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Abstract 
 

In this paper, we present a parallel hybrid 

algorithm for solving global optimization problems 

that is based on the coupling of a stochastic global 

(Simultaneous Perturbation Stochastic 

Approximation, Simulated Annealing, Genetic 

Algorithms) and a local method (Newton-Krylov 

Interior-Point) via a surrogate model. There exist 

several algorithms for finding approximate global 

solutions, but our technique will further guarantee 

that such solutions satisfy physical bounds of the 

problem. First, the Simultaneous Perturbation 

Stochastic Approximation (SPSA) algorithm 

conjectures regions where a global solution may exist. 

Next, some data points from the regions are selected 

to generate a continuously differentiable surrogate 

model that approximates the original function. 

Finally, the Newton-Krylov Interior-Point (NKIP) 

algorithm is applied to the surrogate model subject to 

bound constraints for obtaining a feasible 

approximate global solution. The hybrid optimization 

code is being applied to Stanford's UFLO 

Computational Fluid Dynamics (CFD) code. This 

code is used by the Army High Performance 

Computing Research Center (AHPCRC) to develop a 

flapping and twisting wing models for Micro-Aerial 

Vehicles (MAV), hummingbirds-sized airbone vehicles 

that can be used for sensing and surveillance. We 

present some preliminary numerical results of the 

large scale HPC hybrid optimization C code that is 

being run in the Department of Defense MANA 

machine from Maui, Hawaii. 

1. Introduction 
 

A One major challenge in computational science 

and engineering is finding an optimal global solution 

for large-scale nonlinear global optimization 

problems. Such problems are difficult to solve due to 

large dense ill-conditioned operators and multiple 

non-optimal minima solutions among others. Global 

optimization is the task of finding the best set of 

parameters that optimize a given objective function. In 

general, there can be solutions that are locally optimal 

but not globally optimal. Consequently, global 

optimization problems are typically classified NP-hard 

in the context of combinatorial problems. 

In the past ten years, global optimization has 

received a lot of attention due to the success of new 

algorithms developed for solving large classes of 

problems from diverse areas such as computational 

chemistry and biology, structural optimization, 

computer sciences, operations research, economics, 

engineering design and control, among others.  Such 

algorithms can be classified as deterministic or 

stochastic. Hybrid algorithms combine the advantages 

of more than one computing method to optimize the 

solution of problems with large numbers of parameters 

and many solutions that are optimal only for limited 

ranges of a particular parameter or set of parameters 

(local minima). We are developing mathematical and 

computational tools that facilitate the implementation 

of problem-solving applications on highly parallel 

systems. We are also demonstrating a practical 

migration path from current programming approaches 

to a transaction-based model.  
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The mathematical side focuses on a hybrid 

algorithmic approach for solving general optimization 

problems, including automated parameter estimation 

problems. In particular, efforts are focused on global 

optimization problems having many local minima—

that is, finding a set of parameters that works best over 

the entire region of interest from a large group of 

locally viable candidates.  
 

We consider the global optimization problem in the 

form:
  

minimize   ( ),f x
x  

where the objective function   : ,  
n n

f x→ ∈ℝ ℝ ℝ   

and the global solution  x
* is such that f(x

*
) ≤ f(x), for 

all x.  

 

2. Hybrid Scheme 
 

Argaez et al. (2007, 2010) have developed an 

algorithm that couples a stochastic and deterministic 

method via a surrogate model. The hybrid scheme 

begins with a global stochastic technique such as the 

Simultaneous Perturbation Stochastic Approximation 

(SPSA), Simulated Annealing (SA), Genetic 

Algorithms (GA), and Global Levenberg-Marquadt 

(GLM) developed by Velazquez et al. (2001). These 

techniques are sampling methods that perform a 

global search of the parameter space. This search may 

start from multiple initial guesses (parallel multi-

start).  In many real applications, it is difficult or 

impossible to compute derivatives of the function 

being optimized.  Most of these global methods do not 

use derivatives, and thus do not require this 

information in order to work. Our interest is to 

combine global and local  

 

Figure 1. Hybrid algorithm scheme 

strategies for solving the global optimization problem. 

We now describe the main three components of our 

hybrid scheme as shown in Figure 1. 

  

2.1 Global Method 
 

First, we apply SPSA as a global method to explore 

the domain of the function by starting with different 

initial guesses. This increases the chances for finding 

regions where a global optimal solution may exist, and 

allows a rich sampling of the parameter space. SPSA 

is a stochastic steepest descent direction algorithm 

introduced by Spall (2003), where a current point is 

improved by moving randomly in the direction of the 

negative gradient of the objective function.  The 

algorithm does not depend explicitly on derivative 

information. A major advantage of SPSA is that it 

uses only two objective function evaluations in each 

iteration to obtain the update parameters. Most 

problems require experiments and/or simulations to 

evaluate objective and derivate functions that involve 

expensive computations. The disadvantage is that the 

algorithm has a slow rate of convergence. 

 

2.2 Surrogate Models 
 

Second, we select the regions given by SPSA with 

the lowest function values and filter the data by 

eliminating points outside such regions by using a 

predefined radius. Then we create a surrogate model 

fs (x)  using the selected data points 

(xi ,  f (xi ))  for  i = 1,...,m  that approximates the 

original function in this neighborhood. In our 

particular case, we are interested in finding a 

quadratic or cubic surrogate model that provides us 

with a smooth approximation of the objective function 

within the region of the most promising optimal 

regions explored by SPSA. The computational cost of 

evaluating the function and computing derivates of the 

surrogate function instead of the original function is 

less expensive. Particularly, we approximate  f (x)  by 

using a Radial Basis Function approach by Orr (1999) 

using the set of points computed by the SPSA 

algorithm. 

 

2.3 Local Method 
 

Finally, once the surrogate model is constructed, 

we can apply our local strategy Newton-Krylov 

Interior-Point (NKIP). The derivatives necessary to 

apply this strategy are available from the analytical 
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representation of the surrogate model. The NKIP 

approach allows for further refinement of the solution 

yield by SPSA. Moreover, the NKIP strategy 

incorporates constraints associated to the problem. 

The solution points obtained by NKIP algorithm are 

validated against the original model. The NKIP 

algorithm is a linesearch Newton-Krylov method for 

solving general nonlinear programming problems. 

This algorithm was developed for obtaining an 

optimal solution for large scale and/or degenerate 

problems by Argáez and Tapia (2002). In this part, we 

want to solve:   

 

minimize    fs (x)

subject to   a ≤ x ≤ b
 

 

3. Numerical Results and Discussion 
 

Implementing these algorithms for a parallel 

computing environment requires several novel 

approaches. For example, introducing individual small 

operations as the key abstraction for expressing 

parallelism facilitates maintaining a computer system 

in a known, consistent state by ensuring that 

interdependent operations are either all completed 

successfully or all canceled successfully. We are 

developing a simple distributed-memory programming 

model that can scale to systems with thousands of 

processors. The C version software framework (also 

available in Matlab by Argaez et al. (2002)) is being 

tested in the Mana (Maui High Performance 

Computing Center, Air Force Research Laboratory) 

and Lonestar TACC (a Dell Linux cluster at the Texas 

Advanced Computing Center, University of Texas) 

high performance machines. 

 

3.1 Micro-Aerial Vehicles 
 

Hybrid optimization codes developed as a result of 

this work are being applied to Stanford’s UFLO 2-

dimensional CFD code provided and developed by 

Allaneau and Jameson (2010). This code is used by 

the AHPCRC to simulate the flapping and twisting 

wing models for Micro-Aerial Vehicles (MAV), 

hummingbird-sized airborne vehicles that can be used 

for sensing and surveillance.  The four forces of a 

MAV as illustrated in Figure 2 are: 

• Lift: the upward force created by the wings 

moving through the air that sustains the airplane 

in flight (can be increased by increasing the 

forward speed of the aircraft or by increasing the 

angle of attack).  

• Drag: the resistance of the airplane to forward 

motion. It is directly opposed to thrust and is 

caused by the resistance of air.  

• Thrust: the force exerted by the engine. An 

aircraft is in a state of equilibrium when the thrust 

and drag are equal and opposite. 

• Gravity: the weight of the aircraft.  

 

Figure 1. The four forces1 

MAV scale aircraft suffer roughly an order of 

magnitude loss of aerodynamic efficiency in terms of 

the lift-to-drag ratio compared with larger aircraft. 

Traditional aircraft design approaches that assume 

steady-state aerodynamics and rigid structures do not 

appear to be adequate for MAV design. However there 

are numerous examples of efficient flight at these 

scales among birds and insects. The apparent key to 

their success is exploitation of unsteady flow 

phenomenon and flexibility of the aerodynamic 

surfaces. Compared with the traditional approach of 

designing aircraft with rigid structures and for steady 

aerodynamics, however, designing MAV to exploit 

flexibility and unsteady aerodynamics will be very 

difficult. First, very few of the efficient computational 

design tools used for large aircraft design can be used 

in the unsteady, low Reynolds number regime, 

requiring costly unsteady numerical flow simulations 

and experiments as the primary design tools. 

Addressing this issue requires the development of 

efficient and physically accurate massively parallel 

                                                        
1
Available from http://www.centennialofflight.gov/essay/Dictionary 

/four_forces/DI24.htm; Internet. 
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CFD tools that incorporate aeroelastic effects and 

large mesh motions associated with flapping wings. 

As vehicle size gets smaller traditional fixed-wing 

aircraft designs become increasingly less efficient and 

the design process become increasingly more difficult 

as shown in Figures 3 and 4. The difficult comes both 

from the fundamental physics of the problem and from 

the lack of appropriate design tools. Accurate 

simulation of flapping flight to obtain lift, thrust and 

power requires time-accurate solutions to the 2 or 3 

Dimensional Navier-Stokes equations. The cost of 

these solutions is on the order of hundreds or 

thousands of CPU hours. Parameterizations of the 

motions and deformations of a flapping wing require 

on the order of tens or hundreds of design variables. 

Even the most efficient optimization algorithms will 

require hundreds or thousands of these expensive flow 

solutions to converge to an optimal set of parameters. 

The goal is to provide the Stanford’s AHPCRC 

group with optimal motions and deformations for a 

wing in periodic motion for forward and hovering 

flight based on averages of lift, thrust and power. 

 

 

Figure 2.   Current MAV
2
 

   

Figure 3.   Future MAVs
3
 

                                                        
2
 Culbreth, Matt, “Flapping Wing Optimization”, Princeton 

University, November 21, 2009.   
3
 Culbreth, Matt, “Flapping Wing Optimization”, Princeton 

University, November 21, 2009. 

Simulation tools such as UFLO have already gone a 

long way towards providing these capabilities. The 

second issue is that the design degrees of freedom 

increase significantly when considering a flexible 

wing in a generalized periodic flapping motion. While 

much has been learned from observing the flight of 

birds and insects, it is still far from clear how to 

couple wing flexibility and flapping motion in an 

optimal way for a given flight performance metric. 

This motivates the use of numerical optimization 

techniques coupled with unsteady flow simulations to 

obtain the periodic wing motions and deformations 

that best suit different types of flight regimes such as 

hovering and forward flight. Flapping wing 

optimization will require thousands or tens of 

thousands of these flow solutions, making the task 

essentially infeasible without massively parallel 

algorithms and hardware. In addition, appropriate 

objective functions for flapping flight are not as clear 

as for the steady case. 

 

3.1 Global Optimization Problem 
 

The flapping wing design of MAV is posed as a 

constrained nonlinear optimization problem: 

 

minimize    ( )

subject to   ( ) ,

f x

a g x b≤ ≤
 

where the design variables x parameterize the flapping 

motion of the wing, and the objective function f  and 

constraints function g are time averages of integrated 

force metrics of lift, thrust, and power. Our goal is to 

maximize thrust and propulsive efficiency: 

,
Poutput

p
Pinput

η =  

where P represents the power without constraints. The 

bar indicates that these quantities are time averages of 

the instantaneous power calculated at each time step. 

The quantities depend on the lift, thrust, frequency, 

and amplitude. 

Essentially power output represents the power 

generated in the x direction, which is the direction of 

forward flight, and is equal to the force in the x 

direction times the forward speed. The force in the x 

direction, which we get from UFLO can either be 

positive or negative depending on the frequency and 

amplitude of motion. When the force is negative the 

wing is producing drag, and when it is positive it is 

producing thrust. The power input is the product of 
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the velocity in the vertical direction and force in the 

vertical direction. In the vertical case the velocity and 

the force can be either positive or negative depending 

on whether the wing is moving upwards or 

downwards, but they will always have the same sign, 

and so the power input will always be positive. By 

maximizing the ratio of the average power out over 

power in, we are saying that we want the most power 

towards propulsion and forward flight for the least 

power input, which would have to come from motor, 

batteries, as an example. 

Some barriers occur when we obtain a negative 

efficiency that means you are producing drag and a 

positive efficiency means that you are producing 

thrust. In addition, the function can have very large 

negative values, but can only have positive values less 

than one. In fact, the function can be negative infinity 

for the case where amplitude is zero because power 

input will be zero but power output will still be the 

product of the drag and the velocity. 

 

3.2 Two-Dimensional Plunging Test 

Problem 
 

Plunging is the simplest thrust-producing motion 

and has been widely studied both experimentally and 

numerically. 

Computations were done for a NACA 0012 airfoil 

oscillating in a uniform flow. Our goal is to use this 

testcase to maximize the propulsive efficiency of a 

plunging airfoil as a function of frequency and 

amplitude.  We use the 2-dimensional UFLO Solver of 

Allaneau and Jameson (2010) to compute the flow 

around a plunging airfoil. The Stanford’s group has 

applied the well-known software optimization tool 

SNOPT written by Philip Gill, Walter Murray and 

Michael Saunders.  SNOPT is a software package for 

solving large-scale linear/nonlinear optimization 

problems. In particular, it has proven to be effective 

for nonlinear problems whose functions and gradients 

are expensive to evaluate. The functions should be 

smooth but need not be convex. This software has 

been used successfully in problems with many degrees 

of freedom from the areas of engineering, economics, 

finance, optimal control, among others 

In Table 1 we report the numerical results reported 

by the Stanford’s group using SNOPT algorithm, and 

the hybrid algorithm being developed at UTEP. The 

first column indicates the methods being used, and the 

second column shows the value of the objective 

function obtained by each method. The last four 

columns indicate the values of the unknown 

parameters. The reduced frequency and plunging 

amplitude are bounded between (0,10) and (0,1), 

respectively. We notice numerically that the reduced 

frequency can be bounded above by 4 instead of 10. 

The zero number indicates that such variable was not 

involved in the optimization case (plunging motion). 

The call of the UFLO simulator (one function 

evaluation) requires 32 processors. The SNOPT was 

run first by optimizing two flapping cycles, and then 

use this optimum to restart the optimization using 10 

cycles. In the case of the hybrid scheme, the solution 

reported is the one obtained after 10, and in particular 

the hybrid code uses only two function calls instead of 

the usual 2n function evaluation used to calculate a 

finite difference approximation of the derivatives.  

The results obtained by the hybrid algorithm 

definitely seem feasible. The propulsive efficiency can 

be compared between the different parameterizations, 

and the fact that this case performed similarly but 

slightly better than the frequency/plunging amplitude 

case obtained by SNOPT is encouraging.  When 

considering all the four variables, SNOPT cannot 

report competitive results at this moment. This might 

indicate that the space is multimodal for the general 

case. We should mentioned that in the case of the 

hybrid scheme, the global method SPSA provided 

good numerical results that were not improved by the 

construction of a surrogate model due to the flatness of 

the original function.  
 

 

 

 

 

Table 1. Numerical comparison between SNOPT and Hybrid Scheme 

Method f = Propulsive 

Efficiency 

x1 = Reduced 

Frequency 

x2 = Plunging 

Amplitude 

x3=Pitchin

g 

Amplitude 

x4=Phas

e 

SNOPT  0.1208 2.6310 0.2520 0 0 

SPSA 0.1212 2.5783 0.2783 0 0 

HYBRID  0.1211 2.6064 0.2548 0 0 

SPSA 0.1471 4.6118 0.1882 0.1241 0.7838 
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4. Conclusions 
 

The proposed hybrid approach exploits the best of 

SPSA and NKIP methods for achieving maximum 

efficiency and robustness in the search of a feasible 

global solution for the 2-Dimensional Plunging 

Problem. It is clear that a broad exploration of the 

parameter space should be done to increase the chance 

of finding a global optimum when using SPSA. 

Moreover the solution provided by the hybrid method 

is guaranteed to be feasible with respect to physical 

bounds constrained by the problem when using NKIP. 

Also, the multi-start approach of SPSA will improve 

the likelihood of obtaining the feasible global solution 

using less CPU hours in the 2-Dimensional case. 

Further experiments should be conducted using high-

performance computing to exploit the hybrid scheme 

for solving very large scale 2 and 3-dimensional 

problems. Finally, the use of parameterization 

techniques, as shown by Velazquez et al. (2008) and 

Hernandez IV (2010), will be incorporated in order to 

work into a lower dimensional space when searching 

for an optimal solution. 

 

5. Significance to DOD 
 

The hybrid scheme is providing a more feasible 

solution with less CPU time for generating promising 

airfoil shapes of future inexpensive MAV that can 

serve as the soldier’s eyes, ears, and nose in situations 

that are hazardous or that require 24 x 7 attention.  
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