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UNSTEADY IRROTATIONAL TRANSONIC FLOW ABOUT AIRFOILS 
 

Richard Chipazan* and Antony Jameson** 
 

SUMMARY 
 
Numerical difference schemes are presented for the 
computation of unsteady transonic flows about 
airfoils. A first-order system of equations in 
conservation form is developed for irrational (full 
potential) flow and solved by finite difference 
methods. To enable the boundary conditions to be 
imposed directly on the airfoil surface, a time-
varying sheared-rectilinear coordinate 
transformation is used. Explicit differencing 
schemes are used to solve both lifting and non-
lifting cases. Additionally, an alternating direction 
implicit (ADI) scheme has been coded for efficient 
solutions in the non-lifting case. Calculated time-
accurate solutions for several cases are com pared 
with the results of other unsteady transonic codes. 
Good correlation is shown with results produced by 
the more exact but computationally slower Euler-
equations codes. Shock location is demonstrated to 
be better predicted than by small-perturbation or 
quasi-conservative schemes. 
 

TABLE OF SYMBOLS 
 
a local speed of sound 
c chord length 
Dx, Dy central difference operators in X and Y 

directions 
−−
yx DD , backward difference operators in X and Y 

directions 
+−
yx DD , forward difference operators in X and Y 

directions 
F defined in Equation (9) 
G    “            “             “ 
h stagnation enthalpy 
I identity matrix 
M local Mach number 
P artificial viscosity terms 
p pressure 
Q  velocity vector 
S  defined In Equation (5) 
t, T time 
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TH thickness ratio 
U, v velocity components 
W defined in Equation (9) 
x, X streamwise coordinate 
y, Y vertical coordinate 
γ specific heat ratio 
∆T time step 
ε artificial viscosity constant 
ρ density 
∞ Far-field condition, when used as 

subscript  
λ Courant number 
τ time in chord lengths traveled 
 
 

INTRODUCTION 
 

The transonic flow regime has long been 
known to be the most critical for flutter and other 
un-steady aeroelastic phenomena. Until recently, 
no efficient method has been available to calculate 
unsteady aeroedynanics in this speed range; 
consequently, transonic flutter prediction has relied 
on wind tunnel testing. With the advent of faster 
computers and the emphasis on transonic cruise 
and maneuver capabilities for new aircraft design, 
much progress has been made recently in the 
development of both steady and unsteady transonic 
computational methods. 
 

In unsteady transonic aerodynamics, work 
has proceeded along two different lines. In the first, 
researchers have produced linearized unsteady 
solutions abount nonlinear mean (steady) flows. 
The efforts of Ehlers1; Traci, Albano and Farr2; 
Cunninham3; Liu4; and rung, Yu and Seebass5 are 
examples of this approach. From experimental 
measurements such as those of Tijdeman6, it has 
been obvious that these linearized solutions are 
valid for a severly limited set of problems. 
Consequently, other researchers have pursued a 
second approach, the use of finite difference 
methods to obtain solutions to the coupled 
steady/unsteady flow. In this area, the works of 
Magnus and Yoshjhara7; Lerat and Sides8; Beam 
and Warming9; Ballhaus and Steger10; Ballhaus and 
Goorjianh11-12; and Isogai13 are notable. The former 
three efforts have produced methods for solving the 
full Euler equations, which (although 
computatationally too expensive for routine use) do 
provide excellent benchmark calculations. 
Ballhaus’ works have produced an efficient method 
for solving the low-frequency, small perturbation 
form of the potential equation, thus making 



possible economic solutions to a range of important 
transonic unsteady problems. 

 
Isogai developed the first solution procedure for the 
unsteady full-potential equations. The present 
effort improves on this procedure by constructing 
an algorithm for unsteady potential flow in true 
conservation-law form. Such a formulation enables 
realistic resolution of shock-wave locations 
necessary for accurate steady-state solutions. While 
this paper was in preparation, Goorjian14 also 
formulated a method for solving the unsteady 
potential equation in conservation form. 
 

In the present paper, a system of equations 
for 2D, inviscid, irrotational, isentropic flow are 
written in conservation-law form using the 
primitive variables: density, strearnwise velocity 
and stream-normal velocity. The equations are 
transformed to a time-varying, sheared-rectilinear- 
coordinate system with care taken to maintain the 
conservation form. Details of both explicit and 
implicit finite-difference schemes are presented for 
time-accurate solutions of the equations. Pilot 
computer codes have been written to implement the 
explicit scheme for both non-lifting and lifting 
cases and the implicit scheme for the non-lifting 
case only. Results of calculations from both codes 
for various sample problems are given and 
compared to published computations from other 
methods. 
 

THEORY 
 

For unsteady flow, the equations of mass 
and momentum conservation can be written 
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For irrotational (potential) flow, the last term of the 
momentum equation is zero. If isentropic flow is 
assumed (which is a valid approximation when 
only weak shocks are present), this equation may 
be rewritten 
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Thus, Equations C and (3) can be simply written in 
conservation form as - 
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To enable boundary conditions to be 

conveniently imposed on a moving airfoil, the 
following coordinate transformation (illustrated 
schematically in Figure 1) is used: 
 

X = x, Y =  y-S(x,t), T =  t,  (5) 
 
where S accounts for both airfoil shape and motion. 
 
Trnsformed : X = x, Y = y-S(x, t)  

T= t 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Sheared rectilinear computational grid about an airfoil. 
 
Equation (4) is then transformed to 
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and, after some manipulation, is written 
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which also retains conservation form. Finally, the 
accompanying boundary condition of tangential 
flow can be written 
 

v-Sxu-St = 0  (8) 
 
on Y = 0 from the leading to trailing edge of the 
airfoil. 
 

For efficient computation, a coordinate 
stretching is employed in Y and X (ahead of end be 
hind the airfoil), as illustrated in Figure 1. Various 
stretching are used in the sample calculations 
presented below. Two considerations are 
considered essential in every case: (1) The grid 
should be fine (∆X, ∆Y ≈ 0.02 chordlengths) in 
both directions near the airfoil and (2) the outer 
boundaries should be far enough away so that 



signals cannot reflect off of them during the total 
time interval to be analyzed. 
 

For lifting calculations, the Kutta 
condition is imposed along an un-deflected wake 
(Y=0) from the trailing edge to the far-field 
boundary by requiring density and normal-stream 
velocity be continuous across the wake. 
 

At the far-field boundaries, the 
unperturbed flow is maintained. 
 
 

NUMERICAL ALGOEITBMS 
 

For simplicity in the following discussion, 
Equation (7) is denoted as 
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A predictor-corrector, explicit, differencing scheme 
has been constructed to assess the feasibility of the 
formulation. In this scheme, the new value Wn+1’ at 
each time step is determined by an interation  
consisting of a predictor step followed by several 
repetitions of a corrector step. 
 
Define 
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where Pij denotes terms representing an artificial 
viscosity to be defined below. Then the predicted 
value is 
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The corrected value Is formed by 
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An analysis of this scheme for a linear problem 
shows that it is unstable with one corrector step, 
but stable for a ∆T not greater than twice the 
Courant-Friedrichs-Levy condition16 when two 
corrector steps are used. The use of more than two 
correction steps is found to result in no further 

Improvement. Numerical studies have con firmed 
these conclusions for the present non linear 
problem. 
 

( ) ( )( ) ,|||| ijYYXXij DavDYDauDXP −+−+ +∆++∆=ε
(13) 

 
where c is a positive number. Numerical studies 
have shown that a value of ε = 0.25 is sufficient to 
capture shocks and produce otherwise smooth 
pressures. 
 
It should be noted that by using artificial viscosity 
no switching operator is required to capture the 
shock. This point is discussed in detail in Reference 
15. As currently implemented, the artificial 
viscosity is used through out the flow field; 
however, experience with steady—state codes 
suggests that sharper shocks would result if the 
viscosity terms were eliminated In the subsonic 
regions. 
 

For efficient flow calculations, an explicit 
scheme is far too slow, Consequently, after 
feasibility was deixnstrated, an alternating-
direction implicit differencing scheme was 
constructed, for which the selection of the time step 
is dependent only on the time scale of the motion 
being analyzed. This scheme is outlined 
 
 

Let ijijij WWW −=δ  Then the Crank-Nicolson 

Scheme16 would be 
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Approximating Fn+1 and Gn+1 by Fn + AδW and Cn+ 
+ BδW, where A= δF/δW and B = δG/δw, this 
equation can be written as 
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and approximately factored as 
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1+n
ijW can now be computed in two steps, each 

requiring the inversion of only a block tridiagonal 
matrix. Introducing artificial viscosity terms, the 
two steps are 
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To date, the scheme has been coded for the non- 
lifting case only. 
 

SANPLE RESULTS 
 

Results obtained for various sample 
problems are discussed below together with 
comparisons with solutions generated by other 
methods. The grids used contained 3000 to 5000 
points with a mesh width of approximately 0.02 
chords near the airfoil. The computational times 
required depended, of course, on the mesh, the 
Courant number necessary for accuracy and the 
total time span of the particular problem. However, 
comparisons made with the low-frequency, small- 
perturbation code of Reference 10 (LTRAN) 
indicate that the present implicit scheme requires 
13.5 times the computational work of LTRAN. 
This implies that a potential—function formulation 
based on the same techniques as the present 
primitive variable approach could be expected to re 
quire only 1.5 times the computation of LTRAN. 
 
Thickening Airfoil 
 

A problem that has been analyzed by 
several researchers is that of computing unsteady 
pressures on a bicircular arc airfoil which 
successively thickens and thins during its travel, as 
shown in Figure 2. The Mach number for this 
example is 0.85. The equation  
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where TH is the midchord thickness ratio and τ is 
time measured in c traveled. Consequently, the 
airfoil initially has zero thickness, grows to its 
maximum thickness of 10% after traveling 15 
chordlengths and returns to zero thickness after 
traveling a total of 30 chord-lengths. During the 

course of this travel, the variation of thickness 
causes an interesting flow-structure: A strong 
shock wave forms on the airfoil as it thickens; 
subsequently, as the air foil thins, the shock 
propagates rapidly up stream and leaves the airfoil 
nose to enter the oncoming flow. The numerical 
computation of this extensive shock motion is a 
rigorous test for unsteady transonic aerodynamic 
codes. It might be noted that because of their basic 
theoretical limitations, the methods of References 
1-5 are unable to handle such cases of large shock 
motion. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 Thickening-thinning airfoil motion. 
 
 

Calculations by the present method will be 
compared with those of Reference 13 (full- 
potential equation in quasi-conservation form) and 
Reference 10 (small-perturbation, low- frequency 
equation in full-conservation form). The low-
frequency approximation of the latter is considered 
valid for this case, though one might voice some 
concern during that portion of the time wherein the 
wave undergoes its rapid up stream motion. To 
facilitate the comparison, the computation grid 
used in the present calculations is patterned after 
that of Reference 10: In the stream-wise direction, 
the grid is uniform over the interval that extends 
from one chord-length upstream of the airfoil nose 
to the trailing edge; to either side of this interval, 
the grid is smoothly stretched to the boundaries 
located more than thirty chord-lengths from the 
airfoil. In the stream-normal direction, the grid is 
uniform from the airfoil surface to a distance of 0.2 
chord-lengths; beyond this point the grid is 
stretched smoothing to a boundary also more than  
mum grid spacing is roughly 0.02 chord-lengths in 
each direction. From studies of grid variation, it 
was concluded that the solution is sensitive to the 
choice of grids but that the present choice is 
adequate because it combines a fine-grid structure 
near the airfoil with boundaries sufficiently far 
removed for the present calculations. The grid used 
in Reference 13 is different from the above but that 
author states that sensitivity studies were 
performed to determine a sufficiently fine mesh. 
 

Several solutions were generated with the 
present method using various time-step inter vals. 



The algorithm was found to be stable at a Courant 
number, λ of as high as 40; but for solution 
accuracy λ<l2 (approximately) is required for this 
sample problem. 

 
Results obtained by the three methods are 

shown in Figure 3a and 3b. In the first figure, the 
shock forms and strengthens. It should be 
mentioned that a significant lag occurs between the 
time the airfoil reaches maximum thickness (τ=l5) 
and the point (τ=l8.25) at which maximum shock 
strength is attained. In the second figure, the shock 
moves rapidly forward, while diminishing in 
strength, and leaves the airfoil. Al though, as will 
be discussed in detail in the following paragraphs, 
there are some appreciable differences in the three 
solutions, the qualitative agreement between them 
is good. 

 
Prior to and during the shock build-up, 

there are several discrepancies between the re-suits 
of the three methods. At τ = 8.5, both full-potential 
methods predict slightly less expansion over the 
forward part of the airfoil than does the small-
perturbation method. At τ = ll.5 and 18.25, the 
shock positions and strengths computed by each 
method differ: The farthest aft and strongest shocks 
are predicted by the small-perturbation equation in, 
conservation form; farthest forward and weakest 
shocks result from the full-potential equation in 
non-conservative form; and the shocks predicted by 
the present method (full-potential equation In fully 
conservative form) are intermediate in position and 
strength. This trend is consistent with well 
established steady-state transonic trends. The use of 
full-conservation form (FC) leads to shocks aft of 
those arising from non-conservation form (NC); the 
use of the small-perturbation equation leads to 
shocks aft of those arising from the full-potential 
equation. (See example comparisons in Reference 
17.) It should be emphasized that the use of 
conservation form is essential to obtaining shock 
positions that are theoretically consistent with 
whichever aerodynamic formulation-small-
perturbation or full-potential - is chosen for 
solution; consequently, the present method and that 
of Reference 10 are more correct in this aspect than 
the method of Reference 13. Finally, one can 
observe in Figure 3a that both full-potential 
methods predict a re-expansion after the shock at τ 
= l8.25. 

 
During the upstream motion of the shock, 

one notices that the shock speeds are somewhat 
different. In particular, the small—perturbation 
shock moves most rapidly and overtakes those of 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3a Pressure coefficients on thickening-thinning 

bicircular-arc airfoil.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 b Pressure coefficients on thickening thinning bicircular 

airfoil 
 
 
 
 
 
 
 
 
 



largest speed and overtakes that of Reference 13; 
and the shock of Reference 13 has the smallest 
Speed. This trend is consistent with the relative 
shock-strength maxima computed by the three 
methods. Finally, the present method is seen at the 
later times to predict a larger re-expansion behind 
the shock than do the other methods. The cause of 
this discrepancy is still under investigation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Flat Plate at Incidence 
 

Results for a lifting case are presented in 
Figure 4. Lifting pressures are shown at various 
times on a flat platg at M = 0.8 given an initial 
angle of attack of 10. Also shown are the solutions 
according to linear theory18 (roughly valid for this 
case) and Euler-equation solutions Agreement 
between the three is excellent. 

 
Oscillating Flap on a Bicircular-Arc Airfoil 
 
Figure 5 Presents result surface pressures on a 10-
percent-thick bicircular-arc-airfoil at. M = 0.8 with 

a flap oscillating at a reduced frequency of 0.2. 
based on the airfoil chord. The flap, which deflects-
5 has its leading edge and hinge line at the 75 
percent chord. The plots start after several cycles 
have taken place and follow a half cycle in which 
the flap deflects downward, returns to the neutral 
position, and starts to deflect upward. At the first 
time slice, a lower-surface shock wave has formed 
at the hinge-line and an expansion is beginning to 
form on the upper surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At the second time point, the shock has started 
moving forward, while the expansion has 
strengthened. This trend continues during the next 
time interval. By the fourth time slice, the shock 
can be seen to have weakened considerably during 
its upstream travel, while the expansion Is 
beginning to weaken. At the fifth time slice (where 
the flap has returned to its neutral position). The 
shook and  those at the first time point out with 
upper and lower-surface trends reversed.  
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



NACA64A006 Airfoil 
 

An additional test of an unsteady aero- 
dynamics code is its ability to obtain a steady-state 
solution on a stationary airfoil. Calculations were 
run on an NACA646A006 airfoil at M = 0.85 with 
zero angle of attack placed into a uniform flow 
field at τ = 0. The resulting pressure distribution 
after many chordlengths of travel have elapsed is 
shown in Figure 6 together with solutions from 
Reference 13 (full-potential equation in non-
conservation form) and Reference 19 (Euler 
equations in conservation form). The present 
solution agrees better with the more-correct Euler-
Equations solution than does that of Reference 13, 
particularly in regard to shock position and 
strength. Again, this is felt to be an indication of 
the necessity of a full-conservation-law 
formulation. The present method tends to smear the 
shock more than does Reference 19; but as stated 
above under “Numerical Algorithms,” limiting the 
articifical viscosity terms to the supersonic regions 
would probably sharpen the shock. To obtain 
reasonable results for this blunt—nosed airfoil, it 
should be mentioned that the X—grid had to be 
chosen such that mesh points would stradle the 
nose. A curvilinear mapping about the nose would 
remove this requirement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 Steady-state pressure Coefficients on NACA64A006.  
 
 
CONCLUDING REMARKS 
 

A method using primitive variables has 
been presented for obtaining accurate, efficient 
solutions to full-potential, unsteady, transonic flow 
about airfoils. The unique, key features of the 
approach are the retention of conservation be 
directly imposed on the airfoil surface, the 
inclusion of artificial-viscosity terms to capture 
shocks, and the construction of an implicit scheme 
(at least in the non-lifting case) for computational 

efficiency. It is emphasized that the conservation 
form is necessary for the prediction of correct 
shock locations. Feasibility and accuracy of the 
approach have been demonstrated by several 
sample calculations, including ones wherein 
exceedingly large shock-wave excursions occur. 
 

The work to date indicates the desirability 
of various modifications to the method. The 
restriction of artificial-viscosity terms to supersonic 
zones would reduce shock smearing. For more 
accurate treatment of blunt-nosed airfoils, 
curvilinear coordinate mappings should be 
introduced. To improve computational efficiency, 
the implicit algorithm should be extended to the 
lifting case. An alternating-direction-implicit 
algorithm can also be constructed along similar 
lines using a potential-function formulation, and 
further studies should be made to compare the 
accuracy and computational efficiency attainable 
with the present primitive-variable approach and 
such a potential-function formulation. 
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