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SUMMARY

If an aircraft has two or more closely spaced propellers on each wing semi-span,
their slipstreams may merge to form a single wide slipstream on each side. Using
an elliptic jet as a model of a wide slipstream, the interference potential is deter-
mined for wings of high aspect ratio by lifting line theory. and for wings of low aspect
ratio by slender body theory. When the wing exactly spans the foci of the ellipse, the
formulas reduce to a very simple form,representing a uniform increase in the induced
downwash across the span. '
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1. Introduction

With the advent of STOL aircraft such as the Brequet 941 (McDonnell
Douglas 188), which use the slipstream behind the propellers to augment the
lift of the wing at low speeds, it is becoming increasingly necessary to find a
method of accurately predicting the lift of a wing in a slipstream. There have
been numerous studies of a wing in a circular slipstream (ref. 1-4). With the
exception of De Young's treatment of a rectangular slipstream (ref. 5), the case
of a wing in a wide slipstream, as might be obtained when the slipstreams from
two or more propellers merge, seems to have been largely neglected. It was
shown in an earlier note (ref. 6) that De Young's solution satisfies the boundary
conditions of the problem only when the aircraft has no forward speed.

When the aircraft has forward speed, it is necessary to solve Laplafce s
equation both inside and outside the slipstream boundary, anﬂ ‘to match the two
solutions in the correct fashion at the boundary. In this casé, ' the rectangular
slipstream is not a very convenient case to treat, because the outside of a
rectangle is not amenable to any simple mathematical procedures. A shape that
lends itself to comparatively easy treatment both inside and outside is the ellipse.
It appears, moreover, that the shape of a wide slipstream might well be more
closely approximated by an ellipse than by a rectangle. In this note, a preliminary
study is made of the properties of a wing in an elliptic slipstream. Section 2
treats a lifting line lying completely inside the slipstream. Section 3 gives a slender
body solution for a wing piercing the slipstream when the immersed portion of the
wing has a small aspect ratio. Section 4 treats a wing which exactly spans the
foci of the elliptic cross section of the slipstream. The results for this particular
arrangement are remarkably simple.

To facilitate the analysis, the following simplifying assumptions are made:

(1) The fluid is inviscid and incompressible.

(2) Before it is influenced by the wing, the slipstream is a umform jet
moving with a velocity V. different from the velocity V of the external
stream; transverse velocities and variations of the ax1al veloclty
induced by the propellers are neglected.

(3) The jet boundary extends back parallel to the free stream; deflection
of the slipstream by the wing is neglected. '



Under the first two assumptions, the perturbation velocity due to the wing
can be represented both inside and outside the slipstream as the gradient of a-
velocity potential which satisfies Laplace's equation; and, according to the third
assumption, the location of the boundary between the two regions is known. Let
p; and ¢. be the pressure and potential inside the slipstream, and p; and ¢4 i the
pressure and potential in the external flow. At the boundary, both the pressure '
and normal flow angle must be continuous; that is

P; = Po
1 aqu ' _ 1 avo ¥
Vj an VO dn -

d
where Bn represents differentiation in the normal direction. Now if the

perturbaﬁon velocities are small compared with Vj and Voo then, neglecting the
squares of the perturbation velocities in Bernoulli's equation, the pressure changes

de. de¢o
inside and outside the slipstream are proportional to Vj _—Lax and VO e

Since these must be equal along the whole length of the boundary, the boundary
conditions can be expressed as

¢J =He (1.1)
9. de
J o .
M =
: on dn (1.2)
where u is the velocity ratio
A%
p= =2 (1.3)
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2. Solution for a lifting line inside an elliptic slipstream

If the wing is represented by a lifting line, the downwash in the plane of the
wing is generated solely by the trailing vortices. It follows also by consideration
of symmetry that the downwash in the plane of the wing is half the downwash far
downstream, which may be calculated from the two dimensional potential of the
trailing vortex sheet when it is regarded as being infinitely long. Consider there-
fore the flow in the crossplane due to a symmetric pair of trailing line vortices
_lying inside the slipstream on the major axis of the ellipse (Fig. 1). Introduce
elliptic cylinder coordinates ¢ and » by the transformation. : '

1

y+iz=acosh(¢+in), y=acoshécosn, z =asvinh£sin17 . (2.1)

The lines of constant ¢ are confocal ellipses with foci at y = + a, and the lines of
constant 7 are hyperbolas. The line £ =0 is a slit between the foci, and the
slipstream boundary is at ¢ = Eo' Denote the potential of the vortex pair in the
absence of a slipstream boundary by ey, and let the potential inside and outside -

. ¢,v t A ¢ . 2 2:
J J ( e )

¢O=¢V+A‘p0 (2'3)

The boundary conditions (1.1) and (1. 2) then require that at &= E'o

ij =ubyp -(1-r) @ 2.9
d d d
M —a—f—A¢J = —af_ A‘PO + (1-n) 3¢ ‘Pv I (2.5)

Laplace's equation remains unchanged in the elliptic coordinates as

62¢ 62¢
62’“62
¢ )
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Let

¢=Y(E) Z(m)
Then

Y" -Z" 2

= =~ =n"say

so that the basic separated solutions are
. . - pu— . " -
eP¢ cos nn, eP€ sinnn. e 1€ cos n7, e nssm-ﬁr}n

where n must be an integer to preserve continuity between 7= 0and 7= 27 . The
only combinations of these solutions which are continuous and have continuous first
derivatives across the line ¢ = 0 between the foci are (ref. 8, p. 536)

coshngcos nn, sinh n¢ sinn7n

Now the disturbance potentials must have the same symmetry as ¢_, that is they
must be antisymmetric in z and symmetric in y. Also, 4 ¢, must be continuous
across the line ¢=0, and A ¢, must vanish at infinity. T;ms, they can be
represented as

As@j = Z B, sinhné sinng | , (2.6)
n=1,3,5...
A - - -nE . .
soo E Cn e “sinnyn 2.7
n=1,3,5



Also, Tani and Sanuki have shown (ref. 9) that the stream function of a vortex pair
with coordinates El, 1. and 51, -7y can be represented outside any ellipse
‘enclosing the pair, both inside and outside the slipstream boundary, as

v = Z Ay e D¢ cos n7 (2.‘8)
n=1,3,5...

where

2
n~ 7n coshn§y cos n7n - (2.9)

The corresponding potential is

0 = D A, e sinny » (2.10)

n=1,3,5...

On substituting the series for Py Ay and Asoo in the boundary conditions
(2.4) and (2.5), it follows that

3 B, sinhn ¢, sinnn= 3 [,ucn ~(1-n) An] e, sinny
Z un Bn cosh nEo sin nn= -Z [Cn + (1-p) An] ne‘nfo sin n7n

These are satisfied if

e2n$o_1
B, 5 = an -(1-u) An

ezn£0+1
By S = -C, - (1-k) Ay



whence

: 1-u2 | 2 Ap :
B = - 2.11
n 1+u2 coth né, o2néo -1 ( )

(1-4) (1-u coth nEO)An

“n =" T1¥kZ cothng, @12

The ratio of the width to the height of the slipstream is
o “ -
A= coth £, = (2.13)

and

e2 E o= )\+1
Also let Fo(X) be defined as

n
() -
F ()\) = coth nE (2.14)

(A+1
A-1
The complete solution for Ast and A¢, is thus given by (2.6) and (2.7) where

2
,_ 1-u
P TR (A+1 (2.15)

(1-u) (-4 F_(A) A_

= - (2.1
Cn 1+'u2 Fn()\) (2 6)




The variation of the interference potential inside the slipstream with
) 2

1-4 :
in B.,. Since this factor

forward speed is determined by the factor ——_-1+“2Fn( ») n

varies from term to term. the dependence of the potential on forward speed varies
" at different points in space. Note that

A>F (1) > 1

Also, if A is not ver'y large, Fn( X\') approaches 1 rather faﬁidly. For example,
if A =2, then !

» -

[

14 _ 122
Fg(\) = » Fg(XN) = 570 e

The downwash due to a vortex pair at a given location is determined as
the vertical derivative of the total potential L A¢5 . The downwash due to a
distribution of circulation across the span is then obtained by integrating with
respect to the vortex coordinates. If it is assumed that the local lift coefficient
and circulation are proportional to the local angle of attack allowing for the down-
wash, substitution of the expression for the downwash leads to an integral equation
for the circulation. The solution of this equation yields the wing properties as in
standard wing theory (ref. 7).



3. Slender body solution for a wingpiercing’an elliptic slipstream

The lifting line theory is likely to be reasonably accurate for a wing of high
aspect ratio lying completely inside the slipstream. If the wing pierces the slip-
stream and the immersed portion is of low aspect ratio (Fig. 2), it is more realistic
to apply slender body theory, as was done by Graham et al (ref. 2) for the circular
jet. In this theory, the streamwise variation of the flow is considered to be
unimportant compared with the variation in the cross planes, so that it may be
neglected. Then, only the two dimensional Laplace's equation need be satisfied in
each cross plane. Let ¢, be the potential of the wing in the absence of a slip-
stream. Assuming that the wing span is much longer than the width of the slip-
stream, the further idealization is made that in the region of the slipstream, ¢y
can be sufficiently accurately represented as the potential of an infinite flat plate
moving in the cross plane; that is L -

[

o
iy

Yo = "V, @z + constant (3.1)

Let the potential inside and outside the slipstream be

. = M A . .‘
e Cyt B9 (3 2_)
o=yt be (3.3)

The boundary condition at the wing surface z=0 is then

d '-Voa a¢w . 1
) 5
9z 8% 0 &9
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Also. introducing elliptic coordinates £ and 7 as before, the boundary conditions

(1.1) and (1.2) require thatat § = §

Bei=ude , (3.6)

9 9 3

To facilitate the treatment of the boundary conditions, it 1s deswable to
represent the potentials in terms of the basic solutions

¥

N -
L

ené cosnn, efé sing , e € cosnn, e M¢* sinny
of Laplace's equation in elliptic coordinates. Consider the potential
¥ = sinhn { sinnny

On the line z = 0 between the foci £ =0 and

o¢ 1 d¥ _ nsinny

9z a sin 7 X3 a sinn

On the line z = 0 outside the foci 7 =0 and

de _ 1 0¢ _ nsinhné
dz a sinh{ R a sinh ¢
Jdy 1 . -
Whenn =1, B2 - ; everywhere on the line z = 0. Thus, the wing boundary

condition (3. 4) is satisfied by the term
-V aa 1. 4} sinh ¢ sinn
o M
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Also, the potential
¢ =coshnf cosnn

4 .
has a vanishing derivative 5z everywhere on the z axis. whereas all other com-

binations of the basic solutions have nonvanishing derivatives with respect to z on
the line z = 0 either inside or outside the foci. Thus the most general representation
in the upper half plane of the interior perturbation potential Acpj,' such that the wing
boundary condition is satisfied, is ’

e
n=1 ¥

» 1
ij = AO + E An coshn ¢ cos ny- Voaa(— #)sinhssin n (3.8)

The exterior perturbation potential A‘Po vanishes at infinity';-‘,,'and,according to the wing
boundary condition (3. 5) its derivative with respect to z vanishes at z = 0. Thus its
most general representation in the upper half plane is

be, = E B, e ¢ cos nny (3.9)
n=1

Since the potentials are antisymmetric their representation in the lower half plane -
must be the same with the signs of Ay and Bn reversed.

It remains to satisfy the slipstream boundary conditions (3.6) and (3.7). Now
according to (3.1)

d
Pw - v a2

¢ o ot
Thus, substituting (3. 8) and (3.9) in (3. 7),

=-V,aa cosh ¢ sinn

o0

: 1
#I: E nAn sinh n¢ j cosny —VO aa(; - u) COShfoSin’?:l

n=1

= -E n B, e Mo cos nn- (1-p2) Voaa cosh § sing

n=1
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whence

B =-#—-‘2‘—' Ap

Finally (3. 6) then requires that
A+ A _coshn ¢ cosnng-V ('1--V>‘hi in
ot n €O o COS Ny 0@ a\i - # )sinh & siny
n=1 ;

[

= -u An sinh n{  cos 'n

n=1
or
v 1 .
o a al g -#) sinh { siny

=Ag+ E A, (cosh nt 0+u2 sinh n¢ ) cos nn

n=1
But in the upper half plane
. 2 4 cos n7
sin”n = r T 7 n2 -1
n=2,4,6
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Thus (3. 6) is satisfied if

2 1
Ao =7 Voa aSinhE()(H -/.t>
R 4 \'Oaasmhéo
n 7 coshn£0+#25inhnfo
0

[

The height of the slipétream is

H=a sinh ¢ |

. .
(“ —u) , N=2,4,6...

. n=1,3,5...

The potentials in the upper half plane can thus finally be expressed as

- b
A
i

V]. o H (1—;.1.2) 2

oo

A¢
[0

i
<
)
R
v
-~
—
!
*
Ly

DS

7 - sinh{ sinn

4 coshn € cos nn
e

cosh n£0+/.tzsinh n 50

sinh néo e—n(f' {o)

cosh n$0+ #2ginh n £o

The influence of forward speed varies from term to term through the factor

1-u2

1+#2tanhn50
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This can be expressed in terms of the ratio of the slipstream width to height as

1 - u?
1+ p2
F (0

where Fn()\) is defined by (2.14)

Since the potential is d@ntisymmetric, the pressure difference between the
upper and lower surface of the wing is found, on applying Bernoulli's theorem, to
' 3¢5 de, !
be 2p VJ. ax inside the slipstream and 2p VO _qu’.tside it, where p is
the density of the air. Integrating in the streamwise direction, the change inside
and outside the slipstream in the local lift coefficient referred to the freestream

velocity is found to be

ACe, = Ay,
] #VOC 2
z=0
" " 7
14 1-u? 2 E cos n7y
1 ¢ ul L ™ cosh nfoﬂlzsinh né, | £ =0
n=2.4,6 _J
= - =
1 1-42 | 2 ) 4 coshn §
¢ u? ™ T cosh n$o+-uzsinhnfo ,E>0
n=2,4,6
(3.13)
_ 4 |
ACL’O— V o A‘PO
0
2=0
‘ 3 ‘ -n -
= 1ol (12,2 4 sinh ngo e M&-£ o)
™ coshng,+u2sinh ng,
n=2.4.6
(3.14)
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T,

where ¢ is the chord. The total change in llft coefficient 1efe11 ed to freestream

velocity and immersed wing area is then
B :
f (3.15)
B o
2 . ,

25
=§fgck
0,

where B is the width of the slipstream and

[}

U:JIN

dy = -a sinndn ,& =0

asinhédé, >0
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4. Lift of a wing spanning the foci of an elliptic slipstream

A particularly simple situation occurs when the wing exactly spans the line
joining the foci, and the lift distribution is such that the downwash is constant across
the span (Fig. 3). This was already noted by Glauert (ref. 10) in the case of wind
tunnel interference. The crossflow far downstream is like that caused by move-
ment of a flat plate, but subject to the slipstream boundary conditions (1.1) and
(1.2). Now in the absence of a boundary ( 4= 1), the potential in elliptic coordinates
for a flat plate moving vertically is

e= A &% sinn - ; (4.1)

N
(S

It is easily verified that on the line ¢ = 0 joining the foci, "'th'*e déwnwash is

-3¢ -1 d¢ -A

9z a sin” a¢ a

The basic solutions of Laplace's equation in elliptic coordinates were shown
in section 2 to be

[ ¢ . ne : - R
ells cosnn,en* sinnn, e P cosnn ., eHS sinnn

In the presence of a slipstream houndary. the external potential must vanish at
infinity. Consider therefore a system for which the internal and external potentials
are

¢;=(Acoshé + Bsinh¢ ) siny

17



On the line ¢ =0

Also, the slipstream boundary conditions (1.1) and (1. 2) are satisfiedat ¢ = ¢

‘o if
[+ s = ‘Eo
AcoshsO+Bsmhfo—#Ce )
uAsinhEO+uB cosh$0= -Cé'EO .
‘-7".’»
According to (2.13), these equations can be expressed in terms of the ratio A
of the width to the height of the slipstream as

AA + B =k( A -1)C

#A+ AuB=-(A-1)C

iwhence
‘)

S .7

B=- T2 A

A+l
C=u L+ a2 A
Thus the potentials
2

_ Atu . .

¢j = A[cosh ¢ "1 a2 sinh § ] sin »

£ 1-#2
= Ales -(r- I)W sinh ¢ sinn 4.2)

.18



¢ = “_)\_1_12_ Ae ¢ sing (4.3)
(o) 1 +Au . /

represent a vortex wake with a uniform downwash spanning the line joining the foci
of an elliptic slipstream. The vorticity is contributed entirely by the term

A cosh £ sin7n

which is discontinuous across the line £ = 0, and represents an elliptic lift
distribution as in the case of a wing in a uniform stream. The downwash is

contributed entirely by the term R -
2
A tu . .
-A 1+ Ag 2 sinh ¢ sin7n

In the absence of a slipstream boundary, the corresponding potential with the same
vorticity in the wake is given hy (4.1). Thus the part

2
1 -
“FA(X-1) _1+_>\‘112— sinh ¢ sinnp

can be regarded as the interference potential. At every point in space its strength
varies with forward speed according to the factor

1-u2
1 +Au2

Also, the downwash for a given vorticity is increased in the ratio

)\+y2’
1 +Au2

In the absence of a slipstreém bburidar_v, the induced downwash angle far downstream
due to a wing with lift coefficient C, and aspect ratio AR is (ref. 7)

a. - 2CL
1 7AR
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In the slipstream, the induced downwash angle is thus

_2CL >\+#2
T FAR 1 +AuZ

(4.4)

where the lift coefficient is referred to the slipstream velocity Vj- The effect of
.the slipstream is thus a reduction in the effective aspect ratio from AR to ARy ,
where v

1 +au2 ’ oy

AR, = AR =5

(4.5)
e B
If the wing is slender. the downwash angle should already approach its final
downstream value within the length of the wing chord. so that the condition to be
satisfied is that the downwash angle. due to the fully infinite vortex wake, equals

the wing trailing edge angle (ref. 11). The lift is thus

WAR”
2

CL = a (4. 6)

It can be seen from (4.5) that. in the static case, the reduction in the mass flow
influenced by the wing causes a reduction in the lift coefficient to the fraction

1 ,
b of its freestream value. If the wing is of high aspect ratio so that it can be

treated as a lifting line, the downwash angle in the plane of the wing is that for a
semi-infinite wake, or half the downwash angle developed far downstream. Thus

o. CL
1 WAR“

If the section lift slope is a,. and the wing is untwisted, then substituting for CL,

a
a, = 2 (a-a;)

i 7AR, 1

20



whence

and

CL

« , - | 4.7

1+ :
WAR,_; fad -

[

s

Finally, for wings of intermediate aspéct ratio, it may be expected that the
approximation given by Lowry and Polhamus (ref. 12) will hold, with AR replaced
by AR ; that is

cL a (4.8)

a0
aO ( ao ) 2
+ v 1+
AR, AR m
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Figure 1. Vortex Pair in Slipstream

Figure 2. Wing Piercing Slipstream with Immersed Portion of Low Aspect Ratio
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Figure 3. Wing Spanning Foci of Slipstream

24





