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SUMMARY#

A hypothetical redesign of the lateral directional stability augmentation
system for the Grumman E-2A (Hawkeye) aircraft is described. The major impor-
tance of this work is the mathematical formulation and computational soclution
of a general problem. Due to safety of flight considerations, one of the basic
tradeoffs is between structural weight and control authority. The measure of
a limited authority controller is defined in terms of reducing unfavorable
aircraft reactions without degrading response. In these terms, the best con-
troller can be found as the solution of the optimal regulator problem. The
results presented here demonstrate the utility of optimal control theory as a
design aid. However, classical theory can only indirectly handle such real
world constraints as:

1) TFixed feedback éontrol structure ' v

2) Constant feedback gains for shoft time intéﬁ?als

3) Bestlcompromise feedback gains for several flight ccnditions
In conclusion, the stage is set for dealing directly in the future with the

constrained problem.

INTRODUCTTION

The objective is to find the most efficient way of determining a practical
automatic flight control system which will provide:

1) Rapid and precise response to the pilot's commands

2) Acceptable stability in the Dutch roll, spiral and roll subsidence
modes

It is assumed that a desirable trajectory of the aircraft is known for a
representative maneuver. The problem can be given an explicit mathematical
form, which will open it to an organized attack, by using some measure of the
deviation between the actual and desired trajectories as an index of perfor-
mance. The system can then be optimized ageinst this measure:. This amounts
to a simultaneous attack~on the problems both of stabilization and control,
because the input which causes the maneuver should also excite any unstable
modes, and the resulting osecillations will lead to greater deviations from the

desired trajectory, and a larger value of the performance index. The partic-

ular system which is founAa to be optimal will depend on the choice of the

performance index, and ortimization is here introduced not with the aim of
finding a unique 'best' system, but rather as a means of guiding -the calculation.
The question is whether a performance index can be found for which the corre-

sponding optimal system satisfies all the criteria embodied in objectives
1 and 2.

*Thie work was performed under the sponsorship of the Grumman Aircrgft
‘Engineering Corporation Advanced Development Program Project No. 06-05.
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In formulating the problem it is necessary to consider the amount of
complexity to be allowed in the configuration of the control system. If,
for example, the criterion of merit is taken to be speed of response, then
it can be shown that the optimal system is a bang-bang system, which would
require on board computation of switching times. 1In general, one can either
try to choose the performance index in such a way that the optimal system
is within the desired class of configurations, or one can attach specific
constraints on the type of configuration. It is assumed here at the outset

- that the desired configuration is a linear control system in which the

pilot's commands are modified by feedback signals from measurements of the
aircraft's motion. It is assumed also that it is desired to use constant
feedback gains in the short period, though the gains may be altqred with
the flight condition. Rather than trying to mechanize a particular optimal
system, one may, of course, prefer to use the insight gained from knowledge
of optimal systems to design a simpler system. e

CONCLUSIONS AND RECOMMENDATIONS

A good method of finding an acceptable system, with performance as good
as or better than that obtainable by traditional methods, is to calculate
the optimal system for each flight condition, and then *o try to simpiify it
climin-ting some [{eedbacks and Tixing other feedbacks., This method has
the advantages that:

Eoaid
MJ

1) It is very rapid

2) It is possible to trade different qualities, such as suppression
of sideslip and speed of response, by altering the coefficients

in the performance index used in +the determination of the
optimal system '

A natural extension is to try to optimize the parameters of the simpli-
Tied system. This is unfortunately more difficult than the calculation of
the free optimal system; the elimination of feedbacks amounts to a constraint
on the problem when it is formulated mathematically. Current efforts are
concentratihg on solving“this problem by computerized search. The recently

developed accelerated gradient methods give useful approximations to the
exact solution, Reference 7.
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DISCUSSION

r“‘

Kalman Method

.r‘ B

The most convenient optimization technique is the Kalman method for
linear systems with an integral quadratic performance index. The method
treats multi-input multi-output and single-input single-output systems in
a uniform manner, providing a solution to the regulator problem; that is,
the transfer of the system from an arbitrary initial state to equilibrium.
The solution is easy to compute, requiring the integration of the matrix
Riccati equation, which is well behaved; the equations are the dual of the
equations for determining'an optimal filter for noisy measurements; The
system is assumed to be described by a set of first order equations for
'state variables', in matrix notation: o

S —"

)
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o
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X = Ax + Bu

et

L4

where x is a vector representing the state of the system and u is the input
or control vector. If it is desired to control an output vector

y = Cx

the performance index is taken to be 2 quadratic measure of the output, with
a penalty added for the amount of control effort:

—

T
J = J(yTQy# uTRu)dt
o

- =

e

where Q and R are positive definite weighting matrices.

y
i

Provided that the system is:

pr———a,

a) Completely controllable by the input

b) Completely observable by the output

[

~— = = ==
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the principal properties of the method are:

1) The solution is a closed loop system using feedbacks from
every state variable (though it may also be interpreted as

giving the optimal history of the controls of an open loop
system) .

2) In general the optimal gains vary with time, but if the system
dynamics are constant and the Performance index is measured
over an infinite time interval, they are constant and independent
of the trajectory. These constant gains are gains determined

as the asymptotic values approached in the integration-of the
matrix Riccati equation. v

3) The resulting system is stable. lﬁf

L) The solution for the control signal is a global optimum.,

5) Judged by a suitable quadratic measure, the closed loop
system is less sensitive to variations of the system
parameters than the equivalent open loop system (this is
a generalization of the classical Bode sensitivity
criterion for a single-input single-output system).

‘A system is defined to be completely 'controllable' if it can be brought into
an arbitrary state by the use of the controls in a finite time interval. If
the system equations are transformed to normal form, with g separate equation
for each mode, then the system is completely controllable only if each mode
is controllable. If there are some uncontrollable modes, then only the

-~controllable part of the system can be stabilized. A system is defined to

be «completely 'observable' if its state can be determined by measuring only
the output variables for g finite time. If the equations are in normal
form, the system is completely observable only if every mode affects at

~ least one output variable. If some modes are not represented in the output,

then instability of one of these modes would not be reflected by an increase
in the performance index. Properties 1-U4 were proved by Kalman who intro-
duced the concepts of controllability and observability, Reference 1. The
definition of controllability and observability in terms of normal modes is
due to Gilbert, Reference 3. Property 5 has been proved by Kreindler,
Reference 4. It has also been proved that if the closed loop system is less

sensitive than the equivalent open loop system, then it must be optimal for
Some quadratic performance index, References 2 and 5.

Limits of control authority cannot be met directly. The magnitudes of
the gains, and hence or the actual control signals for a particular trajectory,
depend on the Penalty on the control signals which is included in the perfor-
mance index. A penalty which results in signals within given limits has to be
found by trial and error. Thus, although the feedbacks are independent of the
trajectory for a particular performance index (property 3), the appropriate
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performance index may in fact depend on the trajectory. Without some penalty
on the control signals the solution is singular, indicating that an arbitrary
trajectory can be obtained by applying infinite control force.

If the system is to be optimized by reference to a desirable model, supple-
mentary equations can be used to introduce the model as an uncontrollable
part of the system in parallel with the basic plant, and the output variables
can be formed as differences between the plant variables and the model vari-

ables. In this way the problem is reduced to the regulator problem treated by
Kalman,

It is to be expected that an optimal system would require feedbacks from
“every state variable (property l), because this is the minimum amount of in-
formation needed to predict the trajectory in the absence of further control,

' Application of the Kalman method to the lateral control problem

The present problem can be brought within the sc@pe of the Kalman methed
provided that the linear perturbational equations give|a sufficiently accurate

description of the aircraft. Written as a set of first order equations, these
are:

r_-_ —— - -F-—' — r..—
1 [+ [
Y
N % £ | (8] | Y Y32 .
v v Vv v v v
(1)
T [
o) ZB +AnB ep +Anp 0 r + Anr P . by +Ar1'_sr zaw +An6a 5a
«=l  1-AR 152 L-AD 1-AB 1-AB -~
é 0 1 0 0 ® 0 0
r v nB * Bzﬁ np * sz 0 nr + Bzr r n&r * Bzar n6a + Bﬁaa
_J 1-AB 1-AB 1-AB | 1-AB 1-AB

where 8, p, A, and r are the sideslip angle, roll rate, roll angle and yaw

rate, 6r and 6a are the rudder and aileron angles, and YB B EB » Ny veeeare

the side acceleration, rolling acceleration and Yaving acceleration due to
8, p, ry, 6r, and 5a. Also A and B are ratios of the moments of inertia
with respect to stability axes:

A= Ixz y B= Ixz

-
|
N
N

(See Appendix)

The rudder and aileron angles are here treated as state variables, and the
control variables are taken to be the signals to the actuators. The actuator

equations can be approximated by first order lags from the control signals y~

and uaa s
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A more accurate representation of the actuators could be used, but since the
optimal control system will modify the actuator characteristics by intrcducirg
feedbacks from the actuator variables, the additional information would be
difficult to interpret.

Some equations must be added to define the input and desired trajectory.
These are needed to formulate the problem as a regulator problem. Their intro-
duction restricts the input to the class of functions which satisfy differen-
tial equations with constant coefficients. A representative pilot input can
be constructed as the solution of a second order equation, or of two first
order equations for the wheel angle dw and its rate rw. The desi¥ed roll rate
Py is taken to be directly proportional to the wheel angle; that is,

” -
o

pD = Kéw s

where K is a constant to be selected. In practice the aircraft can respond
only after a time lag: this choice amounts to a requirement that its response
should both be proportional to the input and as Tast as possible. To keep
track of the desired roll angle $p Ve also introduce it explicitly as the

integral of Ppe We thus add the equations

Py = Kow
§w = rw
A R ek

The particular input and hence the maneuver are determined by the coefficients
(ul andcuz and the initial conditions for¢¢,¢1y 6w and rv. These extra equa-

tions amount simply to a command generator: a more elaborate model with, for
example, a time lag, could easily be introduced.

Since we wish to execute a roll while preventing the occurrence of yawing
oscillations, which would lead to large sideslip angles, we take as output
variables g, p - Py and¢-¢ + This leads to the performance index

D
T 2 2 2 2 2
J='-5[Q16 0 (®- )T+ g (o - pp) e R u f ey Pl
o ’ ()
By varying the weights Ql’ Qg, Q3, Rl and R2 we can vary the emphasis on

dirferent qualities and limit the magnitude of the control signals, The solu-
tion calls for feedback signals from B, P, ¥, $, and ja, cormbined with
feedforward signals formed from the pilot input 8w, its rate rw, and its inte-
gral ¢_. This gives the block diagram shown in fig. 1. It should ve noted that
the sige accelerometer reading ay and the sideslip are related by:
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Thus feedbacks from g8, p and r are equivalent to feedbacks from 8, P and r,ér

and da, and this configuration could be mechanized by measuring ay instead of 5.

The optimal feedforward gains depend on the input. Tt can, however, be shown by
writing the matrix Riccati equation in partitioned form, that the optimal
feedback gains ere independent of the input, and are influenced only by the

choice of the performance index (and hence indirectly by the authority limits).

To compute the solution within this Framework we have developed an optimi-
zation program which:

(1) Sets up the lateral equations of motion, given a description o?
the airframe and flight condition ' 5
¥
(2) Finds the roots of the open loop systeﬂ, sets up the equations
in normal form, and checks the controllability and observabil-
ity of the system

(3) Integrates the matrix Riccati equation for a prescribed optimi-
zaticn interval and calculates the corresponding set of con-
stant feedbacks

(k) Finds the roots of the closed loop system

(5) Calculates the trajectory of the system for a given input

(6) If the peak control signals are outside specified limits, alters

the performance index and repeats (3) and (5) until a solution
is found within these limits.

Using an IBM 360-75, the program takes about 7 seconds to integrate the matrix

Riccatl equation over a period of 10 seconds in a typical case. We have also
developed a program for the analysis of a system with a given set of feedbacks,
not necessarily optimal, which:

(1) Sets up the lateral equations of motion
(2) Finds the roots of the closed loop system

(3) Calculates the trajectory for a given input (possibly not
_ continuous )

(4) Calculates the time dependent statistics of the response to g
" statistical input (if desired). - ‘

This program takes about 2 seconds to-calculate the trajectory over a period .of
10 seconds, and will plot via the high speed on-liine printer all the state,
output and control variables in another 4 seconds, if this is required. The

two programs can be used together, first to determine optimal control systems
for different choices of performance index, and then to compare these with
other simpler non optimal systems,

(fgzbwmﬂxuz
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[» Optimal Control Systems for the E-2A

The E-2A aircraft was selected for study because i<s low speed handling
qualities have typical limitations due to design constraints. This is true
despite the use of a fairly complex stability augmentation system.

i 1l

I The optimization program was used to determine the optimal feedback and
‘ ’ feedforward gains for the E2A in 5 flight conditions:

U (1) Power Approach, 1.4 Vspa (1 PA)
{ (2) Cruise at 10000 feet, 1.4 Vser (2 CR 10000)
(3) Cruise at 30000 feet, 1.4 Vscr (3 CR 30000)
(4) Power at 10000 ‘feet, .8 Vh (4 P 10000) .’
(5) Power at 30000 feet, .8 Vn (5 P 300009, .

ry -
Data for the E2A in these conditions was taken from the appendix to Reference
6, Table B, and is reproduced in the Appendix. The control actuators were repre-
sented by first order lags with bandpass frequencies of 10 radians/sec for
. the rudder and 20 radians/sec for the ailerons. The input was standardized as
© a demand for a roll from -45° to +45° with a peak roll rate as near as possible
to MSO/second; a rate only, in fact, attainable in flight conditions with a
fairly high dynamic pressure. Using a gain constant K=1 between the control

2 .

wheel angle ¢w and the desired roll rate p,., Lhis maneuver is obtained by
o

setting the initial control wheel rate rw(0O) to 180°/sec and w, = 1,u)2 = 2 in

rudder is limited to * 10° during the power approach and up to maximum of 160

knots EAS, £ 3° up to a maximum of 220 knots EAS, and * 2° at higher speeds.

- Only in condition 4 is the equivalent airspeed greater than 220 knots. The
limits of the deflection of each aileron are -25° and +15° during the power
approach, and -18° and +150 in the other flight conditions. It is possible to
optimize the control of both the rudder and the aileron, or to assume that the
pilot's command is fed directly to the aileron, and to optimize the control of
the rudder only. Both approaches were tried. ‘ ’

When the control system has authority over both the rudder and the
aileron, it was found to be sufficient to integrate the matrix Riccati equa-
tion over a period of 10 seconds to obtain convergence to a final answer.
Tables 1-3 show the optimal gains for the different flight conditions with
three choices of the weighting coefficients in the performance index (4). For
.- all three tables the same coefficients Q2 = 1 and Q3 = 1 were used for the

i~r equations (3). The authority of the stability augmentation system over the

roll rate and roll angle errors p-pp and ¢~ ¢]). Also, 1t was found that by

- fixing the coefficients for the penalties on the rudder and aileron signals
at Rl = 30 and R2 = 10, the control signals can be kept within the authority”

limits during the test rolling maneuver from - 45° to + 45°, By raising the
coefficient Q, for the sideslip angle g from 10 Design 1 (Table 1) to 100

Design 2 (Table 2) to 1000 Design 3 (Table 3) systems cen be generated

Grumnan
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which progressively eliminate sideslip at the expense of a slight reduction
in the speed of response., This 1s illustrated in Figure 2 in which trajecto=-
ries resulting from these three choices of Ql are overplotted for a single

flight condition, the cruise at 10,000 feet. The first three plots show the
achieved sideslip, roll rate, and bank histories and the corresponding ideal
histories. The next three plots illustrate the resulting histories of yaw rate,
rudder, and ailercn for the three designs. The remaining two plots show the
prescribed wheel rate and wheel deflection histories, llote that the desired

roll rate history is taken to be the wheel deflection history.

Table L4 contains the relevant peak and final values of the aircraft state
variables for all five flight conditions to indicate the trade for increasing
values of gain, The system implied by Q, = 100 was selected because it sup-
presses unwanted sideslip without gains™so high as to result in large signals
in any of the indivicdual feedback paths. This is desirable so that certain
paths -cen be safely eliminated either by design or as a result of failures.
The curves for the other flight conditions were similar to those of Figure 2.

Table 5 compares the characteristic roots of thé free airframe with those
of the dval input optimal closed loop system for Ql = 100, The spiral mode of

the free airframe is generally unstable, its roll subsidence mode is stable,
and its Dutch roll is lightly damped with a natural frequency roughly propor-
tional to the square root of dynamic pressure., The optimal control system
stabilizes the spirel mode for every flight condition, increases the rate of
roll subsidence, and yields a well damped Dutch roll with a damping factor .6
and a damped natural frequency from l% to 2 times that of the free airframe.
The assumed bandpass frequencies of the actuators are much higher than both
the aircraft natural frequency and the highest expected frequency component
of the pilect's input, thus the actuator characteristics were hardly altered by
the introduction of feedbacks.

For the study of optimization of the rudder circuit alone, a connection

" coefficient from the input to the aileron was chosen so that the aircraft -

would roll approximately from -45° to +45° while all the feedbacks to the
ailleron were deleted. The coefficient Ql in the performance index was fixed at

the value of 100 already found to give desirable results., The roll rate and
roll angle errors and their corresponding coefficients Q2 and Q3 vere elimi-

nated from the performance index because the rudder should not be used to
control the roll angle. The coefficient for the rudder signal was fixed at
Rl = 30. It was found that the matrix Riccati equation now only converged

after integration over a much longer period, on the order of 100 seconds.
Although the aircraft meets Kalman's requirements of controllability, longer
optimization intervals are apparently required because the slow spiral mode

is only weakly represented in the performance index when neither the roll angle
nor the roll rate is included as an output variable. For an optimization
interval of 10 seconds, the initial feedbacks are much the same as the cor-
responding values computed for the rudder and aileron case. In the latter -
case, the "ten second” aileron feedbacks stabilize the spiral model. Table

6 compares the feedbacks obtained for an optimization interval of 10 seconds
with those obtained for an interval of 100 seconds.
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To discover the effects of optimization interval in this case, cconparison
trajectories were run using bcth sets of gains. Table 7 indicates that the
"10 second" gains do considerably better than the converged gains in terms of
the suppression of peak values of sideslip for a given peak value of rudder
over the first 10 seconds of the maneuver. Thig indicates that for cases in
which aircraft behavior over short intervals is more important than stability
on the infinite time interval, short enough optimirzation intervals should be
used. For the stability augmentation of piloted aircraft, this is an important
reason for carrying out the optimization in the time domain where both finite
and infinite intervals may be considered. Analyses which are restricted to the
frequency domain as well as those involving the usual concept cf stability
exclude this option. As a matter of fact, a roots analysis, which considered
the stebility of individual poles only, would surely lead one to select the
100 second gains upon examining Table 8. Roughly speaking, ovotimal gains for
the essentially infinite optimization interval produce identical poles as

those for the short interval, aside from reversing the»éign of the spiral
root. '

Simplification of the Kalman System Lo

Implementation of the full Kalman solution would result in a complex
control structure as evidenced by the block diagram cf Figure 1. Furthermore,
the values cof the feedback gains vary with the flight condition, However, it
was found that the Kalman solution could be used as a gulde for the design of
a fixed gein system with a reduced number of feedbacks which resulted in near
optimal performance throughout the flight range. Since an eventual comparison
with the existing E2A desipgn which uses feedbacks 4o the rudder crnly was '
desired, only the "rudder only" optimal system was considered., Examine Tables

1, 2, and 3. The feedbacks from 6a’ T, Pp ¢ are consistently so small that

their effect on a "typical” rudder signal can be ignored. The feedback from
dr has the effect of speeding up the rudder actuator. Since the speed of this
actuator was a condition of the problem, this feedback must be ignored. Fur-~

- thermore the remaining feedbacks from B , P, and r are relatively invariant

with flight condition. It was thus possible to choose fixed values for these

four feedbacks as a reasonable sub-optimal system. The block diagram for this
system is shown in Figure 3.

For comparison with this suboptimal system, the existing E24A system, which
is displayed in Figure 4, can be examined., TIn the E2A system, wvhich uses
feedbacks from the side force, roll rate and yaw rate to the rudder, the side
force and roll rate gains are adjusted for changes in dynamic pressure by
nonlinear potentiometers.- The rudder gearing is increased by a factor of 2.5
when the pedals are allowed 20° of authority during the power approach., More-~
over, the side force loop has a low pass (turn coordination) filter and the
yaw rate lcop has a high pass (washout) Tilter. The feedback gains shown in
Table 9A were not optimized according to some precise performance index: they
varied during the flight test program until the pilots found the aircraft's
handling qualities to be acceptable. Ignoring filter dynamics the existing
E2A feedbacks are equivalent to feedbacks from B, p, vy and dr vhich are
shown in Table 9B.

@Mm
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Assuning that the time history of the control wheel is specified, com-
rarison trajectories can be computed corresponding to several candidate con-
trol systems. In this case three candidates were selected: 1) No feedback
control, 2) the Hominal E2A System, 3) a possible Suboptimal fixed gain
system suggested by the results of the Kalman method. A summary of this com-
parison is shown in Table 10. It should be emphasized that the particular
suboptimal system chosen for comparison was in no way optimized. Methods for
cptimizing systems with constrained configuration for a set of flight condi-
tions are currently being pursued, Reference 7.
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TABLE 1
E2A Optimal Gains Weights: Q) =10, @, =1, Q, =1, R = 30, R, = 10
A. Rudder Feedbacks
Flight
Condition| 1 PA 2 CR 10000 3 CR 30000 P 10000 5 P 10000
B -.245 ~.260 -.279 -.237 -.279
-.0080 . 0072 .0087 -.007L .0015
¢ .0263 .0240 +0196 .0099 .0126
r .365 .331 .360 f221 v .331
Sr -.0734 ~.130 ~.148 1?}.206 -, 165
ba -.0036 -.0003 .0015 - .0021 . 0020
v -.0385 -.0234 -.0178 -;0091 -.0136
Py -.130 -.860 -+ 0660 -.0356 -.0511
¢ -.0916 -.0626 -.0481 -.0266 -.0375
Aileron Feedbacks -
8 -.153 L0711 .155 .240 .199
p“ - 177 -.197 . -.236 -.171 -.228
s -, 35k -.312 -.311 -.312 -.312
r .148 .0237 -.0034 -.0327 -.0223
or -.0217 -.0016 .0088 .0124 .0118
ba -.0361 -.0780 -.101 -.193 -.124
v .0927 L0770 L0732 L0516 | . 0669
Py 360 W37k, .378 .36k .376'
¢p . 267 297 «305" .313 .309

—
gﬁll/ﬂ/ﬂdﬂ.
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TABLE 2
E-2A Optirmal gains; Q) = 100, Q, =1, Q3 =1, R =30 R, =10
_____A. Rudder Feedbacks

Flight

Condition|1 PA 2 CR 10000 3 CR 30000 |4 P 10000 |5 P 10000
8 -1.242 -1.273 -1.321 -1.250 -1.333
o) - L0677 - 0177 - 011k - .0257 - .0176
o | - .108 - .0b58 - 0292 - ;0310 - .0302
T 942 810 .8h7 1.569 787
or - 179 - 294 - .322 fﬁf L7 - .363
sa - .0182 - .01Lb T (R .0031 - .0071
rv - .0289 - .0163 - .0120 - .0027 - L0077
v, | - .03 - 0673 - .0513 - .0139 - .03L9
¢ - .07h0 - .0510 -~ .0313 - .0112 - L0272

B. Aileron Feedbacks

8 -.798 - 352 - 179 .236 - .0039
P -.233 - .211 - .2hs5 - .17h - 234

¢ -.b71 - .39 - .331 - .318 - .32k
r 61k 264 .18 - .0010 L0967
or -.109 - .0866 - 0609 - .0185 - .0L26
sa -.0495 - .0859 - .106 -~ 194 - .127
rv .1oi .0812 .0758 L0531 .0689
Py .382 .384 .385 .369 .382
o 282 .303 +309 .316 .313

ADN 06.05-69.1
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TABLE 3
E-2A Ovtimal galns; Ql = 1000, Q2 =1,Q =1, R, =30 R. = 10

—_—

)

Pun—

L

-

[ e

3 1 2
A. Rudder Feedbacks
et o 2 CR 10000 |3 CR 30000 | 4 P 10000 |5 P 10000
B8 -4 .831 ~4.918 -5.021 -4 .899 -5.061
D - 143 - JOhTh - 0347 - .0516 - .oud7
¢ - 347 - 167 - .115 - .9961 - .105
r 2.119 | 1.769 1.822 1.277 1.700
or - .380 - .582 - 622 }§E.923 - 697
da - .0371 - .0331 - .0248 - .0015 - .0162
rw - .0201 - .011k - .0081 - .001L - ,0033
‘ 3 - .0752 - .0516 - .0387 - .0052 - .0207
¢p - .0551 - .0ko2 - .0306 - .C039 - 0169
B. Aileron Feedbacks |

8 -2.432 -1.578 -1.111 640 - 420

| p | - .21 - .223 - .253 - .17k - .238

| - 6ot - 395 - .355 - 317 - .336

r 1.262 626 461 .0347 234
sr | - .223 - 199 - .1k49 - .0093 - 097k

Sa - .0615 - .0936 | - .110 - 196 - .129
rw .107 ~ ,0836 L0773 .0535 .0699

P, o1 .391 .389 : .37d .385

?y 204 .308 .312: .316 315

- v ?&wzﬂnﬂﬂ.
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TABLE 4

Relevant Peak and Final Values of Aircraft State Variables

for Different Settings of Ql for Rudder

and Aileron Control on a 10 Second Rolling Maneuver

19

Flight Q 1 PA 2 CR 10000 3 CR 30000 4 P 10000 5 P 30000
Condition : /ﬁﬁ -
B
Peak 10 2.8 1.8 1.3 1.7 1.3
Slideslip 100 .7 A .3 .3 .3
(Degree) 1000 .2 .1 .1 .1 1
Peak | 10 6.2 3.4 2.5 1.1 1.8
Rudder - 100 5.0 2.6 1.9 1.0 1.5
(Degree) 1000 5.4 2.8 2.1 .9 1.6
DPeak 1C 15.6 ih,2 12.8 9.1 11.5
Aileron 100 21.2 14,9 13.2 9.3 11.8
(Degree) 1000 22.0 15.1 13.3 9.3 11.9
Peak 10 23.9 35.9 39.1 4b1.0 Lo.s
- Roll Rate 100 23.6 35.7 38.9 40.8 L4o.4
(Deg/sec) 1000 23.0 35.4 38. 40,7 40,2
Final 10 27. 40, 42, L3, L3,
Roll Angle 100 26. 4o, L2, L3, 43,
(Degree) 1000 26. 40, 4o, L3, 43,
Final 10 4.1 4.3 3.3 2.8 2.9
Yaw Rate 100 4.3 L,2 3.2 2.9 2.9
(Deg/sec) 1000 4.3 4,2 3.2 2.9 2.9

@W
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Comparison of Free Air Frame Root

TABLE 5

5 and Optimal Roots

Using Optimal Feedbacks to Rudder and Aileron

Q,l=lOO,Q2=l,Q3=l: =3O9R2=lo
) ‘.
Flight s
18 1 PA OC 30070
Condition | SYstem 2 CR 10000 | 3 CR 30000 | L P 10000 | 5 P 30C7
Dutch Roll | FAF .287 .131 .07k .126 .072
Damping OPT .628 614 616 604 618
Dutch Roll | FAF e 1.35 1.34 1.99 1.4
Frequency OPT 2.11 2.82 - 2.88 4,33 3.18
Spiral FAF + 034 + ,012 + .000 + 000 + ,005
Root OPT - .368 - .68h - .818 - .825 - .8uy
Roll FAF - 2.79 - 2.70 - 2.09 - 5.37 - 2.45
Subsidence OPT - 3.10 - 3.70 - 3.43 -10.15 - L,36
Root
Rudder FAF -10.00 -10.00 -10.00 -10.00 -10.00
Actuator OPT -10.00 ~10.02 -10.02 =-10.52 -10.Ch4
Root
Aileron FAF -20.00 -20.00 -20.00 -20.00 -20.00
Actuator OPT -19.96 -19.82 -19.79 -17.80 -19.65
Root

@uwwzm
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E2A Optimal

TABLE 6

Gains; Stability Augmentation by Rudder Only

21

Q = 100, R, = 30
Flight T :
Condtn (sec) 1 PA 2 CR 10000 | 3 CR 30000. | 4 P 10000 | 5 P 10000
8 10 -1.307 -1.277 -1.312%: -1.246 -1.322
100 -1.226 -1.311 -1.340 ¢ -1.250 ~1.345
10 -.109 -, 0467 -.0388 -.0298 -.0350
P 100 .08L -.005 -.001 -.028 -.019
4 10 -.195 ~.0988 - . 0691 -, 0421 - .,057h
100 .370 013 - .013 -.031 -.019
i0 1.003 Loa7 .Cud 568 . 784
r 100 1.004 .835 .860 .569 .793
5 10 -.189 296 -.322 - 476 -.361
or 100 .208 -.305 -.328 - 77 -.365
s 10 -.0270 -.0267 -.0225 - .0086 -.0173
A 100 .0123 -.010 -.010 ~-.006 -.008
. 10 . 000k -.0012 -,0003 -.0014 .0005
100 .263 048 024 .006 .019
10 -.0u83 -.0309 .0153 -.,0025 - . 0081
Pp 100 .631 .120 .058 .018 048

-

=
g/uwwm
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Q = 100, R, = 30

TABLE 7

Relevant Peak and Final Values of Aircraft Variables

for Rudder Control on a 10 Second Rolling Maneuver

no
N

Flight

2 CR 10000

*

?."  i

*

o

N

I el e e

P

corgition | (gec) 3 CR 3009@5 L P 10000 | 5 P 30000
I

Peak 0 9.8 7.1 4.3 6.7
Sideslip 10 1.2 .8 .5 .6
(Degree) 100 2.5 1.2 A 1.1
Peak 0 . 0. 0. 0. 0.
Rudder 10 3.3 2.0 1.2 1.7
(Degree) 100 h.7 2.8 9.0 2.
Peak 0 13.5 9.0 3.0 9.0
Aileron 10 13.5 9.0 9.0 9.0
(Degree) 100 13.5 9.0 9,0 9.0
Peak 0 36.4 33.3 40.9 38.3
Roll Rate 10 36.2 32.8 39.5 37.4
(Deg/Sec) 100 33.4 31.1 39.2 35.9
Final 0 22, 20. 31. 32,
Roll Angle 10 52. L3, L1, 50.
(Degree) 100 ok, 25. 37. 3k,
Final 0 2.4 1.6 2.8 2.2
Yaw Rate 10 4.8 3.4 2.8 3.4
(Deg/Sec) 100 2.h 1.8 2.4 2.2

l

—
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TABLE 8

" Comparison of Roots of Free Airframe with Optimal Roots

Using 10 Second and 100 Second Optimization Intervals
for Q,l = 100 Rl = 30 Using Rudder Feedbacks Only

23

Flight Syst 1 PA 2 CR 10000 CR e I P 10000 | 5 P 30600
Condition ystem 3 CR 30009 5> P 3000
Dutch Roll FAF .29 .13 .07 .13 .07
Damping 10 .63 .61 .62 .68 .62
100 .63 .61 .61 .68 62
Dutch Roll FAF R 1.35 1.34 1.99 1.44
Frequency 10 2.18 2.75 2.83 4.30 3.13
100 2.18 2.75 2.83 100 3.13
Spiral FAF 034 .012 .009 -.002 .005
Root 10 .089 .0l3 029 +,009 .002
v 100 -.095 -. 0Ll -.030 -.002 -.002
Roll FAF -2.79 -2.70 ~-2.09 -5.35 -2.45
Subsidence 10 -2.79 -2.67 -2.02 -5.35 -2.38
Root 100 -2.79 -2.67 -2.02 -5.35 -2.38
Rudder FAF
Actuator 10 |-10. -10. -10. -10. -10.
Root 100
Grumnan

ADN 06-05.69.1
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TABLE 9

N
P

Nominal Feedback Gains for the Existing E2A - Rudder Feedback Only

A, In Terms of %y’ P, T

4
-

f

e e -

-

—

cot8ht | 1 PA | 2 CR10000 | 3 CR 30000 | & P 10000 | 5 P 30000
8, 71.6 15.3 14.8 7.9 ' 12.9
D -.324 -.070 -.067 -.036 -.059
r 1.27 .38 .38 .38 .38
B. 1In Terms of B, p, r, 6r
V,ciiﬁﬁﬁﬁén 1 PA 2 CR 10000 | 3 CR 30000 | 4 P 10000 | 5 P 30000
B -1.075 -.301 -.308 -.398 -.325
P .296 . 065 . 06l .034 .057
r 1.3k 39 .39 .39 .39
5 .53 .19 .20 .2l .21
C%;%wwymmm
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TABLE 10
Relevant Peak and Final Values of Aircraft Varisti.zs
for Control Systems Using:
No Control (NO)
Nominal E2A Control (NOM)
A Fixed Gain Suboptimal Control (SUB)
;
1 Control i
Flight ontro . , e
Condition System 1 PA 2 CR 10000 | 3 CR 30000 4 P 10000 5 P 30000
Peak NO 11.2 9.2 4.5 2.5 4,1
Sideslip NOM 2.7 2.7 1.0 .9 1.1
(Dezree) SUB 1.6 .8 .7 .3 6
Peak NO 0. 0. 0. 0., 0,
Rudder NOM 5.05 2.70 1.45 .63 1.26
(Degree) suz L,06 3.05 1.45 al 1.24
Peak NO
Aileron NOM 16,1 14,0 7.0 6.8 6.9
(Degree) SUB
Peak NO 16.1 33.7 22.9 29.6 26.9
Roll Rate NOM 19.7 36.3 25.0 30.4 28.8
(Deg/sec) SUB 18.4 36.5 23.9 29.5 27.4
Final NO -1.6 21.6 2.2 11.9 11.2
Roll Angle NOM e8.2 38.1 14,0 14.8 20.6
(Degree) SUB 26.1 49,1 19.2 21.7 27.8
Final NO ~1.17 1.96 -.52 .96 ~1.09
Yaw Rate NOM 5:06 4,13 1.05 1.01 1.40
(Deg/Sec) SUB 4,32 5.40 1.50 1.53 1.96
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APPENDIX

BASTIC AIRCRAFT DATA
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Inertial and Kinematic Data

Area - 700-ft.2

A-2

Span - 80.6 ft.

Flight Condition 1 PA 2 CR 10000 3 CR 30000 4 P 10000 5 P 30000
Configuration PA CR CR P P

Speed 1.4 Vspa | 1.4 Vser 1.4k Vser 8 Vi .8 Vg
(nominal) '

Velocity 180.9 280.9 417.9 4Y72.0 | 465.0
(ft/sec) '

Mach number 162 .268 120 438 467

Altitude Sea Level 10 30 w10 30

(1000 ft) i
Dynamic Pressure | 38.9 73.3 78.3 196.0 97.0
(1bs/1t2)

Weight L0660, 43087. 43087, 43087 43087
(1bs)

Angle of Attack 3.3 5.7 6.0 i.6 .y

(deg.)

Roll Moment # 116000. 118600, 118600. 118600. 118600.
of Inertia-Ix
(slug-ft2)

Yaw Moment of ¥ | 232700. 235300. 235300.] 235300. 235300.

Inertia=-T . _

(Slug - £t2)

Roll/Yaw * | 1h300. 14200. 14200, 14200, 14200.

Cross Product . .

of Inertia - Ixz

(slug - £t2)

*Body Axis

?A’Mﬂm
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A-3
"Dimensionless Aerodynamic Derivatives

Flight Condition 1 PA 2 CR 10000 3 CR 30000 4 P 1000 5 P 30000
Cva(l/rad) -1.29 -.0h6 -.940 ~.905 -.917
Cyp(1/rad/sec) 151k .09k .090 .05 .075
Cyp(1/rad/sec) +373h .315 +313 .303 .310
cYar(l/rad) .63, .602 .596 _.5h7 .602
CYGa(l/rad) o 0 0 0 0

- Cyg(1/rea) - L0672 -.0955 | -.0959 - 0955 | =y.0959
¢, (1/rad/sec) | - 6656 -.534 -.547 15657 - 577

[

Cy.(1/rad/sec) .3405 204 .210 .105 .180
Czsr(l/rad) - .031 -.0258 | -.0206 . 0090 - .0092
Cﬂaa(l/rad) 2116 2324 2370 . 2606 2472
Cna(l/rad) L0648 .0850 .0831 L0779 .0800
Cnp(l/rad/sec) - .0887 - L0629 -.0605 - .0280 - 0496
Cnr(l/rad/sec) - 1577 - 1160 -.1145 - .1050 - .1100
Cnar(l/rad) - 216 - .23h4 -.233 - .216 - 231
Cnaa(l/rad) - .0286 - .0150 -, 0134 - .005h - .010h

/‘
g rummasnt
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A-b4

FORMULAS for the Dimensional Derivatives

. Letting m = \_V%_é_&gﬁ. the formulas relating basic aircraft data to the

dimensional derivatives are:

v a8 _ asb - asb
Y8 = Cys s = Ix Cys By = 1, Cs
. 2 2
vy =3De 5 = B ¢ n =380 ¢
P 2mV “Yp P - 2IxV “gp P 2IzV "np
2 '
Y = asb c ’ gsb c N gsb
r 2mV Yr r 2IxV “or T L 21zV "nr
- B¢ g, = %Be n_ =180
o m Yor Sr Ix "g8a or Iz nér
y =38 - 4sB _ asb
ba m CY5a p6a Ix “p8a néa 1z Cn&a




