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SHOCKS AND KINITS IN STRINGS. b

by

ANTONY JAMESONM

SUMMARY

A simple theory of finite disturbances in strings is developed.
It is found that two types of finite disturbance may occur, 'shocks',
across which there is a change in the stress, and ‘kinks', across
which the string is bent. Shocks and kinks travel at different
speeds. The theory is used to predict the motion of a string struck
by a bullet, both immediately after the impact, and after the waves
travelling along the string have been reflected from its ends.
Photographs of bullets hitting strings show that the effects predicted
by the theory do in fact occur.
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INTRODUCTIUN

The behaviour of a string under impact has been investigated
by Ringleb (Ref. 1). Ringleb formuloted the problem in terms of
the differential equationg of the string. The resulting motion
of the string, however, is discontinuous, and it seems worth while
to focus attention on the properties of finite disturbances. In
this paper a simple theory of finite disturbances is developed,
using arguments similar to the arguments employed in the theory of
shock waves in air, or of jumps in a channel of water.
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SHUCKS

Consider first a discontinuity in stress but not in direction.
The principle that mass, momentum end energy are conserved across
the discontinuity yields equations corresponding to the Rankine
Hugoniot equations for a shock wave in air,

Let S, p, o and e denote the cross—-sectional area, density,
stress and strain of the string. Suppose that the force is
directly proportional to its extension, so that

S _ .
o5, = Ke 1)
o ) .
-, 3 L] ”

where K is a constant,and a suffix o denotes the unstrained

s 1 . Rl -
condition. Also S

. S

pS(1 +e) = poSo | ' (2)

g -t

FIG. 2.1

Suppose that the discontinuity is travelling along the string
at a steady speed. It is convenient to use axes fixed to the
discontinuity, (Fig. 2.1 )and to think of the string as approaching
at a speed ¢, and leaving at a speed c;. Then for conservation
of mass

p1615; = p2C252
or by (2),
82 - 1l tep
cq 1 + e, (3)
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The rate of generation of momentum equals the external force,
therefore

Plolsl(cg - cl) = 09, = 015

or, by (1) (2) and (3),

3 1 + e '
Poro 2 - -~
PSR 012(____— -1 > = 1'\_(62 - el>

1+ ey ,\1 + ey
and. '
¢1 = co1 + ey) K (4)
c; = col1 + ep) N (5) '
where :EE —
X
co® = ;;

T+ remeins to be checked whether energy is also conserved when
these conditions are satisfied. The strain energy per unit of
unstrained volume is

Ke®
2

Strain energy is thus generated at a rate

2 2
e - €
S Py . T2 1
l\.r 1 % 2
Po

and kinetic energy at a rate

2
Si01p1 —5—— -

The total rate of generation of energy is therefore

S0 0K [ 20 . . |
12221 [622 —e,? + %g (024 - 012}} = SOK(czez- clel),
0

just the work done by the external force. Apparently, therefore,
disturbances of this kind, which will be called ' shocks', are
possible in a string for which the tension is directly proportional
to the extension. It has not been necessary to make any



assumptions about the way in which the area of the string varies
under stress, provided that the accompanying lateral motion

is negligible compared with the longitudinal motion. The shock
will usually not be stationary in space. The equations remain
valid, however, when an equal speed is added to the shock, and
the string on each side of it. Equations (4) and (5) thus
correctly give the speed of the shock relative to each part of
the string: If the speed changes from v, to v,,

Vg —Vy = Co(ez - el) (7)
It is convenient to use the dimensionless notation, v = Ncg, and
write !

N, —e, = N —ey (8) °

- -
-

Often the force in the string will not be*&ireétly
proportional to its extension, so that equation (1) must be
replaced by

a _S% = K f(e) . (12)

Then

_poSo_ 5 (1 t o >:: K(£(e,) — £(e1) )

1+el 1+el
and
¢, = a(4 +e,) (4a)
c, = a(1 +ey) (5a)
where
a? = X £(ep) — £ley) (6a)
Po €z — &

The rate of generation of strain energy is now

€z
S;0; 22K | fae
Po _
€1



The total rate of generation of energy is therefore

€x

SiC1p1 f pg Cz° = c17 1)
Jg = —K fde + — ———r—
Po . {_ / ¢ K 2 J
€1
. e, .
- fle,) - fleyy (1 +e,)2 = (1 + e,)?
= SyKa {/ fde + ) }
82 - el [ 48
ey ; )
5 e, + ey d
g = SyKa { /, rde + [Fle,) - £(ey)] —— + 1 ] } )
€1

The work done is
(. - W o= SOK[GZ f(ez\) - Ci f(el)]

Sckal(4 + e,) f(ey) = (1 + ey) fe;)]

i

~—

€3

Al D
T e.l SPY e
FIG, 2.2
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The second term inside the bracket is the area of the trapezium
ABCD (Pig. 2.2). Thus if the slope of the force curve decreases
as the strain increases,U - i has the szame sign as e, —~ e;, wnile

if it increases,U —~ %W has the same sign as e, = e,. In the first
case 'compression' shocks, in which the tension decreases, are
possible, with dissipaticn of energy, but 'expansion' shocks are not
possible, In the second the reverse is true.

This behaviour is related to the accomulation of successive
disturbances.

€3 ey €y
Vi 0
i ' Fr
e T Rt Rt SR - .
- > » *
Co — V3 Cy o -
FIG. 2.3 L

Consider a string, stationary on the right, (Fig, 2.3) along which
two small disturbances are travelling. Suppose that they are
expansion waves and that (l4a), (52) and (6a) hold.

Then
¢ fley) - £ey)
Ci = (1 + 91) /\\[-;; e, — e
and
K f(es) - f<ez)
Cyg = Vy = (1 + eg) N oo P—

_ (e -e ) [_IS_ f(ez) - f(el>
2 1 «JPO e, — &,

so the difference between the speeds of the two waves is

|
'z
ci=C, + v, = (1 + ez) \};; X

{ J?(e;) TG, - ff(ezﬁ = £(ea) |

ea - €5 “J e, — €3 J



B > :—'/ -
el
; A P ; |
£ | ‘
: |
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- E;““—‘”é; e
FIG, 2.4

The terms inside the bracket are the square roots of the slopes
; of AB and D (Fig. 2.4). If the slope of the force curve
h decreases as the strain inoreases, the bracket is positive. The
distance betveen successive expansion waves would then increase
as they travelled along the string, and a finite expansion wbuld
disintegrate. Successive compression waves, om .the other hand, -
would accumulate, and tend to form a compression;shock. When the
force is directly proportional to the extension, successive
disturbances neither close up nor fall apart: compression and
expansion shocks are possible, but there will be no tendency for
small disturbances to accumulate. The sections to come will be

restricted to this case.

£
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KINKS

There is the possibility also that discontinuities of direction
may be propogated. Suppose that such & discontinuity or 'kink'
is travelling along a string in whicih the stress is constant. Ic
the speed of the kink is &, one can choose axes attached to the
kinlk: and think of the string as rurming into the kink at a speed a.

FIG. 3.1 . i

Since the stress is constant there is no change in strain as the
string pesses the kink, sO that it zlso leaves the kink at a speed
o after turning through an angle 9 (Pig. 3.1). The total external
force equals the rate of change of momentum, therefore

Sap.a sinf = S0 sind
Sap.a(1 - cosb) = So(14 - cos0)
and
2 - 2 (
av = 1
p )

Al so there is no energy generated, and the work done by the force
at one end of the string balances the work done by the force at the
other end. The propagation of a kink at a speed Jo/p relative to
the string on either side of the kink should therefore be possible.
The vertical and horizontal components of the velocity of the
string will change by Jd/p_sina and Jb/p (1 - cosf) across a kink

of angle 0.

1t is remarkeble that & tensioned string,running along itself
at a speed Jb/p,should,be able to maintain an arbitrary fixed
shape in space in the sbsence of disturbing 2orces.

Suppose that the force in the string is directly proportional

to its extension. Then if Se is the area and po the density of
the unstressed string,

- 10 =



¢ = = Ke
Lol
pS(1 + e) = peS,
so that
a? = —e(1 +e) = co2e(1 +e)
Po

The speed of a kink in such a string is therefore meco wnere

m2 = e + e% So(2)
and the velocity components change across the klnx by mc, sing
and mco(1 - cosé ). o

Consider now the more generzl case in which the stress changes
across the lkink.

\ e,
AN
~ \az €3
. 8y
‘X g

FIG. 3.2

Then the s»rlng enters at a speed a2; and leaves at a speed ap,
(Fig. 3,2) where since the string does not accumulate at the Llnk

a, 1+ e | .
a; = 1 + PN (3)
:‘ AlSO
e o, sing = p;a,8, sinf (ka)
i Op = 0y CO0s§ = Pla1(31 = ag cosf) (40)

- 11 -

ot



or, if 6 %- 0, substituting from (ha) in (4b)

o, — 0, 6088 = p;8;° — g, cosb
whence
o Ul I(el I\
aj = = = = = —e1(| -- e~)
Pi Jo51 Po

But equally if one resolved perpendicular to ap,

K
2,2 = = ey(1 + ep)
Po '
ther@fore
a, \ _e(1 + ey
( a, / T 6121 + e15

and by (3)

e, 1 + e,

€1 T4+ ey
or

e, = €3

Thus when # O the stress is constant: a combined kink and

shoeck is impossible.

-2 -

/
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L. REFLECTION OF SHOCKS AND KINKS

ey e 0
My 0 iy | Ny
- N -— -
By R 1 ~~f""“ o
- _ \
(2) . FIG. Lol (b)

Suppose that a shock B approaches a free end A (Tig. L.1(a)).
The stress is always zero at A, so when the shock arrives, there
is a discontinuity in stress at A,  Since such d:discontinuity
cennot remain stationary, it must be propogated back down the
string (Fig. a1(b)). The shock is thus reflected.

Une has
N = e; (1)
Nl +e = N (2)
giving
N, = 24 | 3 (3)

The speed of the string is doubled.

ey €1 -
Ny 0 Ny o
_ e i o S {’;
B c
2 e

PIG. 4.2

-13 =



A shock is similarly reflected at a fixed end (Fig. L.2).
In this case

Nl = el (h’)
Ny +e; = e, (5)
giving
e, = 2e ' (6)
;
e, e, e, e, e, 4 €,
N, I N, N, N, <"/ N,
4 - i & E af---- @ — E - - : wt—
—_— A N R
A - +§ L
(a) (b)
FIG. 4.3

Shocks can also be reflected off each other (Fig. 4.3). If
shocks A and B collide, modified shocks ¢ and D are transmitted
from the point of collision. For A, B, Cand D

W, - N, = e, — e | (7)
N, ~Ng = eg-—e; | (8)
Ny, — N, = ez — ey (9)
N, - Ng = e; — e3 | (10)

Adding (7) and (8)

qu - I\Ia = 82 + e3 - 281

and adding (9) and (10)

N, —Ng = 2e; - (e, + e3)

so the strain between the reflected shocks is

€, = &5 + €3 — € (11)

-1 -
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Also subtracting (8) from (7)
N, + Ng = 2N; = e, — e

and subtracting (¢} from (10)

2N, - (Ny + Ng) = e, - eg

so the speed of the string between the reflected shocks is Nscq
where

N4 = 1\11 + €, —€Eg

[l

TR

LA A

FIG, L.4

When a kink B travelling along a string in which the stress
is constant approaches a fixed end A, (Fig. L4.4(a) ) the
behaviour is more complicated. No velocity can be imparted to
A, A section AD therefore develops behind a reflected kink D,
(Fig. 4.4(b) ) in which the velocity parallel to AD is zero because
A is stationary, and the velocity normal to AD is also zero
because the kink angle is constent. If the stress in the string
remained unchanged, it would be impossible for the kink to produce
the required change in the velocity. It is therefore preceded
by a shock C. The stress and speed of the string change across C
in such a way that behind D the string is stationary.

Then the speed of the kink B is m,c, where

m, = €, + e,2 (13)
‘and behind it the velocity ocomponents are M,c, and Njc, where

Iﬁl = ml Sinel (1 I+a)

N, = -my(4 - cosf,) V (14b) -

-15 -
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FE&E

Across the shock C the velocity components change to M,c, and
N,c, where

M, = ¥; - (e, - e;)sing, (152)
N, = 1, - (e, = ey)c0s0; (15b)
L

~

1

\

\6, - 6, ~
|2 1

my[1 — cos( 6, - elfT\

mzlsin(ez - 61)

FIG. 45 ” .
) o
For the kink D (Fig. L.5)
m, = e, + ey? (16)
0 = N, + m, fsinel - sing, cos(6, - 6,) ~ cosf, sin(6, - 61)]
= M, + my(sing; — sing,) (17a)

O = N, + m, [cose1 — cos6, cos(e2 - 9,) + sing, sin(6, ~ 61)l

= N, + my(cos8, -~ cosd,) (17b)

From (14), (15) and (17)

(my + e, + m, —e,)sing, = m, sind, (182)
(my + ey + my — €5)c088; —my = My 0080, (18b)

Dividing (18v) by (18a)
: o
"o, +e, +m, —e,)sing;

cote, = coto,

where by (16) m, > e,, so
cotf, < cotf,

and

92>61

- 46 -



(182) and (18b), when squared and added, give

One can obtain a quartic equation either by cancelling the terms
in m,?, separating the terms in m;, squaring, and eliminating

mp? with the aid of (5€), or by making o substitution consistent
with (16) such as

_o_®* b 1) _ b
®2 T S0 ™ T Ty 2T % T 4

and ey, my, and 6, can then be determined.
When 8, » O (182) shows that 9, also— O, ﬁfbvided that my
remains finite. Then
» 912 . 602
cosfy; > 1 — —5~, cosf; > 1 -5~

and according to (18b) e, differs from ej; by terms of order 62,
[ It can be seen from (14) and (16) that m, then differs from m; by

terms of a similar order, and finally from (18a) that as 0, =+ O

- 6, ~ 20;.

Fé

Ly

; (my + e, +my —ey)% = 2my cosf,(m; + e + my, — e,) + m?> - m,”

—
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IMPACT ON A STRING

i

C B
—_—
FIG. 5.4

If the end A of a string is suddenly given velocity components
Mo, and Neg by an impact, (Fig. 5.1) it will be impossible fior the
deflection to be transmitted along the untensioged string. First,
therefore, a shock B travels along the string, establishing a tension.
It is followed by a kink C which travels at a spéed mc, relative to
the string, where

m? = e + e® (1)
Across the kink the vertical and horizontal components of velocity
change by mc, sinf and.mco(1 - cose). Behind the shock the string
has a speed ec, to the left, therefore

K = m sinf (Za)

e -N = m(1 - cos@) (2b)
Also the speed of the kink in space is

ecq

(m = e)eo m+ e

Since m > e whene > 0, O<m — e < 3.
Squaring and adding (2a) and (2v)

M2 = m2 - (m—-e +N)2 = (e -H) (2n -e + N) (3)
One can obtain a quartic equation'éither by separating the term

in m, squaring, and eliminating m2? with the aid of (1), or by
meking a substitution consistent with (1) such as

2 aga + 1) a
e = — = Ll n-e =

a + 170 T T2a 417 - 2a + 1

- 18 =
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For a fixed angle of impact the ratio of ¥ to N is fixed. It is
then easier to solve the problem in reverse for M, given e.

If the impact is normal, setting N = O (3) gives

12 = e(2m - e) (L)
Then setting 1 = ne,
(n® +1)e = 2m
and
(n? +1)2%2 = 4m® = Le + he?
whence v
."l: -
~ - l{" n = 2(n2‘+r1o ) m—e = 2
e = I s " T - +3) e
cosf = =2 = 0 =1 gine = X = 28
~ - m = mw+ra ® T m  n® 41

A family of solutions for which i and e are both perfect fractions
can be generated by substituting integral values of n: they are
associated with Pythagorean number triples such as (3, 4, 5).

Some solutions of this type obtained by setting n = 2, 3, L and 5
are listed in Table 5.1, and Fig. 5.2 shows the way in which the
strain e, the kink angle 6, and the speed (m - e)co of the kink
depend on the impact speed HMco.

o

As e~ 0, m® = e +e— e,

Then (L) shows that for & normel impact

a
M - Pme — 2e?

- 19 -



so +that

4
5
e - .6301.1 (5a)
o
. 11 %
sinf = —- y2 e, (5b)
2
cose—»ﬂ—%-»*t—m (5¢)

It can be seen from Fig. 5,2 that e departs rather slowly from its
asymptotic value. The approximation

‘l

¥

has an error which ranges from +4% to -4% as M increases from O
to 5.

3 - 20 -
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6.

REMOVAL OF THE LOAD AFTER A NORMAL TMPACT

7 I}&\ . }J 1 //"‘
/..'/' \ ? /(f:
,/ } y B .
- . Z _.’\\e 1 ) /
(2)

FIG. 6.1

If a string recéives a normal impast at A (Fig. 6.1(a)) and the
load is suddenly removed, (Pig. 6.1(b); the kink at A cannot wemain
stationary, so kinksC must move out each way from A leaving between
them a straight section, which will be horizontalzbecause of the
symmetry. If the kinks were not preceded by shocks, the parts of
the string ahead of the kinks would nave a purely vertical velocity,
and the kinks would impart opposite horizontal components
of velocity to the string either side of A. The kinks must
therefore be preceded by shocks B.

The equations for the original-impact give

m sind = M (12) -
My . cosd = My - e (1b)
m?2 = e, +e;°? (2)

For the shocks B
M, = My + (es — e1)sind | (3a)

Ny

(§2 - ey )cosb (3b)

Tor the kinks C

Ny = MNp - mp sing (4a)
m22 = ez + 622 (5)
- 22 ~



Eliminating i, and N; from (3) and (4,

Ma = 1l - (eq =~ ey + mz)sine

(e; — e;)oos6 = my (1 = cos0)

It can be seen from the second of these that e, < €;1.
Using (1) and (2)

M
g = [(m —e1) - (mp - ep)]sing = -n-;[(ml- e;) — (mp - e3)]
mae .
€y — ez = ;G%%:{;; = mp(my + ey) : (6) .
]

oo ]
It can be seen from the first of these that O < Mg < 3.
Equation (6, must be solved subject to (2) and (53.

The sideways speed of the kinks € is m;Co, and the ratio of this

speed to the speed of the original kinks is

m, ey

= 1 -
ml-el el
Setting
_ a2 B ala + 1) B
e1 = Sy ™ T Za g g™t T
b2
2 T Db + 1
(6) becomes
a? _ _b? _ab(b +1)
2a +1 2b+1 ~  2b +1
or
v2(a +4)(2a +1) +ab - a%® = O
whence

—-a + ay 8a2 + 122 + 5
2(a + 1)(2a + 1)




The limiting case e; = O 1is obtained when a = O. Then

b d5-1
a 2 2
and
e, 2 =2 _
el-+ ) = ,382

Some sclutions obteined by setting a =2, 1, %, L 2nd } are listed
in Table 6.1, and Fig. 6.2 shows the way in which the speed Macq
of the central section, and the ratio of the strain e, after the
removal of the load to the strain e; after the original impact
depend on the speed Myc, of the impact. ' .

i



TABLE 6.1

REKUVAL OF THE LOAD AFTER A NORMAL ILPACT

My e1 Mg e, -é—j-
1.132 .8 452 077 135
576 333 116 .0667 .2
279 125 L0735 .0329 .263%
.72 L0667 .0518 L0196 _,;294
125 L7 .0389 .0130 ".512 '
- 25 -
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7.

COLLISTUN OF A SHOCK AND KTNK

Ny
\“M'n el
c
N,
N
\\?la.
.
N\ 5 \iﬁ>$\ E% R
.\\ i ~3
N, N e " T Mg €2
A N Ny
. + G'l‘. 0. N i I
B A T e "_‘B”"”’“'
— - . -
(a) FIG. 7.1 (t)

If a string of finite length suffers an impact, the resulting
shock will be reflected when it reaches the end of the string, and
will travel back until it hits the foliowing kink. When a shock
A collides with a kink B, (Fig. 7.1(a)) the stress behind A is
in general not compatible with the velocity changes across B.
Accordingly shocks G and D and kinks B and T are transmitted from
the point of collision (Fig. 7.1(b)j. Since static kinks and
shocks are impossible, no discontinuity can remain at the point
of collision. The section EF is therefore straight, and the
stress is constant from C to D.

For the kink B .

m2 = e +e,’? (1)
;, = m; sinf, (Za)
N, - Ny = m (‘I - c0591) (Zb)

For the shock A

My =Ny = e, —¢€; , (3)

For the shocks C and D
M, = M, — (e; — e,)sing, (4a)

N, = N, — (es — e1)cos0; ()
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Mg = O (5a)
N, = N +e53—-e, (5b)
\ma"’! - cos(9; - 02)]
et : 1
RS sin(g, - 62)
~_
N 61—82
LA
‘ PIG. 7.2
;
For the kink B (Fig. 7.2) - )
mg? = ey + eg” (6)
My = 1, + mg[sing; — sing; cos(8, - 9,) + co0s0, sin(8; - 02
= N, + mg(sing, — sing,) (7a)
Ny = N, + m3{§osel — co0s0; cos(0; - 62) - sinf, sin(6, - ezﬂ
= N, + mg(cosd, — cosfy) (7v) -
Por the kink F
Mg = mg sing (82)
N, = Ny —m(1 - cosgy) — (8b)

(7) and (8) give

2mg sinf, = M, + mg sinf, (9a)

2m, cosf, = N, — Ng + ]2‘13(1 + 00561) (9b)

But (2) and (3) give

Ng

- Ny = ey —¢€z + ml(ﬁ - c0361}
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and (4) and (5) give

H, = (3 + ey - e,)sing,

ot

N, = Ng = Ny — Ny + e, cosfy + e, — eg(1 + cos6y)

i

so (9a) and (9b) become
2m, sinf, = (mg - e,)sing; + (m1 + el)sinel (10a)
2mg cosf, = (ma - ea)(1 + cos@l> - (ml + el)(1 - cosel) + 2e,

. {10b)
If e, = e; these equations are evidently satisfied by ez = el,
mg =My, O, = 0y ﬁ
Since o

sin26 + (1 * cos8)® = 2(1 * cosfd)
and
(4 + coso)(4 - cosg) = sinZg

(10a) and (10b), when squared and added, give

26 ,2 — 262[(11'11 + el)(1 hd 00591) - (ﬂla - 33)(1 + 00561>]

+ (my + e;)2(1 = cos0;) + (ma - e5)2(1 + cosf,) - 2my® = O

(11)

I+t is easiest to solve the inverse problem of finding ep, given
e, and ez, According to (11)

e, = A *+B
where
A = 3m, +ey)(1 - cosey) - H(my - ex)(1 + c0s6,)
- and '
B2 = mg2 - ¥m, + e, + my — e,)? sinZ6,
Only values of e; for which B is positive are possible. Yhen B

is positive there are two values of e, which will result in the

given value of ey, but one may be negative. According to (10a)
sinf, is the same for these two values, so if 0, = o for one of

them, 6, = 7 ~ a for the other: one is a solution with a reverse
kink. (10a) can be rearranged as
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ny(2 sing, -~ sinf,) + ez sinf; = (my + e,)sind,

Since m;, €., sing,, mg and e, are positive, and mj increases with eg,
e, is least for a given value of ey vwhen § = n/2. Then B = 0,
and the two solutions for e, coincide.

I the kink originated from a normal impact, then according
to section 5, N, = e; and

m, cosfy = MWy - € (12)

For this case some sglutions of (iﬁ) for e,, given e; and e, are
1isted in Teble 7.4, and Fig. 7.3 shows the way in which ey varies
with e, for different values of e;. ’

o -

Apart from the triviel solution e, =€z = egy there are
solutions for which e; + e;, and ez = €;, so that there is no shock
C. hen es; = e, the solution of (14) is

e, = e, or e, — 2m; cOsf,

TIf the kink originated from a normal impact, substituting from (12)
for m; co0s@,, the second solution is

e, = 3e; — 2m

Yith the aid of (1) it can be seen that this is positive vhen
e, > &, though such large values of e, are probably outside the
range which could be encountered in practice.

To determine the asymptetic behaviour as e 0, suppose that
g, = TEi. Then (11) may be written

[m, +e,(1 - r)y] (1 - cos6, )

- (e - reqy)[2m, — (e5 = re;)] (1 + cos6,) — ms?(1 - cos6,) =

If e; and my; » O the left hand side would remain finite and negative
unless ez = 0, so ez must—> O with ej. Then

€1

mla-&l,aeo

r €3
Mz = VCez, ;1:"* 0
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and according to equation 5.5¢, if the kink originated from a
normal impact,

cosfy 7+ 1 - m

e
80 in the limit, provided that = remains finite,
3

mg2 my, + hmg(ey — re,) - m?3 = O
Putting

m e

._1. — k, _]; L k2,

mg ey ;
this becomes ﬁ;

k® + 4rk® -k -4 = O <

Denoting the left hand side by F

& e

R = 3k? + 8rk 1

& ok ke ¥

Fri O when k = 3 + A 3 + 1
and F = -4 whenk = O
- so this is a cubic with a single positive root.
i " If e, = 0, then F = O when k = 1.80, and
§ e,

lim -— = ,309

€1
el—>0

If e, = 2¢; then F = O when k = ,736 and
g ca
lim — = 1.848
€3

e~ O

When e; = O, as for a shock reflected off a free end, it is
possible to devise a direct method of generating solutions.



(11) nowr reduces to

(m, + e1)2(1 - cosel) + (my - es}z(ﬁ + oosel) - 2my? = 0

where, according to (12), if the kinl originated from a normal

impact,
. , &
cosdy = 1 -
Then setting
e, = ‘T_Ef,_ ‘m a(a + 1) mn; + e = a, cosf; = !
' 2a + 171 2a +1 2 % t . T e+
v
| ez = tEEE;T’ ng = E%%“{~%l, mg + ez %ﬂgb, ng — €3 = 25"3
{; one cbtains
. a® | p® a+2 22(b+1)2 _ 4
i a+1 (20 +1)2a+1 (2p + 1)%
. or
B 23(2b + 1) — ab2(2b% + Lb + 1) - 23(b +2) = O
b whence, if a = kb,
[
2p2(2k® — k) + 2b(2k® - 2%k —4) +k® —k —h = O

1P ¥ > k + 4, all three coefficients are positive, and there
is no positive solution. When k® =k + 4, or k = 1.80, there is
a solution a =b = O: this is the solution approached in the
limit as e; = 0. Then '

m; + e } 1
k — ?’. - s HELINELS § -, .?_n.
b my; + e3 N oeg

and k has the same significance as in the earlier treatment of
the asymptotic behaviour.

If k2 < 1 all three coefficients are negative, and again
there is no positive solution. Vhen k® = 1 there is a solution

1 - 0: +this is the solution approached in the limit as ey = cor

- 31 -
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Then

I, i
— and —— 4
€, €3

so that
€5

= /2

e B

€1
Tor large values of e, €3 is thus greater than ej.

Vhen k lies between these limits

4 4+ 2k - k3 + /4 = Lk ¥ 2k* + 12k° — 2k*

Ll-ka - % e:

Solutions in perfect fractions are obtained when k = 1 and %.
These are

— 4 — 4

e; = %, e, = 0, € = ¥
and

e; = %93, €2 = 0, eg = 733

Solutions obtained by setting k = 1.2, 1.3, 1.k, 1.5 and 1.6 are
listed in Table 7.2, and Fig. 7.4 shows the way in which the final
strain e, and the angles 6; and 6, depend on the initial strain ei.

Then the Ikink collides with a shock refiected off an anchored
end,e, = 281 Some solutions obtained from the curves of eg '
against e, when the first impact is normal are listed in Table 7.3,
and Fig. 7.5 shows the way in which the final strain ez and the
angles 0, and 0, then depend on the initiel strain e;.

It can be seen from Figs. 7.4 and 7.5 that for a collision
of a kink with a shock reflected from a free end 9, > 0,, whereas
for a collision with a shock reflected from an anchored end
6, < 91 In the first case the angle steepens, the string
assuming a shape as in Fig. 7.6(a), or even developing an overhang
as in Fig. 7.6(b); In the second case the angle becomes
shallower, the string assuming & shape as in Fig. 7.6(c).



L

1

p—
Bl -

-4

-8y
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1 . e —

(a) (o) (c)
FIG. 7.6

Fig. 7.7 shows the way in which the ratio of the final strain es

to the initial strein e, varies with e; for the twoé cases. For

a collision of & kink with a shock reflected off a free end &5 < €3
for small values of e;, but ey > e, when e; > £, while for a
collision with a shock reflected off a fized enﬁ{el < €3 < €2 i
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TABLE 7.1

COLLISION OF A KINK FROM A NORMAL IMPACT AND A SHOCK
e es rootg for e,
A L0667 036, =245
1 A, —=.363
.15 AT72, =.h92
o2 235, =507
!.3 0553) "-773
A L, —a92h
.5 572, -1.062 |
e
.2 .15 .086, —.226 Y
.2 .2 3 "5380
03 0335, -'589
nb— -LFBL*', "‘-757
05 -60]4', _"905
3 .222 -.015, -.015
.25 AT7L,  —=.200
.3 3, =3h9
o 011-71 y "'557
.5 612, =72
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TABLE 7.2

COLLISION OF A SHOCK REFLECTED OFF A FREE END

TITH THE FOLLOWING KINK AFTER A NCRHMAL TMPACT

€3
ey my cosfq 64 es g cos80, s P
1

I . .0 o)
3 3 g 5 70.5 & 8 -3 109.5 |
258 £32 11 €6.0° 16 28 _ 13 £01.5° 43
. 73 73 % . 37 3 %3 iVles <8
- 3

351 L687 L1 60.6°  .27h  .500  —.O0h7 . 92.7° 780

- L2353 .536 565  55.5° 160 .31 q0L B0 .63
Fé- 55 423 L63h 50.7° L0935 320 .26 75.70 .60
& | BT .305 .72 43.8° L0 .21k W33 65.3°0 .52
i L0392 .202  .805  36.3° L0175 .33 W613  52.2° L7

- 35 ~




1)

-

=

o1
2

23

TABLE 7.3

COLLISION OF A SHOCK REFLECTED OFY AN ANCHORED END

WITH THE FOLLOWING KINK AFTER A HNORIAL IMPACT

my c050; 61 g4 Tl cosl, 6,

332 L6917 15.7° T2 .hh9 825 3k
490 .592  53.7°  .33h  .668  .788  38.0
624 .820 58.7° 490  .859 765  LO.1
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8. DEVELOPMENT OF THE.LOTION OF A STRING AFTER AN IKPACT

From the results of the previous sections i1t is possible to
predict, within the limitations of the theory, the way in which
the motion of a string will develop after an impact.

IR s LS S FlL L Ly

|
(a) (b) B (o) ‘

PIG. 8.1

Suppose that a string hanging from its upper end, with its
lower end free, is struck at a point A by a bullet trave111n5
horizontally (Fig. 8.1. (a) ). ”hen accordln% to secticn 5 a
notch BAC will spread out from A (Fig. 8.1(b) ) The notch
L _ will be preceded by shecks which will be reflected from the ends
P of the string. According to section 7 the collision of the
expanding notch with the shock reflected off the free end will
N cause a segment BD to sp”eud out at a steeper angle, undercutting
- the notch (FPig. 8.1(c) ). he collision with the shock reflected
e off the anchored end, on the other hand, will cause a segment C&
to spread out at a shallower angle. The outgoing shocks from
these collisions will themselves in turn be reflected from the
ends. Repeated col}isions of %he front of the notch with shocks
reflected off the tip will cause the string to fold back on
. itself. If the string is struck near the tip this process may
be quite advanced by the time the first reflected shock from the -
anchored end reaches the notch.

YRR, / / I /2 s sl L LS
. /-—

—

TT 777777 IR YR
(a) () (o)
T FIG. 8,2
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If a string anchored at both ends is struck in the centre by a
bullet,the motion will develop symmetrically as in Fig. 8.2,
Repeated reflections of shocks off a fixed end will cause the stress
to rise,until either the string bresks or the stress ceases to
depend linearly on the strain,and the theory ceases to be valid.

‘ PIG. 8.3

¥
If the bullet comes off the string, then agcording to section 6
a flat should develop as in Fig. 8.3. The expansion waves from
the flat will relieve the stress, opposing the rise in stress
caused by reflections off a fixed end.

A A AR A A s/ S S s S

(2) (b)
P1G. 8.4

When the kink at the front of the notch reaches a fixed end,
it may be expected from section 4 that it will be reflected with a
reversal of angle,as in Fig., 8.4, though this will be complicated
by the action of the reflected shocks. '

Some experiments were carried out under the direction of
Mr. K.T. Wardle. An airgun was used to fire flat nosed bullets
at strings, and the impacts were photographed with a FASTAX
high speed camera by Mr. Derek Love. The edge of the film was
exposed to the light of a neon bulb supplied with alternating current
at a frequency of 50 cycles per sec. From a count of the number
of frames between successive light and dark patches it was thus

possible +to estimate the speed of the film. The accuracy was

limited to a few per cent by the lack of sharp edges between the
patches and by apparent fluctuations in the speed. Given the
speed of the film, the speed of the bullet in each experiment

could be estimated from a knowledge of the scale of the photographs.
Some of the photographs are reproduced in Figs. 8.5, 8.6 and 8.7.

It can be sesen that the effects predicted by the theory were in
fact observed.



The photographs shown in Figs. 8.5 and 8.6 were taken with
direct lighting. The sequence should be read from left to
right, but the bullet travelled from right to left. The
thread used in these two experiments was a twisted nylon yarn
with a weight of .267 oz. per ft. and a breaking strength of
22 - 25 pounds. The results of a test of its extension under
load are shown in Fig. 8.8. The slope of the force curve
increased as the extension increased. The initial slope was
.55 pounds for a 1 per cent extension, and the corresponding
speed of a shock wave would be 3250 ft. per sec. In
Pig. 3.5 the string was hanging from its upper end. The lower
end was embedded in a piece of plasticine to stop the string
swinging around, but was otherwise free. In Fig. 8.6 the
string was anchored at both ends. The figures both show a
notch spreading out from the bullet in the expected mammer.
In Pig. 8.5 the speed of the film was about 13700 frames per sec.,
and in Fig. 8.6 it was about 14100 frames per seag Prom this
information the speed of the bullet was estimated‘to be about
500 ft. per sec. in each case. _In Fig. 8.5 the angle at the
front of the notch was about 36° and in Fig. 8.6 it was about
34, From Fig. 5.2 it can be seen that the corresponding
extension of the string would be only a few per cent in each
‘case, and assuming that the wave speed was 3250 ft. per sec.,
the ratio M of the speed of the bullet to the wave speed was
about .154. According to the theory the angle at the front
of the notch should then have been %9.6°. When the lower end
was free, it can be seen from Fig. S.5 that an indentation
appeared on the lower side of the notch, this marking the return
- of the shock reflected from the tip. As the indentation
increased, the string began to fold on itself. Vhen both
ends were anchored, it can be seen from Fig. 8.6 that the angle
of the kinks at the front of the notch decreased slightly as
the notch expanded. When the kinks reached the ends they
were reflected with their angles reversed. In both experiments
the bullet came off the string and a flat developed at the centre
of the string.

Fig. 8.7 was obtained by a shadow technique , the apparatus
being placed between the camera and a perspex screen illuminated
from behind., This resulted in a sharper definition, and the
bullet is clearly visible in the photographs. In this case the
bullet travelled from left to right. The thread was a
braided terylene yarn with a weight of .494 oz. per ft. and a
breaking strength of 26 — 27 pounds. The results of a test of
its extension under load are shown in Fig. 8.9. The thread
exhibited a linear dependence of force on extension. The force
for a 1% extension was 1.32 pounds, and the corresponding speed
of a shock wave would be 3720 ft. per sec. As in Fig. 8.5,
the lower end of the string was free tc pull out from a lump of
plasticine. A notch again developed from the bullet af'ter the
impact. The speed of the film was about 413900 frames per sSecC.,
and from this it was estimated that the speed of the bullet was
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about 580 ft. per sec. Assuming that the wave speed wags

3720 ft. per sec., M had a value of about .156, and according

to Fig. 5.2 the angle at the front of the notch should have been
39.80. In fact it was about 360. The subsequent course of
events was very similar to the sequence shown in Fig, 8.5.

The bullet came off the string and a flat developed. When the
shock reached the end of the string, the tip came out of the
plasticine and started travelling upwards. When the reflected
shock reached the kink, an indentation developed and the string
began to fold on itself.
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