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1. INTRODUCTION

A major factor leading to the
widespread acceptance of computa-
tional fluid dynamics in the design
environment has been the steady and
continuing reduction of computa-
tional costs, due both to improvements
in computer hardware and to im-
provements in algorithms. The multi-
grid technique has proved to be a
particularly effective method to
reduce the costs of steady state calcu-
lations, both for potential flow models,
and for solutions of the Euler and
Navier Stokes Equations [ref. 1-3].

Time dependent calculations are
needed for a variety of important
applications, such as . flutter analysis,
or the analysis of the flow past a heli-
copter in forward flight. A compre-
hensive survey may be found in the
review paper of Edwards and Thomas
[ref. 4]. If an explicit scheme is used
to calculate an unsteady flow, the
permissible time step for stability of
the scheme may be much smaller than
that needed to attain reasonable accu-
racy, with the consequence that an
excessively large number of time steps
must be used. Implicit schemes allow
much larger time steps, but the work
required in each time step may
become excessively large, especially
in three dimensional calculations.

In this paper it is proposed to
use a multigrid scheme as a driver for
a fully implicit time stepping scheme.
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This may pay off, in particular for
problems in which there are very
large variations in mesh size, where
the use of an explicit scheme would
result in a very severe restriction on
the time step, based on the smallest
cells in the mesh. The method has
been applied to both two and three
dimensional unsteady flows past
moving bodies. In order to allow the
use of body fitted coordinates the Euler
equations -are formulated in a general
moving coordinate system allowing
for deformation as well as displace-
ment of the mesh. Preliminary appli-
cations are to pitching airfoils and
wings.

2. FORMULATION OF THE
SCHEME

Let p, p, E, and H be the pressure,
density, total energy, and total
enthalpy of the fluid. Also let xjbe

Cartesian coordinates and let uj be the
" velocity components. The equations
for inviscid flow can then be written,
using the convention that repeated
indices denote summation, as

w  Bfj(w)

ot on =0 (1)

where the vector of dependent
variables is
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where vy is the ratio of specific heats.
For a general body fitted moving
coordinate system with coordinates Xj,
let J be the determinant of the
transformation

J=8X

and suppose that the mesh is moving
with local velocity components
umesh;.

The equations now become .
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where
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Fj=J oxi (fi- umeshj w) (7)

These may be written in integral form
for a domain D with boundary B as

)

fde
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+ J (fi - umeshj w) dS; = 0 (8)
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where dS; is the component of area
projected in the xj direction.

A finite volume scheme is
derived by applying (8) directly to
control volumes to give a set of ordi-
nary differential equations of the
form

5 BV +RM =0 O

where V is the cell volume, and the
residual R(w) is evaluated by summing
the fluxes (f;j - umesh; w) S; through
the cell faces. :

In order to prevent the appear-
ance of high frequency modes corre-
sponding to odd and even point oscil-
lations, and also to prevent oscillations
in the neighborhood of shock waves,
artificial dissipative terms are intro-
duced to provide an upwind bias (ref 2,
3). The dissipative terms are con-
structed by adding dissipative fluxes at
the point i,jk of the form
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The dissipative flux between the points
ij,k and i + 1,j,k is typically a blend of
first and third differences
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The coefficient Rj;)/2,j,x can be the

spectral radius of the Jacobian matrix
corresponding to the flux through the
face

8 .
A=3w_ (fi - umeshi 'W) Si

or if A is decomposed by its
cigenvectors as

A =TAT-]
one may take
R=IAI=TiAiIT]

The use of a matrix coefficient in this
form corresponds to flux difference
splitting (ref. 5-7), and then the
choice ¢(2) =1,e(4) = 0 gives a pure
upwind scheme. To reduce the level of
dissipation e(2) is taken proportional
to the normalized second difference of
the pressure

Pi+l,j,k - 2Pi,j,k + Pi-1,j,k
Pi+1,j,k + 2Pi,j k + Pi-1,j,k

while £(4) is taken as the positive
difference of a constant and &(2)

£(4) = max [ SK -€ (2)) , 0]

such that near shock waves the
higher differences are switched off to
prevent oscillations. This corresponds
to the use of flux limiters (ref 7).
Alternatively flux limiters may be
directly included (ref 5,6).

Multigrid time stepping
schemes have been developed to solve
the steady state equations very rapidly
(ref. 2,3). These schemes sacrifice time
accuracy to achieve fast convergence.
A multigrid time stepping scheme can
be formulated so that it approximates
the true time dependent evolution of
the system (ref 8), but the accuracy
decreases as the number of grids is
increased. An alternative, adopted
here, is to use the multigrid scheme as
a driver for a fully implicit time
stepping scheme. Thus equation (9) is
approximated as

Dt[w(n+l) V(n+l)] + R[w(n+l)] =0 (10)

Here the time level nAt is denoted by
the superscript n, V is the cell volume,
and R(w) is the residual. Also

D, is a kth order accurate backward
difference operator of the form

1
D_At

L

1
where
Aw@H) =y (n+l) _ y(n)

In the current implementation a
second order accurate difference
operator is used, yielding the equation

ﬁ [wn+1 vn+1] --22; [wn Vn] +
2L [wn1 vie1] wr[we+1] =0 an




Applied to a linear differential
equation of the form

w
=ow

dt

the second order backward difference
scheme is A-stable (stable for all
values of oAt in the left half of the

complex plane). It has been shown by
Dahlquist and Jeltsch (ref. 9) that A-

-stable linear multistep schemes are

not better than second order accurate.

- The trapezoidal scheme is A-stable

with a smaller error constant, but is
undamped as oAt | becomes very large.
Consequently the second order back-
ward difference scheme has been pre-
ferred for this work.

Equation (11) is now treated as a
modified steady state problem to be
solved by a multigrid scheme using
variable local time stcps in a fictitious
time t*:

8
%+R*(w)=0 | (12)

where the modified residual R*(w) is
defined as

* ___'i_
R(w) 2A +
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with the fixed source term

s[wm), win-b] - w(n) v(n)

-Z—At w(n-l) v(n-1) (14)

The multigrid scheme is driven by a
multistage time stepping scheme in t*.

If one considers a linear model
problem corresponding to equations

4

(12-14), with a Fourier mode of the

. 3
form w = ¢ exp(i pj xj), the term 2AT
shifts the Fourier symbol to the left
along the negative real axis. Thus the
time stepping scheme should have a
stability region which contains a sub-
stantial interval of the negative real
axis as well as intervals along the
imaginary axis. To achieve this it pays
to treat the convective and dissipative
terms in a distinct fashion. Thus the
residual is split as

R*(w) = Q(w) + D(w)
where Q(w) is the convective part and
D(w) the dissipative part.. Then the .

multistage time stepping scheme is
formulated as

w(n+1,0) = w(n)
WL @) g a[QUEDyp (D T

wn+l) = (n+l,m)

where a. =1, and

Q® =q [w®], p® =p[wm]

Qik)‘ _ Q' [wn+Li]

p®)= @ p[w@+LR], ¢ - pk)ypk-D

The coefficients a) are chosen to
maximize the stability interval along
the imaginary axis, and the coeffi-
cients By are chosen to increase the

stability interval along the negative
real axis.

Two schemes which have been
found to be particularly effective are
tabulated below. ‘The first is a four-




stage scheme with two evaluations of
dissipation. Its coefficients are

0.1=1/3 . Bl =1
ay = 4/15 By =1/2
az = 5/9 By =0
og=1 . B4 =0

The second is a five-stage scheme with
three evaluations of dissipation. Its
coefficients are

oy = 1/4 By =1
g = 1/6 BZ =0
03 = 3/8 B3 =.56
og =172 Bg =0
os=1 Bs =.44

The multigrid scheme is a full
approximation scheme defined as
follows. Denote the grids by a super-
script k. Start with a time step on the
finest grid k = 1. Transfer the solution
from a given grid to a coarser grid by
a transfer operator Py k.1, so that the

initial state on grid k is

(0)
wy © =Pk k.1 Wk-]

Then on grid k the time stepping
scheme is reformulated as

wl(ch) - WIEO)' oAt [R;(q)+Gk]

where the forcing function Gy is

defined as the difference between the
aggregated residuals transferred from
grid k-1 and the residual recalculated
on grid k. Thus :

Gk = Qik-1 R [wk.1]- R*[“’IEO)]

where Qg k-1 is another transfer
operator. On the first stage the forcing
term Gy simply replaces the coarse
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grid residual by the aggregated fine
grid residuals. Consequently the
source term S in equation (13) can be
omitted from the coarse grid residuals.
The accumulated correction on a
coarser grid is transferred to the next
higher grid by an interpolation
operator Iy_1 k -so that the solution on

grid k-1 is updated by the formula

new ‘ (0)5
Wi o1 =Wk-l+lk-1,k[wk’wk ]

The whole set of grids is traversed in a
W cycle in which time steps are only
performed when moving down the
cycle.

3. RESULTS

The multigrid implicit scheme
defined by equations (12-14) has been
applied to both two and three dimen-
sional flows. Reference 10 provides
unsteady flow measurements for a test
case in the flutter regime. This case,
labelled AGARD CT-6, is a pitching
NACA 64A010 airfoil at a Mach number
of .796. The mean angle of attack is

zero, the pitching amplitude is .01
degrees, and the reduced frequency,
defined as

o chord
290

is 2.02. Calculations were performed

on an O mesh with 160 x 32 cells
(displayed in Figure 1), with 24 and 36
time steps per oscillation périod. These
gave essentially the same result. In
both case 15 multigrid cycles were
used in each implicit time step, giving
an error reduction of two orders of
magnitude or more. With 24 steps in
each period the Courant number
reached values as high as 4138 in the
very small cells in the neighborhood
of the trailing edge. Figure 2 shows
the result obtained with 36 time steps
per period. The pressure distribution
is displayed at several values of the
phase angle ot during the second




period, with + symbols for the upper
surface and x symbols for the lower
surface. Figure 3 shows a comparison
of the computed values of the lift co-
efficient versus the angle of attack
with the measurements. These values
lie on a slanting oval curve because of
the phase lag between the lift and the
angle of attack. The measurements
shows a slightly  smaller total variation
of lift, and lie on a slightly broader
oval. The discrepancy is extremely
similar to the discrepancy which was
-found when the same case was calcu-
lated wusing an explicit multistage
scheme on a C-mesh (ref 6), suggest-
ing that it may be attributed to viscous
effects.

In order to test the three dimensional
scheme calculations have been per-
formed for the ONERA M6 wing with a
96 x 16 x 24 C-mesh. Figure 4 shows the

result for an unsteady flow at Mach

.840 over a pitching wing. In this
case the reduced frequency is .1, and

the amplitude is +5 degrees about a
mean angle of attack of zero  degrees.
The figure displays the pressure
distribution at the root and mid-span
stations Z = 0 and Z=.5 over one com-
plete oscillation period, at phase
intervals of 90 degrees, with + symbols
for the upper surface and x symbols
for the lower surface. The maximum
Courant number in this calculation
exceeded 950, and 15 multigrid cycles
were again found to give a sufficient
error reduction in each step. In gen-
eral one may expect there to be a
trade-off between the step size and the
number of multigrid cycles needed for
convergence of the implicit equa-~
tions.

4. CONCLUSION

Preliminary trials confirm that
the multigrid implicit scheme can be
‘used to calculate unsteady flows in the
flutter regime with 24 to 36 time steps
in each oscillation period, correspond-
ing to Courant numbers larger than
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4000 in the smallest mesh cells. Direct
use of an explicit multistage scheme
with residual] averaging allows
Courant numbers in the range of 5 to 8
to be attained (ref. 6). Assuming the
use of 10 to 15 multigrid cycles.in each
implicit time step, the multigrid
implicit scheme will show a pay off in
reduced computational costs, as long as
sufficient accuracy can be realized-

-while using time steps corresponding

to Courant numbers of 200 or more. In
situations allowing the use of Courant
numbers in the range of 10 to 100, one
might prefer to use a time accurate
multistage multigrid scheme with a tau
correction to reduce the errors intro-
duced by the coarse grids (ref 11). In
order to provide optimal efficiency for
a range of problems, one may incor-
porate in a single computer program
the three options of a single grid mul-
tistage scheme, a multigrid multistage
scheme, and a multigrid implicit
scheme of the type proposed in this
paper. Ultimately one could .introduce
an adaptive scheme to select different
options in different zones depending
on the local situation.

It appears that a computa-
tionally efficient algorithm for
unsteady flows could offer significant
benefits in a variety of applications.
These include helicopter rotors in
forward flight [ref. 12,13], counter
rotating propfans [ref. 14}, rotor-
stator combinations in turbomachin-
ery [ref. 15-16], aeroelastic problems,
oscillatory flows .induced by viscous

_ effects, and the calculation of acoustic

signatures. A computer program to
treat helicopter rotors by the present
method is currently under develop-
ment, This incorporates a multi-
sectored rotating mesh with one blade
in each sector, and mesh deformation
to allow for blade flapping. A second
anticipated extension is to wing flutter
calculations. Bendiksen and Kousen
used the program of Venkatakrishnan
and Jameson [ref. 6] to study a two
dimensional flutter model, and discov-
ered limit cycles due to nonlinear




transonic effects [ref. 17-18]. With the
new implicit program there is now an
opportunity to explore similar effects
in three dimensional flow.

5.

1.

REFERENCES

- R. H. Ni "A Multiple Grid Scheme

for Solving the Euler
Equations,” AIAA Journal, Vol.
20, 1982, pp. 1565-1571.

A. Jameson, "Solution of the
Euler Equations by a Multigrid
Method,” Applied Math. and
Computation, Vol. 13, 1983, pp.
327-356.

A. Jameson, "Multigrid Algo-
rithms for Compressible Flow
Calculations,” Proceedings of
the Second European Confer-
ence on Multigrid Methods,
Cologne, 1985, edited by W.
Hackbusch and U. Trottenburg,
Lecture Notes in Mathematics,
Vol. 1127, Springer Verlag, 1986,
pp. 166-201.

J. W. Edwards and J. L. Thomas,
“Computational Methods for
Unsteady Transonic Flows,”
ATAA Paper 86-0107, ATIAA 25th
Aecrospace Sciences Confer-
ence, Reno, 1987.

A. Jameson, "A Non-Oscillatory
Shock Capturing Scheme Using
Flux Limited Dissipation,”
Princeton University Report
MAE 1653, 1984, in Large Scale
Computations in Fluid
Mechanics, edited by B. E.

‘Engquist, S. Osher, and R.C.

J.Sommerville, Lecture Notes in
Applied Mathematics, Vol. 22,
Part 1, AMS, 1985, pp. 345-370.

V. Venkatakrishnan and A.
Jameson, "Computation of
Unsteady Transonic Flows by
Solution of the Euler Equations,”
ATAA Journal, Vol. 26, 1988, pp.
974-981.

7

10.

11.

12,

13.

R. C. Swanson and E. Turkel, "On
Central-Difference and Upwind
Schemes,” ICASE Report 90-44,
1990.

D. C. Jespersen, “A Time-
Accurate Multiple-Grid Algo-
rithm,” AIAA Paper 85-1493,
Proceedings AIAA 7th Compu-
tational Fluid Dynamics
Conference, Cincinnati, 1985,
pp. 58-66.

R. Jeltsch, "Stability on the
Imaginary Axis and A Stability
of Linear Multistep Methods,"

'BIT, Vol. 18, 1978, pp. 170-174.

S. S. Davis, "NACA 64A010,
Oscillatory Pitching," Compen-
dium of Unsteady Aerodynamic
Measurements, AGARD  Report
702, 1982. »

M. Meinke and D. Hinel, "Time
Accurate Multigrid Solutions of
the Navier Stokes Equations,"”
presented at the Third European
Conference on Multigrid
Methods, Bonn, 1990.

B. E. Wake, L. N. Sankar and S.
G. Lekoudis, “Computation of

~ Rotor Blade Flows Using the

Euler Equations,” J. of Aircraft,
Vol. 23, 1986, pp. 582-588.

B. E. Wake and L. N. Sankar,
“Solutions of the Navier-Stokes
Equations for the Flow About a
Rotor Blade,” J. American
Helicopter Society, Vol. 34,
1989, pp. 13-23.




14.

15.

. 16.

17.

18.

D. L. Whitfield, T. W. Swafford,
J. M. Janus, R. A. Mulac and D.
M. Belk, “Three-Dimensional
Unsteady Euler Solutions for
Propfans and Counter-Rotating
Propfans in Transonic Flow,”
ATAA Paper 87-1197, AIAA 19th
Fluid Dynamics, Plasma
Dynamics and. Lasers

" Conference, Honolulu, 1987.

M. M. Rai, “Navier-Stokes
Simulations of Rotor/Stator
Interaction Using Patched and
Overlaid Grids,” J. Propulsion,
Vo. 3, 1987, pp. 387-396. '

M. B. Giles, “Calculation of
Unsteady Wake/Rotor Inter-
action,” J. Propulsion, Vol. 4,
1988, pp. 356-362.

O. O. Bendiksen and K. A.
Kousen, “Transonic . Flutter
Analysis Using the Euler
Equations,” AIAA Paper 87-
0911, AIAA Dynamics
Specialists Conference,
Monterey, 1987.

K. A. Kousen and O. O.

‘Bendiksen, “Nonlinear Aspects

of the Transonic Aeroelastic
Stability Problem,” AIAA Paper
88-2306, AIAA/ASME/ASCE/AHS
29th Structures, Structural
Dynamics and Materials

Conference, Williamsburg,
1988. ’

Figure 1
Inner part of the 160 x 32 O mesh

for the NACA 64A010 airfoil
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