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Summary

It is shown that, given a complete measurement of the state, it is
possible to realize the optimal control of a linear system by means of
a compensator which incorporates dynamic elements. In certain circumstances
these dynamic elements can be chosen in such a way that the trajectory
deviations, which result from a bitrary small variations in the parameters of
plant, are smaller than they would be using the state feedback realization
of the bptimal control. In the general case a parameter op?imization pro-
cedure could be used to desig£ a dynamic control equivalenf to the opiimal

N
state feedback control, which would reduce trajectory deYiations resulting

from particular changes in the parameters.



Introduction

_,

) One of the major problems encountered by anyone trying to design a control

system is that the parameters of a physical plant are often not accurately

known, or else subject to variations in the course of normal operatipn. This is
prarticularly the case with an aircraft, the characteristics of which may changef
drastically over the flight envelope. It is generally desired to produce satisfactorj
behaviour throughout the flight envelope,while restricting the complexity of

the control system. " ; )
.

An effective approach to the design of controls for,gpmplex malti-input
multi-output linear systems has been fouﬁd to be optimizé£gon of a quadratic
performance index. Consider the constant linear system

J'c=Ax+Bur : ' (1)
whére x is the state wvector, of dimension n, and u is the control, of dimension n.

If the control is chosen to minimize the performance index

[«<]
J = j;(ﬁhx-+u$mn dt | (2)
where Q is non-negative definite and R is positive definite, it is well known
[17 that the optimal control is a linear function of the state
u = Dx _ _ ‘ (3)

where

R"1Tp -

and P is the unique positive definite solution of the matrix quadratic equatioh

D

Q+ AP+ PA-PBRTBE = O | (1)

Solutions of this type can be feadily computed.



One might be tempted to conclude that, assuming measurements of the complete
state vector x are available, there is no profit in considering any other class
of control. For a plant which varies, howéver, the strict realization of a
control which is optimal for all conditions of the plant would require a system
with feedback gains scheduled as functions of the variable parameters. To limit
the complexity, one might prefer to implement a system which is optimal at a
numbér of design points, and fix the gains for a range of parameter values close
to each design point. 1In thié case, if the control could be constructed in

;
parameter variations,
) -

"

such a way as to reduce the sensitivity of the system tol
it should bevpossible to extend the range of variations E%er which the gains:
.are fixed, and to reduce the number of design p&ints. Viewed in this light,
it will be shown that there may in certain circumstances be an advantage in
considering‘a wider class of control systems,in which the control is reaiized

with the aid of dynamic elements, so that the form of the control is

1]

u Hx + Kz B : , (5)

where

I

"~i‘ Fz + Gx + Eu S o (6)
Suéh controls can be designed in such a way that for the nominal parameter values
they are equivalent to the state feedback control (3), while'permitting some
additional degrees of freedom in the design, which may be used to try to limit

~the sensitivity. In this respect,it is worth noting that one of the reasons
for using feedback controls themselves is in order to reduce sensitivity to
parameter variations, and it has been shown that optimal linear feedback control
systems do in a certain éense reduce thé sensitivity of the system,compared

- with open loop controls which would give the same trajectory for the nominal

parameter values [27.
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Equivalent dynamic and state feedback controls

By a suitable choice of the matrices F, G, and E; which define the auxiliary
system (6) used in the realization of the dynamic control (5), it is possible

to make z approach Wx, where W may be chosen in any desired manner. Let

v = i_ - Wx (7)
Then
v = £ - Wk
= F (v + Wx) + Gx + Bu - WAX -~ WBu -
Now let G and E be chosen to be ., S : -
G = WA - WW | o (8)

E = WB (9)
It follows that
v = Fv | (10)

and if F is stable,v = oas t »> o, so that z - Wx. Also

u (H+XW)x + Kv
Now let H be chosen to be

H =D - W : - - - (11)
Then

u Dx + Kv . : (12)

‘and if z(0) is set equal to Wx(p), it follows from (10) that the dynamic control

(5) is identical to the state feedback control (3) for all t.



Sensitivity using the state feedback and dynamic controls

The sensitivity of the system to parameter variations will now be considerédg
vwhen the alternative controls (3) and (5) are used. An important measure of
sensitivity is the deviation in the trajectory,which results from parameter .
variations [37], [4], [5], [6]. Suppose that the matrices A and B in (1) depend
on a set of r paraméters, which may be regarded &s defining a vector . TLet
the state feedback and dynamic controls (3) and (5) be chosen so that they are

*
identical when U has its nominal value U, and consider the effect of a variation

[

* : .

o= g+ A v
where

N = ebdu

and € is a scalar. Define

o _ lim I P *
B = UL, & LX(p) - x(u i]
, _ 1im 1 7., Cx o
du = € 5o o 'iu(J) - ulu {J

Then the variation of (1) leads to

8% = Asx + Bbu + GAx + OBu (13)

| N o |
-%g- bu,, 8B = T %%}- S (%)
=1 M4 : i=1 i *

g
i
ng Ly

Let the subscripts ¢ and f denote the state feedback control (3) and the
dynamic control (5); Then, introducing the variation of (3),

&%, = (A+BD) 'ch + Mx _‘ 15)
where .

M = 8A + &I : - (16)
and x is the staﬁé vector on the nominal trajectory. Also it follows from
(12) that

buf = D6xf r+_'K6v

vhere from the definition (7)

bv = 62 = Wéxf
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Thus using equations (8) and (9)

N = &2 - w&:'cf

F (&v+W5xf) + Géx, + Ebu,

-W (Aéxf + Btsuf + B8Ax + ©&Bu)

Fsv - W (8Ax + 6&Bu)
Remembering that for the nominal trajectory the error v vanishes and the control
is identical to Dx, it follows that

5%, = (A+BD) &x, + B};év + Mx . i (17)

£

& = ' Fov - WMx S i ‘_ (18)

e
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Design of the dynamic control to reduce sensitivity

Comparing (15) and (17) it can be seen that the differential equation
satisfied by 6xf differs from that satisfied by'éxc by the presence of the
additional term BK&év. Regarding (18) as a system with Mx as its input, and
BK6v as its output, one might try to choose Wy, Fy, and K in such a way that
BK6v tends to cancel the forcinp~term Mx in (17). It is clear that in general
a complete cancellation may not be pPossible, because the rank of B is at most m,
whereas M may be of rank n, so that if m < n the vector BKQV is restricted to
& subspace of the space in wﬁich Mx may lie, ' i‘ v

Consider, however, the case in which M can be eipr%g%ed as

M = BL . - (19)
where I is an m x n matrix. This is pbssible when B‘has rank n, It is also

Possible in the case of the single input system in phase variable canonical form,

0 1 e 0 r-O

O O l LN O O ’
'A? B= =

O o LN ) l

a‘l a2 LK N ) an l

where only the 8 %ary so that

L= [%ai 6a2 cee éan:]

If (19) holds, then (17) and (18) become

8% (A+BD) &x, + B (Kov + Ix) , , (20)

f £
& = . FPév - WBIx : ~ (e1)



Now it is possible to choose W, F and K in such a way that the output Kov of

the system (21) approaches the negative of its input Ix. The deviation in

v is .
t ' .
sv(t) = j o (t,7) WBLn(T) ar _ , (22)
o ,

where © is the transition matrix,which satisfies
d
E%— D (tsT) = F(t) ® (th)’ ar © (t’T) = - ? ,(t,T) F(T)

Since F is stable,it is non-sihgular, so that (22) can be integrated by parts

to give ' ) ) d

F-l

6v(t) WBLx(t) + o (t,0) Ft WBLx(0) A

4 ) =1 d
+ )‘ o (t,T) F ~ WBL -(TT—-x(T) dr
0 .

- Ft WBLx(t) + co (t,0) pL WBLx(O)

. + i
+ S o (t,T) rt WBL{A+BD) x (1) 4T
- . O » .
~ Repeating this process, it can be seen that
sv(t) = -z x(t) + @ (t,0) Zz x(0) o (23)

. Where '

1 2

Z = FWBL + F ° WBL (A+ED) + F~3 WEL (A+BD)2 : | (24)

“If WTF and K can be chosen so tha'_t
K2z, =>1L. o ' ' | (25)
. then . .

Kév(t) + Ix(t) = Ko(t,0) 2 x(0) » 0 as t - =,

Let X, and My be the eigenvalues of A+ED and F. Let a = max | A | and
: i
B=min | u, |.
j J



1r _B 21, then the series (2L) is rapidly convergent, so that the first

term :s dominant, and (25) is approximately satisfied if

kFE = 1 (26)
Also

Il o (£,0) | < 7FT
so that Kév + Lx is very small within a time of order ...:BL.

.»'_— Y
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Example .
( The following simple example shows that this approach can be effective

in leading to a reduction in sensitivity. Consider the first order system

X = =|lx +u

*
where {4 has the nominal value W =1

Let

vwhich optimizes the performance index
©

7= (35 + u°) at - . o

Also let the dynamic combrol be - : 5

u (1L +Xk)x + kz
where

2 = - fz '+ (f-1)x '+ u, z(0) = x(0).
This control satisfies equations (8), (9), and (11) with

z = x + v
and

¥ = - fy

Supposelthat there is a variation in 4 to 1 + eby where &u is constant for
all %, Then, using the state feedback cohtrol,

s = -26x - &ux, ox (0) =0

On the nominal trajectory

so that

x(t) = e x(o)




-11= -

Thus the solution for the trajectory deviation is
5xc(t) = - g et 8ux (0 )

Also using the dynemic control,

¥ = - o+ -
6xf . 26xf kv Sax
where
& = = fov + Bux
Substituting the solution for x, &v is found to be
-2t - .
ov(t) = = - ¢€ x(0) &u
f.2 ' .
_ du [ -ft ] :
ra— [*(8) - e x(0) e

e

In this case condition (25) can be exactly satisfied by setting

k = £-2

Then
L LTt

k&v(t) - dux(t) = -e x(0) su

and the trajectory deviation is found to be
-t e-2t _
6xf(t) = _& - 8.x( 0)
f-2.

The:rétio of the trajectory deviations-with,the alternative controls is

fo 1 - e‘;(f-? )t

ox , (£-2)t

But if £> 2, then for all:it >0

1> e'(f"z)t > 1a (f2)t

It follows that for all t > O

oxp

0 < <1

X
c
It may be noted that the approximate condition (26) is satisfied by sebting

k = ¢f

A}



(, Then
' 2 f -t
’ kbv(t) - &sux(t) = o Sux(t) - T5 € 8ux (0)
and
-2% -t -2t
_l2te f e e
shp(t) = l:f-E B - Ry €D E ]6w‘(°)'
Thus
bx :
£ 2
- 8 - F3 (1-8)
(o]
where ;
5 - l_e-(f-z)t - , .
(f=2)t '

s
-,'L‘
Since & lies between O and 1 when t >0 and f-2 > 0, it follows that in this

case

f
léx l<1
c

for all t > 0, provided that f > L.
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Conclusions

It is clear from the example that it is possible, at least in particular
cases, to construct a dynamic control which is identical to the optimal state
feedback control when the parameters have their nominal values, and which leads
to a reduction in trajectory sensitivity compared with the state feedback control.
The example may be contrasted with an example given by Kreindler [47], in which
he showed that the trajectory seﬁsitivity of a first order system could be

reduced by replacing the optimal state feedback control by a dynamic control,

which was close, but not identical, to the state feedback control on the

nominal trajectory. In the general case, when conditionﬁ(l9) is not satisfied,
) - - " ’L

so that it is not possible to design the auxiliary system to produce a complete

cancellation of the forcing term in (17), it is possible to define some measure

of sensitivity such as

Voo 8x2Z &x at

: where Z is positive definite, and to use a parameter optimization procedure

to determine the matrices K, F and W in equations (17) and (18) which minimize
“V,'subject to some constraints on the magnitude of their elements. Then the
:matrices G, E, and H in equations (5) and (6) may be constructed using equa--
-tions (8), (9), and (11). It is evident that this procedure can at worst result
+in a system with the same sensitivity as the optimal state feedback system,
because this systeh is a member of the class under consideration, for which
-K =0. It will in general lead to a solution which'is dependent on the

‘nature of the parameter deviations.
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