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Summary

It is known that, in general, restricting the feedback structure causes
the optimal feedback control of a linear system to depend on the initial
condition of the plant. It is shown that it is, however, possible to alter
the performance index in such a way that specified feedbacks are eliminated
from a control, which minimizes the new performance index for all initial
conditions. Analysis of a class of composite systems, in which a main plant
is driven by an auxiliary plap%, suggests that, for this class of systems,

the change in the performance index, required to eliminate feedbacks from the
. g .

auxiliary plant, should not lead to a large change in thé”éharacteristiés of

'

the resulting system.
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Introduction

One of the most effective approaches to the design of controls for
complex multi-input multi-output systems is to minimize a quadratic perfor-
mance index. It is well known [1] that this leads to a control which is
a linear function of the state, and which can thus be realized by feedbacks
from each stéte variable. The neéd for a measure of every state variable is
to be expected, because this is the minimum information required to integrate
the equations of motion and predict the path. Measurements of some of the

v v
state variables may, however, be relativély unimportant,:ﬁy it may be incbne
venient to me¢hanize certain feedbacks. If, for example:’%he main plant is
controlled through actuators, and the equations of motion of the actuators
are included in the mathematical model, the feedbacks from state variables
representing the actuators probably do not convey much information about the
motions of the main plant, and they may represent a demand for an increase

in actuator performance which is not available.

it is known that if certain feedbacks are eliminated,and the remainder

are then chosen to minimize a quadratic performance index, the optimum gains

depend on the initial condition of the plant [2]. It will be shown, however,

that if a suitable cross product term between the control and state vectors

is added to the performance index, then.if is possible to construct a control

- from which specified feedbacks are eliminated, and which minimizes the modified

performance index for all initial conditions of the'plant. Since the perfor-
ﬁance index is usually introduced simply as a convenient method of obtaining
some desired characteristics in the system, it is not unreasonable to modify
the performance index, as long as the resulting system still retains similar
characteristics. One might guess that if the feeabacks which it is desired
tb eliminate are relatively unimportant, the required modification of the per-

formance index should have a correspondingly insignificant effect on the



(o characteristics of the resulting optimal systexn. This question is investigated -
| for the case of,a main plant driven by an auxiliary plant, for which it is
desired to restrict the feedbacks to the main plant. It is shown that if the
auxiliary plant has a much faster response than the main plant, and the
original performance index contains only the state vector of the main plaﬁt,
then
(a) the unreStricted optimal control with feedbacks from both
plants approaches the control which would have beEn‘obtained .

*

if the main plant were optimized by itself. =, -
, 2 |
(b) a restricted optimal control, with feedbacks from the main

plant ondy, can be constructed which has the same property.




Construction of an optimal control with specified feedbacks eliminated

Consider the linear sysﬁem
X = Ax + Bu (1)
where x is the state vector, of dimension n, and u is the control vector, of
diﬁension m, and A and B may be time véryiﬁg maﬁriées. It will be assumed
that the columns of B are independent. ILet u be chosen to minimize the per-

formance index
T .\ .
J = (xTQ,x + u'I:Ru) dt : , (2)
0 : .
where Q is non-negative definite and R is positive definite. The optiial

ISy

control is then [1] : : 54
R | )

where P is determined from the matrix Riccati equation

b =q+A"P + Pa - PRRBP | © (4a)

P(T) = 0 : (bv)
Suppose that the performance index (2) is replaced by the modified index

T T T_T . T :

M = (x"Qx + 2u'B'Kx + u Ru) dt S (5)

which contains an additional cross product term between x and u. ILet
A -1 ,
u = & - »leTkx (6)

Then expressed in terms of G the performance index beccmes
T ' ‘
M = { x' (Q-K'BRBK) x + & R G}d’t , (7)
0
and the system equation (1) becomes
x = (A-BR']BTK) x + BR - (8)
These equations are in the same form as (1) and (2). Thus the optimal

F
control u is

£ - r T o | (9)



where
» - P = Q - rieR BTk + (A-BR'lBTK)TP
( ; Lo |
+ (a2 8%%) P - per7l8TR ' (108)
P(T) = 0 ' (10b)

It follows from (6) that the control u which minimizes the performance index
(5) is
u = Dx ' ' (11)

where

i

D R8T (pek) ! | . | (1)

and P satisfies equation (lO), which may be rearranged ags . -
° T T '- .I A
-P = Q@ +AP+PA - DRD (132)
P(T) = 0 ' - (13pb)
The matrix X in the modified performance index M has not yet been

specified. Let it now be chosen in such a way that certain specified feedbacks

_Qfﬁ' are eliminated. If, for example, Drs is to be eliminated, then according to
(12) K must satisfy

n m ’ 8
T U.K _==-% U_P, . ’ (14)
. ri is . ri “is »
- di=l i=1 .
ﬁﬁere

and the assumptions that R is positive definiﬁe,and that B has independent
golumns,ensure that the rows of U are inéependent. Provided that the control

u is not of greater dimension than the state i, it then follows that a solution
to equation (1l4) always exists,'and is in general not unique. A case of
particﬁlar interest is when it is desired to use feedbacks only from a specified
output vector of dimension p,

y = Cx v" (16)




where C.is a given p x n matrix. Then (14) is satisfied by setting

(7 K = P (EC-I) (17) -
: where E is an arbitrary n x p matrix. The optimal control
becomes
u = -R" B pEy (18)

Since it is proposed to modify the performance index by a term which
depends on the equations for determining the control,'it needs to be verifiea
that if the control and the performance index are jointly constructed in this
manner, the control actually‘minimizes the resulting perforﬁance indq}. This
will now be proved. . Qﬁ; -
Theorem 1 : -

Given the system (1), let P satisfy (13), and let the control law be defined
by (11) and (12), where K is chosen to satisfy'(lh), so that specified feed-

backs are eliminated. Then the performance index (5) is minimized.

Q Proof: let u be an arbitrarily chosen control.

Using (13) and (1)

‘ xex = xTéx - (x - Bu)TPx - XTP(k - Bu) + xTDTRDx
Thus o » .
XTQ,x + 2uTBTKx + uTRu

-«%E (XTPx) + u?Ru + uTBT(P+K) X + xT(P+K)TBu + XD RDx

or, introducing (12),

xTQx + 2uTBTKx + u?Ru = - E%— (xTPx) + (u-Dx)TR(ﬁ—Dx)

Since P(T) = O, integration of this equation from O to T yields
Q (u-Dx) Tg (u-Dx) dt

M = xT(Q) P(0) x(0) +

and, since R is positive definite, M assumes the minimum value x?(O) P(0) x(0)

when u = Dx.




-

It is clear, moreover, that numerical inﬁegration of equation (13)
provides a means of constructing the desired performance index and control.
If the system is constant and (13) approaches a steady state as T »> = , a
solution with constant feedbacks is obtained, which minimizes the performance
index M defined over an infinite time interval. Such a convergence is not
assured, however, because the elimination of certain feedbacks may make it

impossible to stabilize the system.
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Main plant driven by an auxiliary plant

Large vehicles, such as ships, or long range aircraft, generally require
aétuators to deflect their control surfaces. If the dynamic equations of the
actuators are included in the mathematical model, the control variables become
the input signals to the actuators. This is a typical example of a main plant
driven by an auxiliary plant. the equation of the main plant is

=A x +By ¥ . : - (19)

*1
where the control y is the output of the auxiliary plant. The equations of

the auxiliary plant are |

vy o= Coxp o (20)
iy = Ay x, B : ( | i (21)'
where u ié the'control input of the whole system.
These equations may be written in combined form as
5‘17 rl Blc; r;‘; | i‘-o v |
= | i | (22)

RN

L%J L% T R
With.é plant of this type, it is likely that it would be desired to limit the
compiéxity of the control system by excludihg feedbacks from the auxiliary plant.
This class of plants is a natural candidate for invesfigation of the characteristics
of control systems designed by the method of modifying the performance index
to eliminate feedbacks. Attention will be restricted to time invariant systems.

The characteristics of the conventional linear optimal control system will

first be examined. Let the performance index be

J = (xlTQxl + u'Ru) dt | (23)
O .

Iet the matrix P of the Riccati equation for the combined system be

divided into partitions corresponding to x, and x_ as

1 2
Pll P12

vl
#

Bl P
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T
= P ima 3 a
where P21 Pioe ‘Thén the optimal control is

B . u = -R-lBETlexl —R'laszegxe | | | (24)
( where » _
| °0 = e A1TP11 * Pafy - PleBeR-lBeTFél (25a)
o = AlTP12 + P BC,+ P A - PBBQR—IBQPQQ (250)
0 = c?TBlTplg * O PpyByCo AETPQE ¥ Poghy - PeeBzR—lBeTpee  (25¢)

If the input y to the main plant could be generated directly, minimization of

the same performance index would result in an optimal input

_ 1T
y o= -R OBy e (26)
where vt '
. ] o 4
‘0—Q+AlP+PAl-PBlR]BlP., (27)
Suppose now that
A, = oF ,B,=0c6,C,=H ' (28)
where
wle = -1 (29)

so thaﬁ the output y of the auxiliary plant tends to follow the input u.
Consider the effect of increasing a, which corresponds to increasing the speed

of the actuators. Then (25c) becomes

T T ' T 1T
= + -
0 H Bl P12 . TElBlH + F aP22 + GPQEF . GPEQGR G aP??

whence as g = »

I P22" ~ Py I

Q-
Also (25b) becomes

T ‘ -
Al P12 + PllBlH + °P12 (F - GR

and as @ > ® the first term becomes negligible compared with the third. Then,

_ 1.7
0 = GGP22)

'using (29),

' -1.T -1 :
P)yBy @ PG (I - RTG aB,F G) | (30)
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- whence
e, I~ el
a

But then (25a) indicates that

1l Pll o~ 1
so that

e, I~ 2, e, 0o~ s o | (31)
and *

e, "p,, Il = B g™, 1~ 2 : 3

- ,
It also follows from (31) that the second term in the bratket in (30) is
negligible. Thus |
G B - :
aPy, > P3B. - . (33)
and making this substitution for QPelTG in (25a), it can be'Seen that the

resulting equation for P approaches the same form as (27). Examination of

11
(24) in the light of (32) and (33) leads to the following conclusion:

Convergence property of optimal controls for composite plants:

Let the composite system defined by equations (19), (20), and (21), vhere the
_ matrices of the auxiliéry system are of £he form described by equations (28)
and (29), be optimized for a performance index of the form (23), contéining
only the state vector of the main plant. Then if the épeed of the auxiliéry
system is increased by increasing the scalar factor a, the optimal control u
of the composite system approaéhes the optimal input y, whigh would have been
obtained by optimizing the main plant alone.

The fbregoing result suggests that the feedbacks from fhe auxiliary
plant are relatively unimportant. The effect of such feedbacks, moreover,
ﬁay well be to call for an increase in actuator performance. In order to
find an optimal control for the combined system, while eliminating these

feedbacks, let the performance index (23) be replaced by
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w
_ T T_T T
M = JZ) (xl Qxl + 2u'B Kx, *+ u Ru) dt (34)
Choosing K so that
T
+ =
B (P,, *K) =0 (35)
the optimal control becomes
-1 T ’ :
w=-R"B Poi¥y (36)
where
. . 1w
= + + -
0 = Q+A; P, +PpA - P BRTE, o1 (372)
T ' :
= P._A .
O = Ay By +# P80+ By | - (3m)
A
T T T .
= + -+ P
O = CaBy P ¥ Py ¥ ApRyp T OB, (37e)

Pk
Compared with equations (25) the quadratic terms are eliminated from the

last.two of these equations, and it is only necessary to solve the first two
in order to determine the control. They might be solved by adding differential
terms Pll and ?12 to the left hand side, and integrating them until they
reach a steady state.

Consider now:the effect of increasing the speed of the auxiliary plant.
Asbefére, let the auxiliary plant be defined'by equations (28) and (29).
Equation (37b) becémes

T

= | + F =0
0 APy, + P B 0Py

As o - o +the first term becomes negligible compared with the third, and,

using (29),
0P1pG 2 Py | | (38)
With this substitution equation (37a) reduces to the same form as (27).

Then (38) and (36) show that a result similar to that already obtained for

the unrestricted optimal control holds for a restricted optimal control
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constructed in this manner:

Convergence property of restricted optimal controls for composite plants:

Let the composite system defined by equations (19), (20), (21), (28), and (29)
be optimized for the performance index (34), with K chosen to satisfy (35),

so that only feedbacks from xl'are used. Then if the speed qf the auxiliary
plant is increased by increasing the scalor factor o, the restricted feedback
control approaches the optimal input y, which would have been obtained by

optimizing the main plant alone for the performance index (23).



Conclusions

It has been shown that if a cross product term between the control and
state vectors is added to the performance index, it is possible to compute
the matrix of this additional term jointly with the control, in such a way that

the modified performance index is minimized by the control for all initial

conditions of the plant, and specified feedbacks are eliminated from the control.

If this method is used to eliminate feedbacks from an auxiliary plant which

drives a main plant, the convergence property proved in the last section suggests

3

rthat at least for this class of systems, the modlflcatlon of the performance

index need not lead to a s1gn1f1cant change in the characterlstlcs of the resultwng
s

system.
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