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Motivation

• The current calculations of comlex unsteady flows are

prohibitively expensive for use in real engineering

applications to turbomachinery design.

• Example:

In the Stanford ASCI project, we are calculating the

unsteady flow through a complete turbine with 9 blade

rows; using a mesh with 94 million cells. Using an implicit

scheme, the number of time steps required to reach a

stationary periodic state is ∼ 2500, and the total estimated

computer time is 2.0 million CPU hours. Using 512

processors, the calculation requires approximately 8 months.
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Fully Implicit Backward Difference Formula

(BDF)

Discretize
∂w

∂t
+

∂

∂x
f(w) +

∂

∂y
g(w) = 0

as

3V

2∆t
wn+1 − 2V

∆t
wn +

V

2∆t
wn−1 + R(wn+1) = 0 (BDF)

where R(wn+1) is the discrete residual

R(w) = Dxf(w) + Dyg(w)

evaluated at the end of each time step.



Fully Implicit Backward Difference Formula

(BDF) Contd.

• Advantages:

– the scheme is second order accurate in time

– it is A–stable. (i.e., unconditionally stable for any ∆t if

the physical equations are stable.)

• Disadvantages:

– coupled nonlinear equations have to be solved at each

time step by some approximate method.
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Linearized Scheme

Approximate the flux vectors as

f(wn+1) = f(wn) + A∆wn +O ||∆w||2
g(wn+1) = g(wn) + B∆wn +O ||∆w||2

where

A =
∂f(w)

∂w
, B =

∂g(w)

∂w
,∆wn = wn+1 − wn

also

3V

2∆t
wn+1 − 2V

∆t
wn +

V

2∆t
wn−1 =
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2∆t

(
∆wn − 1

3
∆wn−1

)

Hence we obtain the linearized scheme
{
I +

2∆t

3V
(DxA + DyB)

}
∆wn =

1

3
∆wn−1 − 2∆t

3V
R(wn) (L)



Linearized Scheme Contd.

• Advantage: Since ||∆w|| = O (∆t) the scheme is still

second order accurate.

• Disadvantage: The cost of inversion is still too great.



Fully Implicit Dual Time Stepping Scheme

• Solve the full nonlinear BDF by inner iterations which

advance in pseudo time τ

∂w

∂τ
+

[
3wV − 4wnV + wn−1V

2∆t
+ Dxf(w) + Dyg(w)

]
= 0

(DTS)

On convergence to steady state, ∂w
∂τ = 0, solution of the

BDF is recovered.

• We solve (DTS) using

– explicit multistage scheme with variable local ∆τ

– implicit residual averaging

– multigrid



Fully Implicit Dual Time Stepping Scheme

Contd.

• Advantage:

– if the inner iterations converge fast enough, we solve the

fully nonlinear BDF, giving an efficient A-stable scheme

which allows very large ∆t.

• Disadvantage:

– no way of assessing accuracy unless the inner iterations

are fully converged.

– if a large number of inner iterations are required, the

scheme becomes expensive.



Alternating Direction Implicit (ADI) Scheme

with the Backward Difference Formula (BDF)

• Replace the left hand side of the linearized BDF by an

approximate factorization, giving the modified ADI scheme
(
I +

2∆t

3V
DxA

) (
I +

2∆t

3V
DyB

)
∆wn =

1

3
∆wn−1 − 2∆t

3V
R(wn)

(ADI)

where R(wn) = Dxf(wn) + Dyg(wn).



Alternating Direction Implicit Scheme with the

Backward Difference Formula (ADI-BDF)

• Replace the left hand side of the linearized BDF by an

approximate factorization, giving the modified ADI scheme
(
I +

2∆t

3V
DxA

) (
I +

2∆t

3V
DyB

)
∆wn =

1

3
∆wn−1 − 2∆t

3V
R(wn)

(ADI)

where R(wn) = Dxf(wn) + Dyg(wn).



ADI-BDF Scheme Contd.

• Advantages:

1. Nominally second order accurate in time with 3 sources
of error:

(a) the discretization error of the BDF

(b) the linearization error

(c) the factorization error

2. can be solved at low computational cost in two steps.

• Disadvantages:

1. The factorization error dominates at large CFL numbers

2. The scheme isn’t amenable to parallel processing: it may
lose its stability if applied separately in each of a large
numbers of blocks.



Hybrid Scheme

• The proposed hybrid scheme will take an initial ADI step in
real time ∆t:(
I +

2∆t

3V
DxA

) (
I +

2∆t

3V
DyB

)
∆w(1)+

2∆t

3V
R(wn)−1

3
∆wn−1 = 0

(ADI)
yielding a nominal second order accuracy without iterations.

• then follow it with the iterative multistage time stepping
scheme augmented by multigrid to drive the solution in the
steady state limit towards the fully nonlinear BDF.

∆w(k)−∆w(k−1)

+ βk

[
3V

2∆t

(
∆w(k) − 1

3
∆wn−1

)
+ R(w(k−1))

]
= 0

(IT)



Accuracy of the Hybrid Scheme

• The initial ADI step is already formally O(∆t2), and

subtracting (ADI) multiplied by βk from (IT) with k = 2 we

get

∆w(2) −∆w(1) = β1
4∆t2

9V 2
DxADyB∆w(1) +O

(
||∆w||2

)

= O(∆t2)

and subsequently any ∆w(k) −∆w(k−1) is also O(∆t2).



Hybrid Scheme Contd.

• The advantages of this scheme are that:

1. We should retain formal second order accuracy with any

number of iterations, and it should not be necessary to

iterate to convergence within each implicit time step, in

contrast to existing dual-time stepping schemes which

are only second order accurate if the inner iterations are

fully converged.

2. The additional iterations with multigrid should provide

information exchange between processors which is

needed to stabilize the ADI scheme run separately in

each processor.



Validation

The case selected is the NACA 64A010 airfoil in a pitching

oscillation representative of wing flutter.

• Mach Number: 0.796

• k = ωChord
2q∞ = 0.212

• Pitching Amplitude: ±1.02◦

• Re = 12.56 million

We show comparisons of

• Dual time stepping with the BDF

• Pure ADI with the BDF

• The hybrid scheme



Validation

The case selected is the NACA 64A010 airfoil in a pitching
oscillation representative of wing flutter.

• Mach Number: 0.796

• Reduced Frequency: ωChord
2q∞ = 0.212

• Pitching Amplitude: ±1.02◦

We show comparisons of

• Dual time stepping with the BDF

• Pure ADI with the BDF

• The hybrid scheme



Inviscid 2D Airfoil Testcase

NACA64A010 Airfoil

Mesh Size: 160X32

• Inner part of a grid obtained via conformal mapping. The
grid extends to 100 chords.

• Note that the cells at the trailing edge (TE) are very small
in comparison with those at mid-chord (MC).



Viscous 2D Airfoil Testcase

NACA64A010 Airfoil

Mesh Size: 254X64

• Baldwin-Lomax Turbulence Model

• Re = 12.56 Million



Viscous 2D Airfoil Testcase

NACA64A010 Airfoil

Mesh Size: 254X64

• Baldwin-Lomax Turbulence Model

• Adiabatic Wall BC



Inviscid 2D Airfoil Test Case
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Inviscid 2D Airfoil Test Case

Comparison of Hybrid Scheme with Different

Number of Iterations
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Inviscid 2D Airfoil Test Case

Comparison of Hybrid Scheme with Different
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Viscous 2D Airfoil Test Case
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Viscous 2D Airfoil Test Case

Comparison of Hybrid Scheme with Different

Number of Iterations
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Comparison of ADI-BDF and

Dual-Time-Stepping Algorithms
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Comparison of Inviscid and Viscous Results
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Comparison of ADI-BDF and

Dual-Time-Stepping Algorithms

−1 −0.5 0 0.5 1

−0.1

−0.05

0

0.05

0.1

C
L

α (degrees)

Experimental Data                       
40 Inner Iterations                     
 2 Inner Iterations − Hybrid            
 2 Inner Iterations − Dual Time Stepping

Student Version of MATLAB



Conclusions

• We can obtain second order accuracy without the need to

iterate to convergence, using 1 ADI-BDF step followed by

small numbers of dual-time-stepping iterations (of the order

of 4 or 5 for inviscid, 10 to 15 for viscous calculations).

• It has been successfully applied to our 2D airfoil testcase

• The scheme may allow a substantial reduction in the cost

of unsteady flow simulations in turbomachinery, for which

we currently use 30 inner iterations.



Future Work

• Futher refinement of the hybrid scheme

– diagonally dominant ADI (DDADI)

– LU-SGS


