ). (4)

This condition simplifies to

XTXb = XTy. (5)

Thus, the least squares estimator of β is

b = (XTX)−1XTy. (6)

The reader if referred to Ref.8 for more details on the
development of the RSM technique.
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Kriging Method

The Kriging technique uses a two component model
that can be expressed mathematically as

y(x) = f(x) + Z(x), (7)

where f(x) represents a global model and Z(x) is
the realization of a stationary Gaussian random func-
tion that creates a localized deviation from the global
model.9 f(x) can be considered to be an underlying
constant, β ,,6 and then, equation (7) becomes

y(x) = β + Z(x), (8)

which is used in this paper. The estimated model of
equation (8) is given as

ŷ = β̂ + rT (x)R−1(y − fβ̂) (9)

where y is the column vector of response data and
f is a column vector of length ns which is filled with
ones. R in equation (9) is the correlation matrix which
can be obtained by computing R(xi, xj), a correlation
function between any two sampled data points. The
correlation function is specified by the user. In this
work, the authors use a Gaussian exponential correla-
tion function of the form provided by Giunta, et al.4

R(xi, xj) = exp[−
n∑

k=1

θk|xik − xjk|2]. (10)

The correlation vector between x and the sampled data
points is expressed as

rT (x) = [R(x, x1), R(x, x2), ..., R(x, xn)]T .
(11)

The value for β̂ is estimated using the generalized least
squares method as

β̂ = (fTR−1f)−1fTR−1y. (12)

Since R is a function of the unknown variable θ, β̂ is
also a function of θ. Once θ is obtained, equation (9)
is completely defined. The value of θ is obtained by
maximizing the following one-dimensional functional
over the interval θ > 0

− [n ln(σ̂2) + ln |R|]
2

, (13)

where

σ̂2 =
(y − fβ̂)TR−1(y − fβ̂)

ns
. (14)

Modeling Error Estimation

Each of the approximation models were constructed
based on CFD results obtained at ns sample points.
To evaluate the modeling accuracy, CFD calculations
were performed at ne randomly selected validation
points and the results were compared with the pre-
dictions from the approximation models at the same

test locations. The accuracy of Kriging and RS models
were compared using the unbiased root mean square
(RMS) error, RMSub, the maximum error, δmax, and
the average % error.

The modeling error at each test site is defined as
the difference between the actual result from the CFD
analysis (ŷi) and the predicted value from the RS or
Kriging model (yi).

δi = |ŷi − yi|, i = 1, ..., ne. (15)

The maximum modeling error is defined as

δmax = max(δi), (16)

and the average % error is defined as

average% error =
1
ne

ne∑

i=1

(
δi × 100.0

yi
) (17)

Th RMS error is:

RMSub =

√∑ne

i=1 δ2
i

ne
. (18)

Supersonic Business Jet Design Test
Problems

This design problem involves the drag minimization
of a supersonic business jet wing-body configuration at
a specified lift coefficient. The aircraft geometry and
flow conditions were parameterized with a total of 22
potential design variables of which a subset is used in
the following two test cases.

Case I : 7 Design Variable Case

For the initial test case, total of 7 geometric design
variables were used. The chosen design variables rep-
resent the radii at three different stations along the
axisymmetric fuselage, (x1 → x3), and the thickness
to chord ratios at four span-wise stations (x4 → x7).
The airfoil shape for all wing stations was selected as
a simple biconvex airfoil of varying thickness. Once
the design variables were selected, an automatic mesh
generation procedure that was able to handle the ge-
ometry variations imposed by the changes in the design
variables was utilized to automatically generate differ-
ent sets of meshes needed for the CFD calculations.

The three-dimensional Euler solver, FLO87, devel-
oped by Jameson 10,11 was used to calculate aerody-
namic coefficients at sample design points chosen by
incrementing each variable from the baseline design
value using a Design of Experiments approach. The
free-stream flow conditions were fixed at M∞ = 2.0
and the coefficient of lift, based on the wing planform
area was fixed at CL = 0.1. Response surface and
Kriging models were built using drag output data from
the Euler solver, and were incorporated into a non-
linear constrained optimization code named SNOPT
which has been developed by Gill, et al.12 to perform
realistic design optimization calculations.
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Case II : 14 Design Variable Case

The design test problem was extended to a total of
14 design variables to further investigate and compare
the model accuracy and applicability in higher dimen-
sionality design spaces. Figure 1 shows the definition
of the design variables, which include wing sweep an-
gle (x1), wing aspect ratio (x2), wing taper ratio (x3),
leading and trailing edge extensions as ratios of wing
root chord (x4, x5), thickness-to-chord ratios at three
span-wise stations (x6 → x8), wing twist angles at
three span-wise stations (x9 → x11), and radii at
three different stations along the axisymmetric fuse-
lage (x12 → x14). The sequence of mesh generation,
CFD analysis, approximation construction and con-
strained optimization process remained the same as
for Case I.

Design Tools
Grid Generator

A grid generator called CH-GRID developed by
Reuther et al. was used for mesh generation of su-
personic business jet wing-body configurations. CH-
GRID is a stand-alone form of the C-H type grid
generator that we use for our single-block wing-body
design code. Figure 2 shows an example of a typical
wing-body mesh.

Flow Solver

The CFD flow solver must meet fundamental re-
quirements of accuracy, efficiency, robustness, and fast
convergence to be used in a high-dimensional design
optimization problem. The accuracy is important be-
cause the approximation model accuracy and the im-
provement predicted by the optimization process using
the models can only be as good as the accuracy of
the flow analysis. Efficiency is also required when the
number of design variables increases and the required
number of the sample evaluations for constructing the
approximation models increases accordingly. The ro-
bustness of the solver, i.e., its ability to obtain a flow
solution for a variety of configuration shapes and flow
conditions, is particularly critical for the construction
of sample database for the approximation models, in
which a large variation of the values of the design
variables is allowed. In addition, the benefit of aero-
dynamic optimization lies in obtaining the last few
percentage points in aerodynamic efficiency. In such
cases, the solution must be highly converged such that
the noise in the figure of merit is well below the level
of realizable improvement.13

Jameson’s FLO87 code used in this study easily met
all of the previously mentioned criteria. FLO87 solves
the steady three-dimensional Euler equation using a
modified explicit multistage Runge-Kutta time step-
ping scheme. FLO87 achieves fast convergence with
the aid of multigridding and implicit residual smooth-
ing. Also, a driver program called RS87 was developed

to utilize multiprocessor computers for analyzing a
number of different configurations at the same time.

Optimization Routine

Optimization of wing-body configurations was per-
formed using an optimization program called SNOPT.
SNOPT uses a sequential quadratic programming
(SQP) algorithm that obtains search directions from
a sequence of quadratic programming subproblems.12

Nonlinear constraints were imposed on the minimiza-
tion process by setting bounds for the values of the de-
sign variables, and constraining the admissible ranges
of wing (wv) and fuselage volumes (fv). The optimiza-
tion problem can be written as

min
x∈Rm

CD(x), (19)

subject to

0.8× wvi ≤ wv ≤ 1.2× wvi

0.8× fvi ≤ fv ≤ 1.2× fvi

xmin ≤ x ≤ xmax

where wvi and fvi are the initial wing and fuselage
volumes.

Approximation Models with Merit
Functions

The accuracy of predicting a global extremum with
the presented approximation models is limited by the
quadratic nature of the RSM and by the number
of sample points and their locations for the Kriging
model. Torczon,et al.7 introduced the use of so-called
merit functions for selecting new sample points and
for improving the global approximation ability of the
model as the optimization algorithm proceeds. They
also demonstrated the applicability of their suggestion
to the Kriging model with a simple one-dimensional
example. In this work, we expand the application of
this technique to a two-dimensional example used for
the graphical validation. The merit function suggested
by Torczon, et al is used

mc(x) = ac(x)− ρcdc(x), (20)

where ac represents an approximation model and ρc

is a positive real number which is dependent on the
specific application. dc(x) is the distance from x to
the nearest previous sample point.

dc(x) = min‖x − xi‖2 (21)

Once mc(x) is found, the new sampling site is selected
by finding the location of the minimum of mc. There-
fore, mc is only used for computing the location of the
new sample point.

The authors have found that a slight modification
of the form of merit function given by Torczon,et al. is
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more suitable for the RSM, and suggest the following
form

mc(x) = ac(x)− (ρcdc(x))2. (22)

The value of ρc was obtained by trial and error. In
this case, ρc = 500 worked well. The selection of the
optimal value for ρc is a subject of further study.

Results and Discussion
Graphical Validation of RSM and Kriging

For graphical validation of RS and Kriging methods,
an analytic test function called the peaks function was
chosen from the MATLAB User’s Guide14 as shown in
Figure 3(a). Sample data were obtained at six differ-
ent locations, from which RS and Kriging models were
constructed. The sample data points for the Kriging
model were selected to be scattered around the peaks
while those for the RS model were selected to be con-
centrated around the global minimum point. Figure
3(b) shows the shape of Kriging model that has all the
general features of the test function. The RS mod-
els are shown as the shaded surface in Figures 3(c)
and (d). These graphical examples clearly indicate the
ability of both methods to model the original function.

To further investigate their feasibility to model the
original CFD code, 7-dimensional RS and Kriging
models were created for test Case I from the CD data
obtained from CFD analyses at 36 different design sites
within the design space. One and two-dimensional
slices of the 7-dimensional approximation models are
plotted in Figure 4 for the first and fifth design vari-
ables, corresponding to the radius of a fuselage station
ahead of the leading edge of the wing, and to the t/c
ratio of the wing station located right at the side-of-
body. Additional runs of the flow solver are included
to get a feeling for the accuracy of the presented tech-
niques. The RS and Kriging methods appear to resolve
the function of interest (coefficient of drag) quite well
over a wide range of values of the design variables.

Design of Experiments for RS

In general, the second-order RS model has the form

ŷ = β0 +
k∑

j=1

βjxj +
∑

i<j

βijxixj , (23)

in which there are (k+1)(k+2)/2 coefficients to be es-
timated, where k is the number of variables. When
constructing a quadratic model, the design variables
need to be evaluated at least at 3 levels to estimate
the coefficients in the model. This leads to 3k facto-
rial design of experiments that requires 3k number of
sample data evaluations. However, the Central Com-
posite Design (CCD) technique introduced by Box,
et al.15 became a popular alternative design for the
second-order RS model. The CCD technique is a
first-order (2k) design augmented by additional points
to allow estimation of the second-order coefficients.16

Unal, et al.3 found out that CCD enabled the effi-
cient construction of a second-order RS models with
significantly less effort than a full factorial design, and
the fitted model could be successfully used in MDO
process with reasonable accuracy for cases with four
to six design variables. However, for design problems
dealing with a large number of design variables, even
CCD becomes unrealistic in the optimization process.

In this work, two designs of experiment methods
were investigated for test Case I. The first one was
CCD and the second one was the minimum point
design (MPD). The number of function evaluations
needed for MPD is exactly equal to the number of coef-
ficients in the RS model. Thus, the minimum number
of CFD calculations needed to construct a RS model
for 7-dimensional design problem is 36, while that for
CCD is 143 with only one center point. Table 1 shows
a comparison of the two design methods. First, RS
models were constructed based on data collected from
MPD and CCD, and their accuracy was tested over
another set of 72 test sample points. The results show
that the RS model using MPD has lower RMS and
average % error than that using CCD although the
differences are small. One optimization cycle was car-
ried out and results also showed almost same trends in
predicted optimum value of CD and design variables.
One interesting point is that the results from the first
optimization cycle using the CCD based RS model are
really close to those from the 3rd optimization cycle
using the minimum point design as shown in Table
3. Therefore, the authors reached the conclusion that
the CCD-based RS model generally has a better ability
to locate the minimum point in fewer design iteration;
however, the sequential optimization process using the
RS model with MPD has almost same ability with less
computational cost since the required CFD evaluations
for three optimization cycles with MPD is 108 whereas
one CCD iteration requires 143 flow solutions. Based
on the comparison, it was decided to use MPD for the
rest of the work presented in this paper. The number
of CFD evaluations required for an MPD of test Case
II is 120.

Determination of Correlation Parameters for
Kriging Model

It is found that the accuracy of Kriging models
largely depends on the values of the correlation pa-
rameters defined in Equation 10. However, the deter-
mination of θ requires another optimization process
for equation 13, which imposes extra difficulties. To
illustrate this problem, an one-dimensional analytic
function was tested for four different cases as shown
in Figure 5.

For the first case, three sample data points were cho-
sen and the Kriging model was constructed as shown
in Figure 5(a). The accuracy of the model is gener-
ally poor except a certain interval. In Figure 5(b), the
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functional value of equation 13 is plotted against θ. It
shows that the value of equation 13 keeps increasing
and the selected value of θ based on maximizing equa-
tion 13 becomes too large, which, in turn, degrades
the accuracy of the model. Three different ways to
correct the problem are suggested in the following fig-
ures. The first method is to increase the number of
sample data points. Inaccuracies in Figure 5(a) are
clearly due to under-sampling. If the number of sam-
ple data points is increased to five, the accuracy of the
model in the region of the local minimum is greatly
improved. Note that the plot of Equation 13 vs. θ for
this case has a clear maximum in the lower range of
values of θ. The second method is to limit the maxi-
mum value of θ while still using three sample points.
The resulting model is presented in Figure 5(e), and
it can be seen that the model accuracy has improved
considerably. The last method is to use gradient in-
formation. Figure 5(g) shows the simulation of using
gradient information by sampling the points very close
to the original sites. The results also show that the ac-
curacy has been greatly improved, and the shape of the
plot of Equation 13 vs. θ is changed to one that has a
distinct maximum, which reduces the difficulty of se-
lecting the value of θ. The last method leads to the
need for further work on utilizing gradient information
to improve the accuracy and efficiency of approxima-
tion models. The tests presented above identify that
successful Kriging model construction is dependent on
the selection of the number of sample points and their
locations as well as the corresponding values of the cor-
relation parameters. Also note that, even though the
Kriging model is supposed to have the ability of global
modeling, this advantage can be seriously impaired by
the choice of the number of sample points and their
locations.

The authors had difficulties determining the right
values of the correlation parameters for the 14 variable
supersonic business jet design problem. The maxi-
mization procedure for Equation 13 resulted in the
unbounded problem. The problem, which seemed to
be caused by under-sampling, was solved by manually
searching for optimum values of the parameters and
checking the error metrics over a set of test sample
data.

Modeling Accuracy Comparison

Once the approximation models were created, their
modeling accuracy was compared using four error met-
rics. The results of the comparison is summarized in
Table 2. The error metrics were estimated over 72
test sample points for Case I and over 120 test sample
points for case II. The results for the Case I test prob-
lem indicate that the accuracy of both models is about
the same. But, for Case II, the RS model turned out
to have better accuracy than the Kriging model. It is
observed that the results are mainly due to the diffi-

culties in selecting the optimal correlation parameters
for Kriging model as mentioned earlier in Section .

Optimization Efficiency Comparison

A. Case I : 7 Variable Supersonic Business Jet De-
sign
The baseline design point for Case I was x1=0.45,
x2=0.45, x3=0.3, x4 x7=2.0(%). The design vari-
ables are defined in Section . The design optimization
process was performed using RS and Kriging models
with the following limits on design variables and con-
straints:

0.8× wvi ≤ wv ≤ 1.2× wvi

0.8× fvi ≤ fv ≤ 1.2× fvi

0.35 ≤ x1 ≤ 0.55
0.35 ≤ x2 ≤ 0.55
0.20 ≤ x3 ≤ 0.40
1.60 ≤ x4 ≤ 2.40
1.60 ≤ x5 ≤ 2.40
1.60 ≤ x6 ≤ 2.40
1.60 ≤ x7 ≤ 2.40

where wvi and fvi are the initial wing and fuselage
volumes. The complete results from three design iter-
ations are listed in Table 3.

As shown in Table 3, the predicted optimum design
point and optimum value of CD for both the RS
and Kriging models are nearly identical. After the
third cycle, the predicted CD with the RS model
is 0.0072704 whereas that for the Kriging model is
0.0072702 with almost same optimum location. Note
that the fuselage radii defined just forward of wing
(x1) and aft of wing (x2) tend to increase slightly
during the optimization process in agreement with
results from the supersonic area rule. Also, the
thickness-to-chord ratios, except the one defined at
a wing station inside of the fuselage(x4), all tend to
decrease to the imposed limit of 1.6% in order to
minimize the supersonic drag due to volume. A total
reduction of 5.5 % in CD was achieved for both cases.

A. Case II : 14 Variable Supersonic Business Jet
Design

To further investigate the applicability of both ap-
proximation methods in more realistic design problem,
Case I was extended to a total of 14 design variables.
The definitions of the 14 design variables used in the
Case II are shown in Figure 1. The baseline design
points and the limits imposed on each variable are
listed below:

0.0719 ≤ x1(base = 4.0719) ≤ 8.0719
2.4995 ≤ x2(base = 2.6995) ≤ 2.8995
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0.3001 ≤ x3(base = 0.3501) ≤ 0.4001
0.00 ≤ x4(base = 0.00) ≤ 0.30
0.00 ≤ x5(base = 0.00) ≤ 0.20
1.60 ≤ x6(base = 2.00) ≤ 2.40
1.60 ≤ x7(base = 2.00) ≤ 2.40
1.60 ≤ x8(base = 2.00) ≤ 2.40
−2.00 ≤ x9(base = 0.00) ≤ 2.00
−2.00 ≤ x10(base = 0.00) ≤ 2.00
−2.00 ≤ x11(base = 0.00) ≤ 2.00
0.35 ≤ x12(base = 0.45) ≤ 0.55
0.35 ≤ x13(base = 0.45) ≤ 0.55
0.20 ≤ x14(base = 0.30) ≤ 0.40

The results of two design iterations are also summa-
rized in Table 3. As in Case I, both approximations
predicted generally the same design with minor differ-
ences in some of the design variables. The optimum
design point found in the second cycle for the opti-
mization using the Kriging model was worse than that
obtained from the first design cycle. Again, it is in-
ferred that this drawback resulted from the difficulty
in determining the correlation parameters, θ.

The optimization process managed to reduce CD by
12.4 % with the RS model and by 12.3 % with the
Kriging model over the baseline configuration. Even
though it took more computational time for the op-
timization with the Kriging model, the difference is
practically negligible considering the time required for
the CFD function evaluations: the difference in exe-
cution time was of the order of a couple of minutes.
Overall, the two approximation methods were found
to be applicable to all of the test problems presented
in this paper.

Global Optimization Using Merit Functions

One major advantage of the Kriging model is that
it can model functions with multiple extrema and can
be used in a global optimization process, in contrast
with an RS model which only can model local ex-
trema. However, as shown in Figure 5, the ability of
a Kriging model to locate the global minimum can be
greatly diminished depending on the locations and the
number of the sample points. The weaknesses of the
approximation models investigated in this study can
be greatly improved by using a so-called merit func-
tion as suggested by Torczon et al.7

A one-dimensional example of the optimization us-
ing an RS model with a merit function is also suggested
by authors and is presented in Figure 6. The merit
function is constructed in such a way that it has a
global minimum at the point where the least amount of
information on the function is known. The next sam-
ple point in the search for a global minimum is selected
by the merit function and not by the actual model pre-
diction of the location of the minimum. Since there

are three coefficients in a one-dimensional quadratic
RS model, only three sample points are used in the
sequential optimization process. The original three
sample points are located around the local minimum
at x = 0.35. The merit function is formed with the
RS model and the data on the current three sample
points. In the first iteration, the merit function has
a global minimum at x = 0.0. Then, the algorithm
samples the functional value at that point and com-
pares it with the current minimum value. If the new
value is lower than the current minimum, it replaces
the current minimum site and two new sample points
closer to the updated minimum location are selected.
Otherwise this new point is disregarded. Since, in the
example, the functional value at x = 0.0 is greater than
the current minimum at x = 0.35, the former is disre-
garded and the sample data and RS model remain the
same as shown in Figure 6(b). However, in the second
iteration, the merit function predicts a global mini-
mum at x = 0.14. The functional value at that point
is less than the current minimum point and therefore,
for the next iteration, a new set of three sample data
points which are in the neighborhood of x = 0.14 are
selected and the RS model is updated with the new
sample data. The procedure is continued until the
difference between the minimum values from the RS
model and the merit function becomes small. Figure
6(h) shows the result after 10 iterations of the proce-
dure. The RS model now has the improved ability to
be able to locate the global minimum with the aid of
the merit function as demonstrated in Figure 6.

A two-dimensional demonstration of the procedure
using the RS model is shown in Figure 8. The figures
show that the initial tendency to converge to a local
minimum is changed and that the model correctly finds
the global minimum point.

A two-dimensional demonstration of the Kriging
method global optimization capability using a merit
function is also presented in Figure 7. Each subse-
quent model is updated with a new added sample point
which is located at the global minimum obtained using
the merit function at previous step.

One major problem in this procedure is to determine
the value of ρc to be used in Equations 20 and 22. If
ρc is too large, the convergence to the global minimum
will take a long time, but, if it is too small, the models
can not escape from the local minimum point close to
the starting design. The right choice of ρc value is the
key to the successful and practical application of this
method to a realistic optimization problem, and it is
the subject of current and future work.

Conclusions
In this study, the accuracy of RS and Kriging meth-

ods and their applicability in a realistic design opti-
mization problem have been evaluated and compared.
The results from the two test cases indicate that both
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methods have comparable modeling accuracy and abil-
ity to locate an optimum design point. However, it is
pointed out that the Kriging procedure requires one
more optimization step for determining the correla-
tion parameters which might cause some difficulties
in high-dimensional design problems. The computa-
tional time to construct and to use the Kriging model
in the design process is higher than that required for
RS models, but the difference was negligible at least
for the test cases investigates in this work.

The ability of the approximation models to locate a
global minimum can be greatly improved by the use
of a merit function. In the paper, we have shown that
even the RS model can be used in a global optimiza-
tion process. This has been shown for both one- ant
two-dimensional problems of pre-conceived topology.
Future work will address the applicability of the merit
function approach to multi-dimensional problems in
supersonic business jet design.

Future Work
The present study has identified several areas that

require further investigation. These areas include: (1)
research on a robust method to determine the corre-
lation parameter that can be used as an alternative
to the time consuming method of maximizing Equa-
tion 13, (2) the utilization of gradient information from
adjoint methods for improving the accuracy and effi-
ciency of the approximation model construction, (3)
the selection of a criteria for the calculation of the
value of ρc in Equations 20 and 22, and (4) the testing
of merit functions in more realistic design application.
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(b) Kriging Model (6 sample points)
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(d) RS Model (enlarged)

Fig. 3 Graphical Validation of Approximation Models with 2-D Test Function
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Fig. 4 Graphical Validation of Approximation Models for Test Case I
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(c) 1-D Kriging Model with 5 Sample Points

0 10 20 30 40 50 60 70 80 90 100
−8

−6

−4

−2

0

2

4

6

Correlation Parameter, Theta

F
un

ct
io

n 
V

al
ue

 o
f E

qn
 (

13
)

(d) Eqn(13) vs. θ for case c.
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(e) Kriging Model with 3 Sample Points (θ = 5)
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(g) Kriging Model with Gradient Information
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Fig. 5 Test of Correlation Parameter Selection for Kriging
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(f) 6th Optimization Cycle
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(g) 7th Optimization Cycle
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(h) 10th Optimization Cycle

Fig. 6 1-D Optimization with RS+Merit Function: Example of its ability to predict global min.
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(a) 2-D Analytic Test Function
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(b) 6th Optimization Cycle
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(c) 10th Optimization Cycle
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(d) 20th Optimization Cycle
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(e) 27th Optimization Cycle
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(f) 32nd Optimization Cycle

Fig. 7 2-D Optimization with Krig+Merit Function: Example of Kriging’s improved ability to predict
global minimum (The number of initial sample points are 7.)
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(a) 1st Optimization Cycle
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(b) 4th Optimization Cycle
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(c) 5th Optimization Cycle
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(d) 6th Optimization Cycle
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(e) 7th Optimization Cycle
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(f) 9th Optimization Cycle

Fig. 8 2-D Optimization with RS+Merit Function: Example of ability of RS+Merit function to predict
global minimum.
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